1
|
Cho HA, Song MH, Lee JH, Oh HJ, Kim YJ, An JW, Chang SY, Go YB, Song DC, Cho SY, Kim DJ, Kim MS, Park HR, Kim HB, Cho JH. Effects of different stocking density and various phytogenic feed additives dosage levels on growing-finishing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:535-549. [PMID: 37332281 PMCID: PMC10271929 DOI: 10.5187/jast.2023.e19] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 07/30/2023]
Abstract
This study was to investigate the effects of different phytogenic feed additives (PFA) dosage levels in growing- finishing pigs stressed by high stocking density. A total of 72 mix sexed 12 weeks growing pigs ([Landrace × Yorkshire] × Duroc) with initial body weight (BW) of 49.28 ± 4.58 kg were used for 8 weeks. There were 3 replicate pens in each treatment group, with 3 pigs per pen. The dietary treatment groups consisted of basal diets in animal welfare density (negative control [NC]), basal diet in high stocking density (positive control [PC]), PC + 0.04% essential oil (ES1), PC + 0.08% essential oil (ES2), PC + 0.10% bitter citrus extract & essential oil (CES1), PC + 0.20% bitter citrus extract & essential oil (CES2), PC + 0.05% grape pomace extract (GP1), PC + 0.10% grape pomace extract (GP2). The reduction of space allowance decreased (p < 0.05) average daily gain, feed efficiency, and digestibility of dry matter, crude protein, and gross energy. Also, the fecal score of PC groups increased (p < 0.05) compared with other groups. Basic behaviors (feed intake, standing, lying) were inactive (p < 0.05) and singularity behavior (biting) was increased (p < 0.10) under high stocking density. There was no difference in blood profile. However, the supplementation of PFA alleviated the negative effects such as reduced growth performance, nutrient digestibility, and some increasing stress indicators in th blood (cortisol) and animal behavior (biting). In conclusion, the negative effect of high stocking density was most effectively mitigated by the normal dosage of the mixture of bitter citrus extract and essential oil additive (CES1).
Collapse
Affiliation(s)
- Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Ji Hwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA 30602, United States
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | | | | | | | - Hae Ryoung Park
- Korea Agriculture Technology Promotion Agency, Iksan 54667, Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
2
|
Hu J, Mohammed A, Murugesan G, Cheng H. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult Sci 2022; 101:101769. [PMID: 35247651 PMCID: PMC8892129 DOI: 10.1016/j.psj.2022.101769] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine if synbiotics can function as alternatives to antibiotics in broiler production under heat stress (HS). Day-old broiler chicks (528 birds) were randomly placed in floor pens within 2 identical temperature-controlled rooms (11 birds/pen and 24 pens/room). The pens of each room were evenly divided among 3 treatments (n = 8): basal diet (CON), the basal diet mixed with 50 ppm of bacitracin methylene disalicylate (BMD) or a synbiotic (50 ppm of PoultryStar meUS, SYN). From d 15, room 2 was under thermoneutral (TN) conditions (TN-CON, TN-BMD, and TN-SYN), while HS was applied to room 1 at 32oC for 9 hrs/d (0800 to 1700) (HS-CON, HS-BMD, and HS-SYN). Treatment effects on footpad dermatitis and gait score were measured on 5 birds/pen, and latency to lie (LTL) test was measured on 2 birds/pen at d 27 and d 41; and 1 broiler/pen was sampled on d 28 and d 42, respectively. Body, liver, and spleen weight were determined. Plasma levels of interleukins (IL), heat shock protein 70, immunoglobulin (Ig)Y, liver superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were examined. Heat stress suppressed BW and IgY concentrations on both d 28 and d 42, while suppressed plasma IL-6 concentrations, SOD activities, and LTL duration on d 28 only (P < 0.05). Among all treatments, SYN birds had the best foot and skeletal health scores on both d 27 and d 41 (P < 0.05). On d 42, SYN increased BW, and TN-SYN birds had higher relative spleen weight than both TN-BMD and TN-CON birds (P < 0.05). Antibiotic BMD increased BW (P < 0.05) but decreased SOD activities (P < 0.05) on d 42. These results indicate that the SYN supplementation decreases HS negative effect on broilers by improving BW, foot, and skeletal health, while BMD improves BW but also increases oxidative stress in broilers. The data suggest that synbiotic supplement may function as an alternative to antibiotics in broiler production during summer seasons, especially in the tropical and subtropical regions.
