1
|
Zhang S, Wang C, Qin S, Chen C, Bao Y, Zhang Y, Xu L, Liu Q, Zhao Y, Li K, Tang Z, Liu Y. Analyzing super-enhancer temporal dynamics reveals potential critical enhancers and their gene regulatory networks underlying skeletal muscle development. Genome Res 2024; 34:2190-2202. [PMID: 39433439 PMCID: PMC11694746 DOI: 10.1101/gr.278344.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Super-enhancers (SEs) govern the expression of genes defining cell identity. However, the dynamic landscape of SEs and their critical constituent enhancers involved in skeletal muscle development remains unclear. In this study, using pig as a model, we employed cleavage under targets and tagmentation (CUT&Tag) to profile the enhancer-associated histone modification marker H3K27ac in skeletal muscle across two prenatal and three postnatal stages, and investigated how SEs influence skeletal muscle development. We identify three SE families with distinct temporal dynamics: continuous (Con, 397), transient (TS, 434), and de novo (DN, 756). These SE families are associated with different temporal gene expression trajectories, biological functions, and DNA methylation levels. Notably, several lines of evidence suggest a potential prominent role of Con SEs in regulating porcine muscle development and meat traits. To pinpoint key cis-regulatory units in Con SEs, we developed an integrative approach that leverages information from eRNA annotation, genome-wide association study (GWAS) signals, and high-throughput capture self-transcribing active regulatory region sequencing (STARR-seq) experiments. Within Con SEs, we identify 20 candidate critical enhancers with meat and carcass-associated DNA variations that affect enhancer activity, and infer their upstream transcription factors and downstream target genes. As a proof of concept, we experimentally validate the role of one such enhancer and its potential target gene during myogenesis. Our findings reveal the dynamic regulatory features of SEs in skeletal muscle development and provide a general integrative framework for identifying critical enhancers underlying the formation of complex traits.
Collapse
Affiliation(s)
- Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhou Bao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Lingna Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yunxiang Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
| |
Collapse
|
2
|
Zhao D, Song Z, Shen L, Xia T, Ouyang Q, Zhang H, He X, Kang K. Single-cell transcriptomics and tissue metabolomics uncover mechanisms underlying wooden breast disease in broilers. Poult Sci 2024; 103:104433. [PMID: 39489032 PMCID: PMC11566330 DOI: 10.1016/j.psj.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Accompanied by the accelerated growth rate of chickens, the quality of chicken meat has deteriorated in recent years. Wooden breast (WB) is a severe myopathy affecting meat quality, and its pathophysiology depends on gene expression and intercellular interactions of various cell types, which are not yet fully understood. We have performed a comprehensive transcriptomic and metabolomic atlas of chicken WB muscle. Our data showed a significant increase in the number of immune cells, WB muscle displayed a unique cluster of macrophages (cluster 11), distinct from the M1 and M2 macrophages. Regarding the myocytes, the most significant differences were the decrease in cell number and the intensification of fatty deposits. Satellite cells were involved in muscle repair and regeneration producing more collagen. Interestingly, the interaction network in the WB group was weaker compared to that in normal breast muscle. Additionally, we found six key differential metabolites across 22 pathways. When WB occurs, myocytes and endothelial cells undergo apoptosis, macrophages are activated and exert immune functions, satellite cells participate in muscle rebuilding and repair, and the content of metabolites undergoes significant changes. This cell transcriptome profile provides an essential reference for future studies on the development and remodeling of WB.
Collapse
Affiliation(s)
- Di Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Li Shen
- Shanghai Personal Biotechnology Co., Ltd, Shanghai 200030, China
| | - Tian Xia
- Shanghai Personal Biotechnology Co., Ltd, Shanghai 200030, China
| | - Qingyuan Ouyang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China
| | - Kelang Kang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, China; Hunan Academy of Agricultural Sciences, Changsha 410128, China.
| |
Collapse
|
3
|
Shao X, Lu X, Sun X, Jiang H, Chen Y. Preliminary studies on the molecular mechanism of intramuscular fat deposition in the longest dorsal muscle of sheep. BMC Genomics 2024; 25:592. [PMID: 38867146 PMCID: PMC11167792 DOI: 10.1186/s12864-024-10486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).
