1
|
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Curr Issues Mol Biol 2023; 45:4749-4762. [PMID: 37367051 DOI: 10.3390/cimb45060302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Grzegorz Grodkowski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Verzola D, Milanesi S, Viazzi F, Ansaldo F, Saio M, Garibaldi S, Carta A, Costigliolo F, Salvidio G, Barisione C, Esposito P, Garibotto G, Picciotto D. Enhanced myostatin expression and signalling promote tubulointerstitial inflammation in diabetic nephropathy. Sci Rep 2020; 10:6343. [PMID: 32286342 PMCID: PMC7156449 DOI: 10.1038/s41598-020-62875-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Myostatin (MSTN), a family member of the transforming growth factor (TGF)-β super family, has been detected in the tubuli of pig kidney, but its role in the human kidney is not known. In this study we observed upregulation of MSTN mRNA (~8 to 10-fold increase) both in the glomeruli and tubulointerstitium in diabetic nephropathy (DN). In DN, immunoreactive MSTN was mainly localized in the tubuli and interstitium (∼4-8 fold increase), where it colocalized in CD45+ cells. MSTN was also upregulated in the glomeruli and the arterial vessels. Tubulointerstitial MSTN expression was directly related to interstitial fibrosis (r = 0.54, p < 0.01). In HK-2 tubular epithelial cells, both high (30 mmol) glucose and glycated albumin upregulated MSTN mRNA and its protein (p < 0.05-0.01). MSTN-treated HK-2 cells underwent decreased proliferation, together with NF-kB activation and CCL-2 and SMAD 2,3 overexpression. In addition, MSTN induced intracellular ROS release and upregulated NADPH oxidase, effects which were mediated by ERK activation. In conclusion, our data show that MSTN is expressed in the human kidney and overexpressed in DN, mainly in the tubulointerstitial compartment. Our results also show that MSTN is a strong inducer of proximal tubule activation and suggest that MSTN overexpression contributes to kidney interstitial fibrosis in DN.
Collapse
Affiliation(s)
- Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Ansaldo
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvano Garibaldi
- Division of Cardiology, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Annalisa Carta
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gennaro Salvidio
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Barisione
- Division of Cardiology, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pasquale Esposito
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giacomo Garibotto
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, University of Genova, Department of Internal Medicine and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Fernández-Nocelo S, Gallego R, Costoya JA, Arce VM. Expression of myostatin in human hematopoietic cells unveils novel autocrine/paracrine actions for the hormone. J Cell Physiol 2018; 234:7236-7246. [PMID: 30370618 DOI: 10.1002/jcp.27494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Myostatin is a member of the transforming growth factor β (TGFβ) superfamily that has a well-established role as a mediator of muscle growth and development. However, myostatin is now emerging as a pleiotropic hormone with multiple actions in the regulation of the metabolism as well as several aspects of both cardiac and smooth muscle cells physiology. In addition, myostatin is also expressed in several nonmuscular cells where its physiological role remains to be elucidated in most cases. In this report, we have shown that both myostatin and its receptor system are expressed in blood cells and in hematopoietic cell lines. Furthermore, myostatin treatment promotes differentiation of both HL60 and K562 cells through a mechanism that involves activation of extracellular signal-regulated kinases 1/2 and p38-mitogen-activated protein kinase, thus leading to the possibility that myostatin may be a paracrine/autocrine factor involved in the control of haematopoiesis. In addition, the presence of myostatin expression in immune cells could envisage a novel role for the hormone in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Susana Fernández-Nocelo
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Costoya
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIMUS, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Víctor M Arce
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIMUS, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, Xiao G, Li B, Xie S, Gao T, Chen Y, Liu J, An X, Cui W, Li K. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget 2018; 8:34911-34922. [PMID: 28432282 PMCID: PMC5471021 DOI: 10.18632/oncotarget.16822] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn−/− ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn−/− pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn−/− pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn−/− pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn−/− skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Chunbo Cai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Lili Qian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Shengwang Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Youde Sun
- Institute of Animal Sciences, Qingdao, 266100, P. R. China
| | - Qingqing Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Dezun Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Gaojun Xiao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Biao Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Shanshan Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Ting Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.,College of Animal Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaoxing Chen
- College of Animal Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Liu
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaorong An