Collapse
|
3
|
Ríus AG, Kaufman JD, Li MM, Hanigan MD, Ipharraguerre IR. Physiological responses of Holstein calves to heat stress and dietary supplementation with a postbiotic from Aspergillus oryzae. Sci Rep 2022; 12:1587. [PMID: 35091685 PMCID: PMC8799720 DOI: 10.1038/s41598-022-05505-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Increased ambient temperature causes heat stress in mammals, which affects physiological and molecular functions. We have recently reported that the dietary administration of a postbiotic from Aspergillus oryzae (AO) improves tolerance to heat stress in fruit flies and cattle. Furthermore, heat-induced gut dysfunction and systemic inflammation have been ameliorated in part by nutritional interventions. The objective of this study was to characterize the phenotypic response of growing calves to heat stress compared to thermoneutral ad libitum fed and thermoneutral feed-restricted counterparts and examining the physiologic alterations associated with the administration of the AO postbiotic to heat-stressed calves with emphasis on intestinal permeability. In this report, we expand previous work by first demonstrating that heat stress reduced partial energetic efficiency of growth in control (45%) but not in AO-fed calves (62%) compared to thermoneutral animals (66%). While heat stress increased 20% the permeability of the intestine, AO postbiotic and thermoneutral treatments did not affect this variable. In addition, AO postbiotic reduced fecal water content relative to thermoneutral and heat stress treatments. Heat stress increased plasma concentrations of serum amyloid A, haptoglobin and lipocalin-2, and administration of AO postbiotic did not ameliorate this effect. In summary, our findings indicated that heat stress led to reduced nutrient-use efficiency and increased systemic inflammation. Results suggest that the AO postbiotic improved energy-use efficiency, water absorption, and the intestinal permeability in heat stress-mediated increase in gut permeability but did not reduce heat stress-mediated rise in markers of systemic inflammation.
Collapse
Affiliation(s)
- A G Ríus
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA.
| | - J D Kaufman
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - M M Li
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - M D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
5
|
Chen Y, Hu S, Li J, Zhao B, Yang N, Zhou T, Liang S, Bai S, Wu X. Bacitracin Methylene Disalicylate Improves Intestinal Health by Modulating Its Development and Microbiota in Weaned Rabbits. Front Microbiol 2021; 12:579006. [PMID: 34248860 PMCID: PMC8267888 DOI: 10.3389/fmicb.2021.579006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Intestinal infections are a major cause of morbidity and mortality in humans and agricultural animals, especially newborns and weaned animals. Preventive treatments that help weaned animals maintain homeostasis and balance the hindgut microbial populations are desirable. The present study aimed to explore the impact of bacitracin methylene disalicylate (BMD) on the intestinal health by analyzing the intestinal environment, morphology, expression of peptidoglycan recognition proteins (PGRPs), and flora of weaned rabbits. A total of 300 New Zealand weaned rabbits were randomly divided into the following five treatment groups for a 35-day feed trial: control group (basal diet), bacitracin zinc (BZ) group (50 mg/kg BZ), BMDa group (100 mg/kg BMD), BMDb group (50 mg/kg BMD), and BMDc group (rabbits fed a basal diet supplemented with 25 mg/kg BMD). In each treatment group, 28 rabbits were slaughtered for experimental analysis. The results showed that the supplementation of BMD increased the environmental acidity of the cecum of the weaned rabbits and reduced the ammonia-nitrogen concentration, which was beneficial to the survival of useful bacteria in the intestine. The morphology analysis of the duodenum using hematoxylin and eosin staining revealed that the villus length, villus/crypt ratio, and intestinal wall thickness increased in the BMD group, thereby improving the structure of the duodenum and the absorption capacity of the small intestine. Moreover, real-time polymerase chain reaction test showed that PGRPs (especially PGLYRP-1 and PGLYRP-2) in the intestinal had an antagonistic effect with BMD in the process of inhibiting pathogenic bacteria, resulting in their decreased expression (P < 0.05). Furthermore, through 16S rRNA sequencing in the cecal content, the abundance of the predominant phyla in the BMDa and BZ groups was found to be the closest. The abundance of the genera Lachnospira, Erysipelotrichaceae (p-75-a5), Paraprevotellaceae (YRC22), Mogibacterium, Peptococcaceae (rc4-4), Anaerovibrio, Succinivibrio, and Sphaerochaeta increased in the BMDa and BZ groups (P < 0.05). The relative abundance of Alistipes, Sedimentibacter, and Dorea significantly increased only in the BMDa group (P < 0.05). Conclusively, BMD, as well as microbes, improved the intestinal environment and structure to maintain the intestinal health of weaned rabbits.