Collapse
Affiliation(s)
- Xuwen Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xintan Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Xinming Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| | - Yang Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Livestock and Poultry Resources (Sheep & Goat) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changchun, China.
| |
Collapse
|
4
|
Qi K, Dou Y, Li C, Liu Y, Song C, Li X, Wang K, Qiao R, Li X, Yang F, Han X. CircGUCY2C regulates cofilin 1 by sponging miR-425-3p to promote the proliferation of porcine skeletal muscle satellite cells. Arch Anim Breed 2023; 66:285-298. [PMID: 38039333 PMCID: PMC10655074 DOI: 10.5194/aab-66-285-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/07/2023] [Indexed: 12/03/2023] Open
Abstract
Circular ribonucleic acids (or circRNAs) are an emerging class of endogenous noncoding RNAs that are involved in physiological and pathological processes. Increasing evidence suggests that circRNAs play an important regulatory role in skeletal muscle development and meat quality regulation. In this study, it was found that circGUCY2C exhibits a high expression level in the longissimus dorsi muscle. It shows resistance to RNase R and additionally promotes the mRNA expression of cyclin-dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA). Specifically, it was observed that the overexpression of circGUCY2C could promote the transition of porcine skeletal muscle satellite cells into the S and G2 phases of the cell cycle and that it regulates the proliferation of porcine skeletal muscle satellite cells. In contrast, miR-425-3p plays the opposite role and has an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells. MiR-425-3p has been described as a target of circGUCY2C; consequently, the depletion of miR-425-3p promoted the proliferation of porcine skeletal muscle satellite cells. CFL1 (cofilin 1) is a target of miR-425-3p, and circGUCY2C upregulated CFL1 expression by inhibiting miR-425-3p. Collectively, our research outcomes demonstrate that circGUCY2C significantly influences the proliferation of porcine skeletal muscle satellite cells by selectively targeting the miR-425-3p-CFL1 axis, and our work partially clarified the role of circGUCY2C in porcine skeletal muscle satellite cells. Thus, the study provides new insight into the function of circGUCY2C and adds to the knowledge of the post-transcriptional regulation of pork quality.
Collapse
Affiliation(s)
- Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Velleman SG. Broiler breast muscle myopathies: association with satellite cells. Poult Sci 2023; 102:102917. [PMID: 37478619 PMCID: PMC10387605 DOI: 10.1016/j.psj.2023.102917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
Heavy weight fast-growing meat-type broiler chickens have largely been selected for growth rate, muscle mass yield especially for the breast muscle, and feed conversion. Substantial improvements have been made, but in recent years breast meat quality issues resulting in product downgrades or condemnation have occurred especially from necrotic and fibrotic myopathies like Wooden Breast. In general, the morphological structure of the broiler breast muscle has changed in the modern commercial broiler with muscle fiber diameters increased, circulatory supply decreased, and connective spacing between individual fibers and fiber bundles decreased. Satellite cells are the primary cell type responsible for all posthatch muscle growth, and the repair and regeneration of muscle fibers. Recent evidence is suggestive of changes in the broiler satellite cell populations which will limit the ability of the satellite cells to regenerate damaged muscle fibers back to their original. These changes in the cellular biology of broiler satellite cells are likely associated with the necrosis and fibrosis observed in myopathies like Wooden Breast.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
6
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Transcriptome response of proliferating muscle satellite cells to thermal challenge in commercial turkey. Front Physiol 2022; 13:970243. [PMID: 36091406 PMCID: PMC9452691 DOI: 10.3389/fphys.2022.970243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal stress poses a threat to agricultural systems through increased risk to animal growth, health, and production. Exposure of poultry, especially hatchlings, to extreme temperatures can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells (SCs) cultured from commercial birds under thermal challenge to determine the applicability of previous results obtained for select research lines. Satellite cells isolated from the pectoralis major muscle of 1-week old commercial fast-growing birds (Nicholas turkey, NCT) and from a slower-growing research line (RBC2) were proliferated in culture at 38°C or 43°C for 72 h. RNAseq analysis found statistically significant differences in gene expression among treatments and between turkey lines with a greater number of genes altered in the NCT SCs suggesting early myogenesis. Pathway analysis identified cell signaling and regulation of Ca2+ as important responses. Expression of the intercellular signaling Wnt genes, particularly Wnt5a and 7a was significantly altered by temperature with differential response between lines. The peripheral calcium channel RYR3 gene was among the genes most highly upregulated by heat stress. Increased expression of RYR3 would likely result in higher resting cytosolic calcium levels and increased overall gene transcription. Although responses in the calcium signaling pathway were similar among the RBC2 and NCT lines, the magnitude of expression changes was greater in the commercially selected birds. These results provide evidence into how SC activity, cellular fate, and ultimately muscle development are altered by heat stress and commercial selection.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Falcon Heights, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, United States
| |
Collapse
|
7
|
Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics 2021; 22:901. [PMID: 34915843 PMCID: PMC8675486 DOI: 10.1186/s12864-021-08224-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. RESULTS Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. CONCLUSIONS Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.