- State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Wentao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
5
|
Shenoy P S, Bose B. Hepatic perivascular mesenchymal stem cells with myogenic properties. J Tissue Eng Regen Med 2017. [PMID: 28627746 DOI: 10.1002/term.2503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pericytes are multipotent mesenchymal stem cells located on the walls of blood vessels in various organs and are characterized as CD146+ cells. In this study, we first immunohistochemically detected pericytes in the perivascular regions of liver from two mouse genotypes, namely wild-type (WT) and myostatin null (Mstn-/- ). We further isolated pericytes using sorting as CD146+ CD34- CD56- CD45- cells. The main finding of this study involves the contrasting fibrogenic vs. myogenic behaviour of liver pericytes from WT and Mstn-/- mice, respectively. Sorted CD146+ liver pericytes (WT and Mstn-/- ) expressed PDGFRβ, NG2, vimentin, adult stem cell markers CD73, CD105, CD44 and could be readily differentiated into adipogenic, osteogenic and chondrogenic lineages. Furthermore, these CD146+ cells from WT and Mstn-/- livers did not express myostatin, in contrast to the total liver tissue of WT. The absence of αSMA and GFAP made these cells easily distinguishable from hepatic stellate cells. When subjected to standard myogenic differentiation with low serum the CD146+ cells from WT liver differentiated into myofibroblasts (fibrogenic) and the CD146+ cells from Mstn-/- liver differentiated into multinucleated myotubes (myogenic). Finally, we transplanted CD146+ pericytes into tibialis anterior muscle of dystrophic mice and established the generation of novel myofibres, thereby proving their cell therapy potential. The liver tissue microenvironment with myostatin in WT and the absence of myostatin in Mstn-/- conditions might exert a paracrine effect in determining the fate of pericyte-like cells in the liver.
Collapse
Affiliation(s)
- Sudheer Shenoy P
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Bipasha Bose
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
6
|
Xing XX, Xuan MF, Jin L, Guo Q, Luo ZB, Wang JX, Luo QR, Zhang GL, Cui CD, Cui ZY, Kang JD, Yin XJ. Fiber-type distribution and expression of myosin heavy chain isoforms in newborn heterozygous myostatin-knockout pigs. Biotechnol Lett 2017; 39:1811-1819. [DOI: 10.1007/s10529-017-2422-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
|
7
|
iTRAQ-based quantitative proteomics discovering potential serum biomarkers in locoweed poisoned rabbits. Chem Biol Interact 2017; 268:111-118. [DOI: 10.1016/j.cbi.2017.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
8
|
Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Res 2017; 227:143-149. [DOI: 10.1016/j.virusres.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 01/25/2023]
|
9
|
Peng Z, Ouyang T, Pang D, Ma T, Chen X, Guo N, Chen F, Yuan L, Ouyang H, Ren L. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Virus Res 2016; 223:197-205. [PMID: 27507009 DOI: 10.1016/j.virusres.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
The CRISPR-Cas9 system is a newly developed genome-engineering tool used to inhibit virus infection by targeting the conserved regions of the viral genomic DNA. In the present study, we constructed a cell line stably expressing Cas9 endonuclease and sgRNA targeting the conserved UL30 gene of pseudorabies virus (PRV). During the PRV infection, the CRISPR-Cas9 system was efficient in cleaving the UL30 gene in each passage. However, deletions and insertions occurred at low passages, while substitutions were frequently observed at high passages. Furthermore, copy numbers and virus titers of PRV were significantly increased in a passage-dependent manner, indicating that viral genomic replication and assembly were more effective at the high passages than at low passages. These results demonstrated that PRV could escape from CRISPR-Cas9-mediated inhibition. Therefore, whether the CRISPR-Cas9 system is suitable for antiviral application should be considered and carefully verified.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Teng Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Xinrong Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Ning Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Fuwang Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, PR China.
| |
Collapse
|
10
|
Bongiorni S, Tilesi F, Bicorgna S, Iacoponi F, Willems D, Gargani M, D'Andrea M, Pilla F, Valentini A. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity. BMC Genet 2014; 15:119. [PMID: 25377122 PMCID: PMC4226869 DOI: 10.1186/s12863-014-0119-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022] Open
Abstract
Background Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. Results We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and hence presumably of the GDF8 gene, in both CHO and C2C12 cultured cells. Conclusions In vitro the MYOD1-A allelic variant could up-regulate the expression of MYOD1 gene. Additionally, we could assess a different response of in vitro gene expression according to cell type used to transfect constructs, suggesting that MyoD activation is regulated by mechanisms that are specific of myoblasts. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0119-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, 01100, Italy.
| | - Francesca Tilesi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Silvia Bicorgna
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, 01100, Italy.
| | - Francesca Iacoponi
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, 01100, Italy.
| | - Daniela Willems
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Maria Gargani
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, 01100, Italy.
| | - MariaSilvia D'Andrea
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, 86100, Italy.
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, 86100, Italy.