Collapse
Affiliation(s)
- Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuang Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Kaufman JD, Seidler Y, Bailey HR, Whitacre L, Bargo F, Lüersen K, Rimbach G, Pighetti GM, Ipharraguerre IR, Ríus AG. A postbiotic from Aspergillus oryzae attenuates the impact of heat stress in ectothermic and endothermic organisms. Sci Rep 2021; 11:6407. [PMID: 33742039 PMCID: PMC7979835 DOI: 10.1038/s41598-021-85707-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/28/2021] [Indexed: 01/17/2023] Open
Abstract
Heat stress is detrimental to food-producing animals and animal productivity remains suboptimal despite the use of heat abatement strategies during summer. Global warming and the increase of frequency and intensity of heatwaves are likely to continue and, thus, exacerbate the problem of heat stress. Heat stress leads to the impairment of physiological and cellular functions of ectothermic and endothermic animals. Therefore, it is critical to conceive ways of protecting animals against the pathological effects of heat stress. In experiments with endothermic animals highly sensitive to heat (Bos taurus), we have previously reported that heat-induced systemic inflammation can be ameliorated in part by nutritional interventions. The experiments conducted in this report described molecular and physiological adaptations to heat stress using Drosophila melanogaster and dairy cow models. In this report, we expand previous work by first demonstrating that the addition of a postbiotic from Aspergillus oryzae (AO) into the culture medium of ectothermic animals (Drosophila melanogaster) improved survival to heat stress from 30 to 58%. This response was associated with downregulation of genes involved in the modulation of oxidative stress and immunity, most notably metallothionein B, C, and D. In line with these results, we subsequently showed that the supplementation with the AO postbiotic to lactating dairy cows experiencing heat stress decreased plasma concentrations of serum amyloid A and lipopolysaccharide-binding protein, and the expression of interleukin-6 in white blood cells. These alterations were paralleled by increased synthesis of energy-corrected milk and milk components, suggesting enhanced nutrient partitioning to lactogenesis and increased metabolic efficiency. In summary, this work provides evidence that a postbiotic from AO enhances thermal tolerance likely through a mechanism that entails reduced inflammation.
Collapse
Affiliation(s)
- J D Kaufman
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - Y Seidler
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - H R Bailey
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - L Whitacre
- BioZyme, Inc., St. Joseph, MO, 64504, USA
| | - F Bargo
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- BioZyme, Inc., St. Joseph, MO, 64504, USA
| | - K Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - G Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - G M Pighetti
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA
| | - I R Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - A G Ríus
- Department of Animal Science, University of Tennessee, 2506 River Drive, 235 Brehm Animal Science Building, Knoxville, TN, 37996, USA.
| |
Collapse
|
7
|
Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs. Animals (Basel) 2020; 10:ani10112173. [PMID: 33233357 PMCID: PMC7700622 DOI: 10.3390/ani10112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Heat stress is a major concern in pig production in summer, as pigs have a limited number of functional sweat glands to transfer body heat. Above 25 °C pigs are out of their comfort zone and mechanisms such as decreasing feed intake or diverting blood from the internal organs to the skin are triggered. Intestinal microbiota is also affected by high ambient temperature but the consequences on fermentation capacity are poorly known. Short-chain fatty acids are the end-products of bacterial metabolism of carbohydrates and protein mainly in the hindgut and, in addition to being a source of energy, they have beneficial effects on immune status and health. An understanding of the effects of heat stress on intestinal fermentation could help to develop strategies mitigating intestinal disorders. We used an in vitro method to assess gas and short-chain fatty acid production, utilizing as inoculum feces from Iberian pigs fed a commercial diet for 28 days under neutral (20 °C) or heat stress (30 °C) conditions. Four substrates with dissimilar fermentation characteristics were incubated in vitro with fecal inoculum for 24 h. Chronic heat stress increased in vitro production of short-chain fatty acids, suggesting a modification of intestinal microbiota activity. Abstract Heat stress reduces the feed intake and growth of pigs. We hypothesized that heat stress affects the intestinal fermentation capacity of pigs. Sixteen Iberian pigs (44 ± 1.0 kg) were randomly assigned to one of two treatments (eight pigs/treatment) for 4 weeks—heat stress (HS; 30 °C) ad libitum or thermoneutral (TN; 20 °C) pair feeding. Frozen rectum contents were used as inocula for 24 h in vitro incubations in which a mixture of starches, citrus pectin, inulin from chicory, and cellulose were the substrates. Cellulose was poorly degraded, whereas pectin and the mixture of starches were the most fermentable substrates according to total short-chain fatty acid (SCFA) production. The mixture of starches and inulin produced the greatest amount of gas. For all substrates, heat stress enhanced gas production (8%, p = 0.001), total SCFA production (16%, p = 0.001), and the production of acetate and propionate (12% and 42%, respectively; p = 0.001). The increased isoacid production (33%, p = 0.001) and ammonia concentration (12%, p = 0.001) may indicate protein fermentation under heat stress. In conclusion, the in vitro intestinal fermentation capacity of pigs under heat stress was increased compared to thermoneutral conditions, which may indicate an adaptive response to heat stress.