Collapse
|
8
|
Ahmad K, Lim JH, Lee EJ, Chun HJ, Ali S, Ahmad SS, Shaikh S, Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods 2021; 10:foods10123116. [PMID: 34945667 PMCID: PMC8700801 DOI: 10.3390/foods10123116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hee-Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
9
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
10
|
de Souza C, Eyng C, Viott A, de Avila A, Pacheco W, Junior N, Kohler T, Tenorio K, Cirilo E, Nunes R. Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Soglia F, Petracci M, Davoli R, Zappaterra M. A critical review of the mechanisms involved in the occurrence of growth-related abnormalities affecting broiler chicken breast muscles. Poult Sci 2021; 100:101180. [PMID: 33975044 PMCID: PMC8131729 DOI: 10.1016/j.psj.2021.101180] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
In the past decade, the poultry industry has faced the occurrence of growth-related muscular abnormalities that mainly affect, with a high incidence rate, the Pectoralis major of the fast-growing genotypes selected for their production performances (high growth rate and breast yield). These myopathies are termed as White Striping, Wooden Breast, and Spaghetti Meat and exhibit distinctive phenotypes. A spatiotemporal distribution has been demonstrated for these disorders as in the early stage they primarily affect the superficial area in the cranial portion of the muscle and, as the birds grow older, involve the entire tissue. Aside from their distinctive phenotypes, these myopathies share common histological features. Thus, it might be speculated that common causative mechanisms might be responsible for the physiological and structural perturbations in the muscle associated with these conditions and might underpin their occurrence. The present review paper aims to represent a critical survey of the outcomes of all the histologic and ultrastructural observations carried out on White Striping, Wooden Breast, and Spaghetti Meat affected muscles. Our analysis has been performed by combining these outcomes with the findings of the genetic studies, trying to identify possible initial causative mechanisms triggering the onset and the time-series of the events ultimately resulting in the development and progression of the growth-related myopathies currently affecting broilers Pectoralis major muscles. Several evidences support the hypothesis that sarcoplasmic reticulum stress, primarily induced an accumulation of misfolded proteins (but also driven by other factors including altered calcium homeostasis and accumulation of fatty acids), may be responsible for the onset of these growth-related myopathies in broilers. At the same time, the development of hypoxic conditions, as a direct consequence of an inadequate vascularization, triggers a time-series sequence of events (i.e., phlebitis, oxidative stress, etc.) resulting in the activation of response mechanisms (i.e., modifications in the energetic metabolism, inflammation, degeneration, and regeneration) which are all strictly related to the progression of these myopathic disorders.
Collapse
Affiliation(s)
- F Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| | - M Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy.
| | - R Davoli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| | - M Zappaterra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Italy
| |
Collapse
|
12
|
Su R, Wang B, Zhang M, Luo Y, Wang D, Zhao L, Su L, Duan Y, Faucitano L, Jin Y. Effects of energy supplements on the differentiation of skeletal muscle satellite cells. Food Sci Nutr 2021; 9:357-366. [PMID: 33473298 PMCID: PMC7802567 DOI: 10.1002/fsn3.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 01/14/2023] Open
Abstract
To investigate the effects of the activator of AMPK and high glucose on the differentiation of mouse SMSCs, primary SMSCs were isolated from mouse extensor digitorum longus muscle and grown to near confluence (80%). Postconfluent cells were cultured in a growth medium with different inductors: AICAR, glucose, and AICAR mixed with glucose. The specific protein expressions of SMSCs, myoblasts, adipocytes, and brown adipocytes were analyzed on days 0, 3, 5, 7, and 10. The results showed treatment with AICAR in SMSCs markedly activated AMPK phosphorylation (p < .05) and increased protein expression of Pax7 and MyoD (p < .05), high concentrations of intracellular glucose upregulated UCP-1 protein expression and enhanced lipid accumulation (p < .05), the cowork of AICAR and glucose affected a decrease on MyoD, PPARg, and UCP-1 expression (p < .05) and an increase on Pax7. The present study indicated that the certain energy supplements influence the direction of SMSC differentiation which may contribution on the structure of muscle and meat quality, sequentially.