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, 01100, Italy.
| |
Collapse
|
11
|
Zhong B, Zhang Y, Yan Y, Wang Z, Ying S, Huang M, Wang F. MicroRNA-mediated myostatin silencing in caprine fetal fibroblasts. PLoS One 2014; 9:e107071. [PMID: 25244645 PMCID: PMC4171098 DOI: 10.1371/journal.pone.0107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats.
Collapse
Affiliation(s)
- Bushuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Yibo Yan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
| | - Shijia Ying
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Mingrui Huang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- * E-mail: (MH); (FW)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
- * E-mail: (MH); (FW)
| |
Collapse
|
12
|
miRNA transcriptome of hypertrophic skeletal muscle with overexpressed myostatin propeptide. BIOMED RESEARCH INTERNATIONAL 2014; 2014:328935. [PMID: 25147795 PMCID: PMC4131533 DOI: 10.1155/2014/328935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) play an imperative role in cell proliferation, differentiation, and cell metabolism through regulation of gene expression. Skeletal muscle hypertrophy that results from myostatin depression by its propeptide provides an interesting model to understand how miRNA transcriptome is involved in myostatin-based fiber hypertrophy. This study employed Solexa deep sequencing followed by Q-PCR methods to analyze miRNA transcriptome of skeletal muscle of myostatin propeptide transgenic mice in comparison with their littermate controls. A total of 461 mature known and 69 novel miRNAs were reported from this study. Fifty-seven miRNAs were expressed differentially between transgenic and littermate controls, of which most abundant miRNAs, miR-133a and 378a, were significantly differentially expressed. Expression profiling was validated on 8 known and 2 novel miRNAs. The miRNA targets prediction and pathway analysis showed that FST, SMAD3, TGFBR1, and AcvR1a genes play a vital role in skeletal muscle hypertrophy in the myostatin propeptide transgenic mice. It is predicted that miR-101 targeted to TGFBR1 and SMAD3, miR-425 to TGFBR2 and FST, and miR-199a to AcvR2a and TGF-β genes. In conclusion, the study offers initial miRNA profiling and methodology of miRNA targets prediction for myostatin-based hypertrophy. These differentially expressed miRNAs are proposed as candidate miRNAs for skeletal muscle hypertrophy.
Collapse
|
13
|
Kambadur R. Reply to Rodgers: Does Myostatin Induce Insulin Resistance? J Biol Chem 2014; 289:21204. [DOI: 10.1074/jbc.o114.580621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Watts R, Ghozlan M, Hughey CC, Johnsen VL, Shearer J, Hittel DS. Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochem Cell Biol 2014; 92:226-34. [PMID: 24882465 DOI: 10.1139/bcb-2014-0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although myostatin functions primarily as a negative regulator of skeletal muscle growth and development, accumulating biological and epidemiological evidence indicates an important contributing role in liver disease. In this study, we demonstrate that myostatin suppresses the proliferation of mouse Hepa-1c1c7 murine-derived liver cells (50%; p < 0.001) in part by reducing the expression of the cyclins and cyclin-dependent kinases that elicit G1-S phase transition of the cell cycle (p < 0.001). Furthermore, real-time PCR-based quantification of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (Malat1), recently identified as a myostatin-responsive transcript in skeletal muscle, revealed a significant downregulation (25% and 50%, respectively; p < 0.05) in the livers of myostatin-treated mice and liver cells. The importance of Malat1 in liver cell proliferation was confirmed via arrested liver cell proliferation (p < 0.05) in response to partial Malat1 siRNA-mediated knockdown. Myostatin also significantly blunted insulin-stimulated glucose uptake and Akt phosphorylation in liver cells while increasing the phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS), a protein that is essential for cancer cell proliferation and insulin-stimulated glucose transport. Together, these findings reveal a plausible mechanism by which circulating myostatin contributes to the diminished regenerative capacity of the liver and diseases characterized by liver insulin resistance.