Collapse
|
8
|
Cross AJ, Brown-Brandl TM, Keel BN, Cassady JP, Rohrer GA. Feeding behavior of grow-finish swine and the impacts of heat stress. Transl Anim Sci 2020; 4:txaa023. [PMID: 32705022 DOI: 10.1093/tas/txaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
Heat stress has negative impacts on pork production, particularly in the grow-finish phase. During heat stress events, the feeding behavior of pigs is altered to reduce heat production. Several different systems have been developed to study feeding behavior. Most systems are not accurate representations of grow-finish commercial production as feed intake is monitored for only one pig at a time. The objective of this study was to utilize a feed monitoring system, representative of commercial conditions, to determine feeding behavior patterns of grow-finish pigs throughout the year and to identify changes that occurred during heat stress events. Feeder visit data were collected on barrows and gilts (n = 932) from three different sire breeds, Landrace, Yorkshire, and Duroc, between May 2014 and April 2016. Days in the study were partitioned into groups based on their maximum temperature-humidity index (THI), where a THI less than 23.33 °C was classified as "Normal", a THI between 23.33 and 26.11 °C was classified as "Alert", a THI between 26.11 and 28.88 °C was classified as "Danger", and a THI greater than 28.88 °C was classified as "Emergency". Feeding behavioral differences among breeds and sex were observed across all THI categories. Landrace-sired pigs had fewer feeder visits compared to Duroc- and Yorkshire-sired pigs. Gilts had fewer feeder visits than barrows in all THI categories. Differences in feeding behavior patterns between THI categories demonstrated that heat stress reduced the feeding duration of Landrace-sired pigs without any dramatic effects on the other pigs in the study. During elevated temperatures, all pigs tended to increase feeding events during the early (03:00-05:59) and late (18:00-20:59) periods of the day. Utilizing a feed monitoring system that is a more accurate representation of commercial conditions will lead to a greater understanding of feeding behavior among breed types and sexes during heat stress, allowing producers to enhance their ability to properly care for their pigs during both normal and heat stress events.
Collapse
Affiliation(s)
- Amanda J Cross
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Tami M Brown-Brandl
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| | - Brittney N Keel
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| | - Joseph P Cassady
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Gary A Rohrer
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE
| |
Collapse
|
9
|
Dávila-Ramírez JL, Munguía-Acosta LL, Morales-Coronado JG, García-Salinas AD, González-Ríos H, Celaya-Michel H, Sosa-Castañeda J, Sánchez-Villalba E, Anaya-Islas J, Barrera-Silva MA. Addition of a Mixture of Plant Extracts to Diets for Growing-Finishing Pigs on Growth Performance, Blood Metabolites, Carcass Traits, Organ Weight as a Percentage of Live Weight, Quality and Sensorial Analysis of Meat. Animals (Basel) 2020; 10:ani10071229. [PMID: 32698311 PMCID: PMC7401503 DOI: 10.3390/ani10071229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of plant extracts (PE; artichoke, celery, beet, onion, garlic, spinach, avocado, oats, and parsley) in the diet of growing pigs under heat stress was investigated. Parameters included growth performance, blood constituents, carcass characteristics, organ percentage, quality and sensory appraisal of the pork. The study was performed during the Mexican summer, using 60 pigs. Treatments included the control, to which 0.1% PE, and 0.15% PE were added. The use of PE (0.1 and 0.15%) generated an increase in the average daily gain (ADG, by 10.0% for both treatments), and final live weight (LW, by 6.3% and 6.8%) (p < 0.05). The level of blood albumin at 95 kg was higher when supplementing with 0.1% PE (p < 0.05). At 120 kg LW, creatine kinase values showed a tendency to be different (p = 0.07). Carcass weight increased (p < 0.05) when adding PE. Supplementation with 0.1% PE decreased (p < 0.05) the red/green (a *) hue of the meat, whereas supplementation with 0.1% and 0.15% PE increased the yellow/blue (b *) hue (p < 0.05). The addition of PE improves pig growth performance, and carcass weight by reducing the negative effects of heat stress, without markedly modifying blood constituents, meat quality, and sensory attributes of the pork.
Collapse
Affiliation(s)
- José Luis Dávila-Ramírez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria km. 0.6. Hermosillo, Sonora 83304, Mexico; (J.L.D.-R.); (H.G.-R.)
- Ciencia Aplicada para el Desarrollo Tecnológico, A.C. (CIADETEC, A.C.), Pedro Moreno # 24, Col. Centro Norte. Hermosillo, Sonora 83000, Mexico
| | - Lucas Lisandro Munguía-Acosta
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Jubitza Guadalupe Morales-Coronado
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Ana Delia García-Salinas
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria km. 0.6. Hermosillo, Sonora 83304, Mexico; (J.L.D.-R.); (H.G.-R.)
| | - Hernán Celaya-Michel
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Jesús Sosa-Castañeda
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Esther Sánchez-Villalba
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco 4780000, Chile;
| | - Jesús Anaya-Islas
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
| | - Miguel Angel Barrera-Silva
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino km. 21. Hermosillo, Sonora 83000, Mexico; (L.L.M.-A.); (J.G.M.-C.); (A.D.G.-S.); (H.C.-M.); (J.S.-C.); (J.A.-I.)
- Correspondence: ; Tel.: +52-(662)-596-0297
| |
Collapse
|
10
|
Cui Y, Wang C, Hao Y, Gu X, Wang H. Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs. Animals (Basel) 2019; 9:ani9070395. [PMID: 31261803 PMCID: PMC6680871 DOI: 10.3390/ani9070395] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/12/2023] Open
Abstract
Simple Summary There is limited information on the serum metabolome of heat-stressed finishing pigs. Our results indicated that heat stress led to oxidative stress and acute phase response. Pigs chronically exposed to high ambient temperature were in negative energy balance status. Three gut microbiome-derived metabolites (fluorine, lyxose 1, and D-galacturonic) were likely to be biomarkers for monitoring animal health. Abstract Heat stress (HS) is a main environmental challenge affecting the animal welfare and production efficiency in pig industry. In recent years, numerous reports have studied the alterations in gene expressions and protein profiles in heat-stressed pigs. However, the use of metabolome to unravel adaptive mechanisms of finishing pig in response to chronic HS have not yet been elucidated. We aimed to investigate the effects of chronic HS on serum metabolome in finishing pigs, and to identify the biomarkers of heat stress. Pigs (n = 8 per treatment) were exposed to either thermal neutral (TN; 22 °C) or heat stress (HS, 30 °C) conditions for three weeks. Serum metabonomics of TN- and HS-treated pigs were compared using the GC-MS approach. Metabonomics analysis revealed that twenty-four metabolites had significantly different levels in TN compared to HS (variable importance in the projection values >1 and p < 0.05). These metabolites are involved in carbohydrate, amino acid, fatty acid, amines metabolism, and gut microbiome-derived metabolism. Three serum monoses (glucose, mannose 2, and galactose) and 6-phosphogluconic acid were decreased, indicating insufficient source of fuel for energy supply, resulting in negative energy balance (NEB) in heat-stressed pigs. Increased levels of non-esterified fatty acid (myristic acid, palmitic acid, and linoleic acid) and short-chain fatty acids (3-hydroxybutanoic acid and maleic acid) suggested fat decomposition compensating for energy shortage, which was an adaptive response to NEB. Increased concentrations of fluorine, lyxose 1, and D-galacturonic acid were significantly correlated with the levels of acute phase proteins (HP, LBP, α2-HSG, and Lysozyme), suggesting acute phase response in HS-stressed pigs. These metabolites are expected to be novel biomarkers of chronic HS in pigs, yet the use of which awaits further validation.
Collapse
Affiliation(s)
- Yanjun Cui
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
| | - Chong Wang
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin'an 311300, China.
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou 311300, China.