Collapse
Affiliation(s)
- Rani Watts
- a Faculty of Kinesiology, University of Calgary, 2500 University Dr. Calgary, AB T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Singh SP, Kumari P, Kumar R, Negi M, Sharma SK, Gangwar M, Kumar S, Mitra A. Molecular characterization and phylogeny based analysis of complete coding sequence of myostatin (MSTN) gene in Indian goat breeds. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2013.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R, Sharma M. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One 2014; 9:e87687. [PMID: 24498167 PMCID: PMC3909192 DOI: 10.1371/journal.pone.0087687] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022] Open
Abstract
Growth factors, such as myostatin (Mstn), play an important role in regulating post-natal myogenesis. In fact, loss of Mstn has been shown to result in increased post-natal muscle growth through enhanced satellite cell functionality; while elevated levels of Mstn result in dramatic skeletal muscle wasting through a mechanism involving reduced protein synthesis and increased ubiquitin-mediated protein degradation. Here we show that miR-27a/b plays an important role in feed back auto-regulation of Mstn and thus regulation of post-natal myogenesis. Sequence analysis of Mstn 3' UTR showed a single highly conserved miR-27a/b binding site and increased expression of miR-27a/b was correlated with decreased expression of Mstn and vice versa both in vitro and in mice in vivo. Moreover, we also show that Mstn gene expression was regulated by miR-27a/b. Treatment with miR-27a/b-specific AntagomiRs resulted in increased Mstn expression, reduced myoblast proliferation, impaired satellite cell activation and induction of skeletal muscle atrophy that was rescued upon either blockade of, or complete absence of, Mstn. Consistent with this, miR-27a over expression resulted in reduced Mstn expression, skeletal muscle hypertrophy and an increase in the number of activated satellite cells, all features consistent with impaired Mstn function. Loss of Smad3 was associated with increased levels of Mstn, concomitant with decreased miR-27a/b expression, which is consistent with impaired satellite cell function and muscular atrophy previously reported in Smad3-null mice. Interestingly, treatment with Mstn resulted in increased miR-27a/b expression, which was shown to be dependent on the activity of Smad3. These data highlight a novel auto-regulatory mechanism in which Mstn, via Smad3 signaling, regulates miR-27a/b and in turn its own expression. In support, Mstn-mediated inhibition of Mstn 3' UTR reporter activity was reversed upon miR-27a/b-specific AntagomiR transfection. Therefore, miR-27a/b, through negatively regulating Mstn, plays a role in promoting satellite cell activation, myoblast proliferation and preventing muscle wasting.
Collapse
Affiliation(s)
- Craig McFarlane
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anuradha Vajjala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Harikumar Arigela
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - XiaoJia Ge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabeera Bonala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravikumar Manickam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravi Kambadur
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Li F, Shan A, Hu J, Zheng Y, Xu L, Chen Z. Changes to daily feed intake during the laying period alters embryonicMSTNandMYOGgene expression in genetically fat and lean lines of chickens. Br Poult Sci 2013; 54:728-37. [DOI: 10.1080/00071668.2013.853868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin. In Vitro Cell Dev Biol Anim 2013; 49:417-23. [DOI: 10.1007/s11626-013-9621-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023]
|
19
|
Ceccarelli G, Benedetti L, Galli D, Prè D, Silvani G, Crosetto N, Magenes G, Cusella De Angelis MG. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells. J Tissue Eng Regen Med 2012; 8:396-406. [PMID: 22711460 DOI: 10.1002/term.1533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/18/2012] [Accepted: 04/04/2012] [Indexed: 11/07/2022]
Abstract
Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vibration (HFV) at the cellular and tissue levels in muscle. We developed a system to produce vibrations adapted to test several parameters in vitro and in vivo. For in vivo experiments, we used newborn CD1 wild-type mice, for in vitro experiments, we isolated satellite cells from 6-day-old CD1 mice, while for proliferation studies, we used murine cell lines. Animals and cells were treated with high frequency vibration at 30 Hz. We analyzed the effects of mechanical stimulation on muscle hypertrophy/atrophy pathways, fusion enhancement of myoblast cells and modifications in the proliferation rate of cells. Results demonstrated that mechanical vibration strongly down-regulates atrophy genes both in vivo and in vitro. The in vitro experiments indicated that mechanical stimulation promotes fusion of satellite cells treated directly in culture compared to controls. Finally, proliferation experiments indicated that stimulated cells had a decreased growth rate compared to controls. We concluded that vibration treatment at 30 Hz is effective in suppressing the atrophy pathway both in vivo and in vitro and enhances fusion of satellite muscle cells.
Collapse
Affiliation(s)
- Gabriele Ceccarelli
- Dipartimento di Medicina Sperimentale, University of Pavia, Italy; Centro di Ingegneria Tissutale, University of Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tripathi AK, Aparnathi MK, Vyavahare SS, Ramani UV, Rank DN, Joshi CG. Myostatin gene silencing by RNA interference in chicken embryo fibroblast cells. J Biotechnol 2012; 160:140-5. [PMID: 22445467 DOI: 10.1016/j.jbiotec.2012.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
Myostatin (MSTN), a member of transforming growth factor-β (TGF-β) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-β) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388001, Gujarat, India.
| | | | | | | | | | | |
Collapse
|