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
MISHRA ALOK, VERMA AK, DAS ASIT, SINGH PUTAN, SAHOO NR. Effect of betaine supplementation on haematology, serum enzymes and hormone profile in gestating sows. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i5.90014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study was conducted to study the effect of betaine supplementation on haematology, serum enzymes and hormones profile in gestating sows. For the study, artificially inseminated 18 crossbred (Landrace × Desi) sows were randomly distributed into 3 groups with 6 sows in each following a completely randomized design (CRD). Group T0 was fed with basal diet (control) and betaine was supplemented in group T1 and T2 @ 3 g/kg basal diet during late pregnancy (d 76 onwards till parturition) and throughout the length of gestation, respectively. The results revealed that betaine supplementation had no significant effect on the haemoglobin (Hb), packed cell volume (PCV), red blood cell (RBC) count, platelet count and white blood cells (WBC) count. Similarly, the serum enzymes such as aspartate amino transferase (AST), alanine amino transferase (ALT), alkaline phoshatase (ALP), lactate dehydogenase (LDH), and creatine kinase (CK) revealed no significant effect of betaine supplementation. The serum concentration of T3 and T4 hormone (ng/ml) of sows was significantly higher at the time of farrowing compared to the level at the time of insemination. The serum concentration of cortisol (ng/ml) of sows was significantly reduced in betaine supplemented groups compared to control. Thus, based on the results pertaining to cortisol levels in gestating, sows it can be concluded that betaine supplementation @ 3 g/kg diet, 76 day post insemination is beneficial to ameliorate the oxidative stress during pregnancy.
Collapse
|
12
|
da Fonseca de Oliveira AC, Vanelli K, Sotomaior CS, Weber SH, Costa LB. Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Vet Res Commun 2018; 43:37-43. [PMID: 30569275 DOI: 10.1007/s11259-018-9741-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
High ambient temperatures are a challenge for animal production around the world, and they are one of the major reasons for economic and productive losses in pig production. Under stress conditions, the energy contribution to productive functions is reduced, generating health imbalances, decreased productivity rates and changes in animal behavior. Despite the numerous articles published on this subject, the variability of results on performance parameters is high. For this reason, the objective of the present study was to evaluate the actual impact of high ambient temperature (HAT) (29 °C to 35 °C) on growing-finishing pig performance, compared with animals kept in a thermoneutral environment (TNT) (18 °C to 25 °C), based on meta-analysis. Data on average daily gain (ADG), average daily feed intake (FI) and feed gain ratio (F:G) were extracted from 22 (n = 22) papers published in scientific journals. The values were analyzed using an expansion of the t-test, considering the random effect of each study. Results showed that HAT reduced the values of ADG (654.38 vs 595.81 g/d) and FI (2.141 vs 1.875 g/d) when compared with the thermoneutral group. There was no statistical difference between the F:G values for both groups. In conclusion, high ambient temperatures negatively influence performance parameters of growing-finishing pigs when compared with those in thermoneutral conditions.
Collapse
Affiliation(s)
| | - Karoline Vanelli
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Cristina Santos Sotomaior
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Saulo Henrique Weber
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| | - Leandro Batista Costa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, 80215-901, Brazil
| |
Collapse
|
13
|
Lan R, Kim I. Effects of feeding diets containing essential oils and betaine to heat-stressed growing-finishing pigs. Arch Anim Nutr 2018; 72:368-378. [PMID: 30014712 DOI: 10.1080/1745039x.2018.1492806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study was to evaluate the effects of dietary essential oils (EO) and betaine on growth performance, nutrient digestibility and serum hormones in growing-finishing pigs under heat stress conditions. A total of 96 crossed pigs [(Landrace × Yorkshire) × Duroc] with an initial body weight (BW) of 24.7 ± 0.27 kg were used in an 18-week trial. Pigs were randomly allocated to four treatments according to BW and gender. There were six replication pens in each treatment, with four pigs (two barrows and two gilts) per pen. Treatment groups were: (1) control group (CON), basal diet + 23°C for 24 h; (2) heat stress group (HC) with basal diet + 37°C for 9 h, 23°C for 15 h; (3) group HEO, HC with 0.01% EO; (4) group HBE, HC with 0.1% betaine. During the overall period, groups HEO and HBE had higher (p < 0.05) average daily gain than group HC. At week 6, group HC had a lower apparent total tract digestibility (ATTD) of dry matter (DM) (p < 0.05), but at week 12, this group had lower ATTD of DM, nitrogen and gross energy than group HEO (p < 0.05). At week 12 and 18, dietary EO decreased (p < 0.05) serum cortisol and norepinephrine concentration. At week 18, dietary EO and betaine decreased (p < 0.05) epinephrine concentration. Conclusively, dietary EO may be a potential nutritional strategy to alleviate heat stress in growing-finishing pigs.
Collapse
Affiliation(s)
- Ruixia Lan
- a Department of Animal Science , College of Agriculture, Guangdong Ocean University , Zhanjiang , P.R. China.,b Department of Animal Resource & Science , Dankook University , Cheonan , South Korea
| | - Inho Kim
- b Department of Animal Resource & Science , Dankook University , Cheonan , South Korea
| |
Collapse
|
14
|
Pearce SC, Sanz Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J Anim Sci 2016; 93:4702-13. [PMID: 26523563 DOI: 10.2527/jas.2015-9018] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dietary zinc (inorganic and organic or zinc AA complex forms) is essential for normal intestinal barrier function and regeneration of intestinal epithelium. Given that heat stress (HS) exposure can negatively affect intestinal integrity and caloric intake, possible nutritional mitigation strategies are needed to improve health, performance, and well-being. Therefore, our objective was to evaluate 2 dietary zinc sources and reduced caloric intake on intestinal integrity in growing pigs subjected to 12 h of HS. A total of 36 pigs were fed 1 of 2 diets: 1) a control diet (CON; 120 mg/kg of zinc from zinc sulfate) or 2) 60 mg/kg from zinc sulfate and 60 mg/kg from zinc AA complex (ZnAA). After 17 d, the CON pigs were then exposed to thermal neutral (TN) conditions with ad libitum intake (TN-CON), HS (37°C) with ad libitum intake (HS-CON), or pair-fed to HS intake under TN conditions (PFTN); the ZnAA pigs were exposed to only HS (HS-ZnAA). All pigs were sacrificed after 12 h of environmental exposure, and blood and tissue bioenergetics stress markers and ex vivo ileum and colon integrity were assessed. Compared with TN-CON, HS significantly ( < 0.05) increased rectal temperatures and respiration rates. Ileum villus and crypt morphology was reduced by both pair-feeding and HS. Both PFTN and HS-CON pigs also had reduced ileum integrity (dextran flux and transepithelial resistance) compared with the TN-CON pigs. However, ZnAA tended to mitigate the HS-induced changes in ileum integrity. Ileum mucin 2 protein abundance was increased due to HS and pair-feeding. Colonic integrity did not differ due to HS or PFTN treatments. Compared with the HS-CON, HS-ZnAA pigs tended to have reduced blood endotoxin concentrations. In conclusion, HS and reduced feed intake compromised intestinal integrity in pigs, and zinc AA complex source mitigates some of these negative effects.
Collapse
|
15
|
Bilić-Šobot D, Kubale V, Škrlep M, Čandek-Potokar M, Prevolnik Povše M, Fazarinc G, Škorjanc D. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs. Arch Anim Nutr 2016; 70:378-88. [DOI: 10.1080/1745039x.2016.1206735] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Gabler NK, Pearce SC. The impact of heat stress on intestinal function and productivity in grow-finish pigs. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an15280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heat stress is a physiological condition when animals can no longer regulate their internal euthermic temperature. When livestock such as pigs are subjected to this environmental stress, it can be detrimental to performance, health and well-being, and if severe enough even death. Growing pigs are particularly susceptible to heat stress and one of the major organs first affected by heat stress is the gastrointestinal tract. As a result, reductions in appetite, intestinal function and integrity and increased risk of endotoxemia can modify post-absorptive metabolism and tissue accretion. These changes in intestinal integrity may be a result of altered expression of tight junction proteins, increased circulating endotoxin concentrations and markers of cellular stress (heat shock and hypoxia response), which is evident as early on as 2 h after heat-stress onset. Due to restricted blood flow, the ileum is more severely affected compared with the colon. Interestingly, many of the negative effects of heat stress on intestinal integrity appear to be similar to those observed with pigs reared under reduced nutrient and caloric intakes. Altogether, these depress pig performance and health, and extend days to market. Despite this impact on the gastrointestinal tract, under heat-stress conditions, intestinal glucose transport pathways are upregulated. This review discussed how heat stress (directly and indirectly via reduced feed intake) affects intestinal integrity and how heat stress contributes to decreased growth performance in growing pigs.
Collapse
|
17
|
Pearce SC, Sanz-Fernandez MV, Hollis JH, Baumgard LH, Gabler NK. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J Anim Sci 2014; 92:5444-54. [PMID: 25367514 DOI: 10.2527/jas.2014-8407] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute heat stress (HS) and heat stroke can be detrimental to the health, well-being, and performance of mammals such as swine. Therefore, our objective was to chronologically characterize how a growing pig perceives and initially copes with a severe heat load. Crossbred gilts (n=32; 63.8±2.9 kg) were subjected to HS conditions (37°C and 40% humidity) with ad libitum intake for 0, 2, 4, or 6 h (n=8/time point). Rectal temperature (Tr), respiration rates (RR), and feed intake were determined every 2 h. Pigs were euthanized at each time point and fresh ileum and colon samples were mounted into modified Ussing chambers to assess ex vivo intestinal integrity and function. Transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran (FD4) permeability were assessed. As expected, Tr increased linearly over time (P<0.001) with the highest temperature observed at 6 h of HS. Compared to the 0-h thermal-neutral (TN) pigs, RR increased (230%; P<0.001) in the first 2 h and remained elevated over the 6 h of HS (P<0.05). Feed intake was dramatically reduced due to HS and this corresponded with significant changes in plasma glucose, ghrelin, and glucose-dependent insulinotropic peptide (P<0.050). At as early as 2 h of HS, ileum TER linearly decreased (P<0.01), while FD4 linearly increased with time (P<0.05). Colon TER and FD4 changed due to HS in quadratic responses over time (P=0.050) similar to the ileum but were less pronounced. In response to HS, ileum and colon heat shock protein (HSP) 70 mRNA and protein abundance increased linearly over time (P<0.050). Altogether, these data indicated that a short duration of HS (2-6 h) compromised feed intake and intestinal integrity in growing pigs.
Collapse
Affiliation(s)
| | | | - J H Hollis
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011
| | | | | |
Collapse
|
18
|
Oliver WT, Wells JE, Maxwell CV. Lysozyme as an alternative to antibiotics improves performance in nursery pigs during an indirect immune challenge. J Anim Sci 2014; 92:4927-34. [PMID: 25253813 DOI: 10.2527/jas.2014-8033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysozyme is a 1,4-β-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on growth performance and immune response during an indirect immune challenge. Two replicates of 600 pigs each were weaned from the sow at 26 d of age, blocked by litter and sex, and then randomly assigned to 1 of 24 pens in either a nursery room that had been fully disinfected or a nursery room left unclean since the previous group of pigs. Within a room, pigs were randomly assigned to either control diets (2 phase nursery regime), control diets + antibiotics (chlortetracycline/tiamulin hydrogen fumarate), or control diets + lysozyme (100 mg/kg diet). Pig weights and feed disappearance were measured and blood was collected on d 0, 14, and 28 of treatment. A group of 20 pigs were killed at 24 d of age for initial body composition analysis and 10 pigs of median weight were killed per diet room combination for body composition analysis after 28 d of treatment. Control + antibiotics and control + lysozyme-fed pigs grew at a faster rate for the 28-d study compared to control pigs (318 ± 14,320 ± 15 vs. 288 ± 15 g/d, respectively; P < 0.05), regardless of nursery environment (P > 0.05). The indirect immune challenge did not alter growth performance from d 0 to 14 of treatment but decreased ADG from d 14 to 28 of the study (415 ± 15 vs. 445 ± 13 g/d ;: P < 0.05). Feed intake was not altered by the nursery environment (P > 0.61) or dietary treatments (P > 0.10), but feed efficiency was worsened by the indirect immune challenge (P < 0.05) and improved by both control + antibiotics and control + lysozyme diets (P < 0.01). The immune challenge did not alter nutrient accretion (P > 0.25), but both control + antibiotics and control + lysozyme pigs had decreased accretion of whole-body lipid (P < 0.01) and increased accretion of protein (P < 0.09). Blood levels of tumor necrosis factor-α (TNF-α; P < 0.01), haptoglobin (P < 0.09), and C-reactive protein (CRP; P < 0.01) were higher due to the indirect immune challenge compared to pigs reared in the clean nursery (P < 0.05). In addition, pigs consuming antibiotics or lysozyme had lower TNF-α, haptoglobin, and CRP compared to control pigs, regardless of nursery environment (P < 0.04). Thus, lysozyme is a suitable alternative to antibiotics in swine nursery diets, and lysozyme ameliorates the effects of a chronic indirect immune challenge.
Collapse
Affiliation(s)
- W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166
| | - J E Wells
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166
| | | |
Collapse
|