Collapse
Affiliation(s)
- Rina Su
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
- Inner Mongolia Vocational college of Chemical EngineeringHohhotChina
| | - Bohui Wang
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Min Zhang
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Yulong Luo
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Debao Wang
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Lihua Zhao
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Lin Su
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Yan Duan
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| | - Luigi Faucitano
- Agriculture and Agri‐Food CanadaSherbrooke Research and Development CentreSherbrookeQCCanada
| | - Ye Jin
- College of Food Science and EngineeringInner Mongolia Agriculture UniversityHohhotChina
| |
Collapse
|
13
|
Low birth weight influences the postnatal abundance and characteristics of satellite cell subpopulations in pigs. Sci Rep 2020; 10:6149. [PMID: 32273524 PMCID: PMC7145795 DOI: 10.1038/s41598-020-62779-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Low birth weight (LBW) can cause lifelong impairments in muscle development and growth. Satellite cells (SC) and their progeny are crucial contributors to myogenic processes. This study provides new data on LBW in piglets combining insights on energy metabolism, muscle capillarization and differences in SC presence and function. To this aim, muscle tissues as well as isolated myogenic cells of 4-day-old German Landrace piglets were analyzed. For the first time two heterogeneous SC subpopulations, which contribute differently to muscle development, were isolated from LBW pigs by Percoll density gradient centrifugation. The muscles of LBW piglets showed a reduced DNA, RNA, and protein content as well as lower activity of the muscle specific enzymes CK, ICDH, and LDH compared to their normal birth weight siblings. We assume that deficits in energy metabolism and capillarization are associated with reduced bioavailability of SC, possibly leading to early exhaustion of the SC reserve cell pool and the cells’ premature differentiation.
Collapse
|
14
|
Bottema MJ, Kruk ZA, Gontar A, Pitchford WS, Bottema CDK. Evidence of marbling as a single connected entity in beef striploins. Meat Sci 2019; 161:108004. [PMID: 31794922 DOI: 10.1016/j.meatsci.2019.108004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Serial sections of Angus striploins that varied in marbling were analysed in three dimensions to assess potential differences in intramuscular fat structure. The majority of the intramuscular fat appeared to be connected along the 100 mm of muscle in both the highly marbled and less marbled striploins. Thus, rather than having dispersed individual flecks of marbling, the intramuscular fat was a single entity within the striploin. The local shape patterns of this entity varied with marbling level in that the structure had an increased diameter in the highly marbled striploins. However, the amount of branching in the intramuscular fat did not vary with the level of marbling. The results suggest that marbling may occur along an internal structure, such as the vascular system or interstitium, in the longissimus muscle. It is postulated that when beef marbling increases, additional intramuscular fat is not deposited in isolated sites but along this internal structure, widening the existing entity rather than changing the shape.
Collapse
Affiliation(s)
- Murk J Bottema
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Zbigniew A Kruk
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | - Amelia Gontar
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Wayne S Pitchford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | - Cynthia D K Bottema
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| |
Collapse
|
15
|
Leng X, Ji X, Hou Y, Settlage R, Jiang H. Roles of the proteasome and inhibitor of DNA binding 1 protein in myoblast differentiation. FASEB J 2019; 33:7403-7416. [PMID: 30865843 DOI: 10.1096/fj.201800574rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study was conducted to further understand the mechanism that controls myoblast differentiation, a key step in skeletal muscle formation. RNA sequencing of primary bovine myoblasts revealed many genes encoding the ubiquitin-proteasome system were up-regulated during myoblast differentiation. This up-regulation was accompanied by increased proteasomal activity. Treating myoblasts with the proteasome-specific inhibitor lactacystin impeded myoblast differentiation. Adenovirus-mediated overexpression of inhibitor of DNA binding 1 (ID1) protein inhibited myoblast differentiation too. Further experiments were conducted to determine whether the proteasome promotes myoblast differentiation by degrading ID1 protein. Both ID1 protein and mRNA expression decreased during myoblast differentiation. However, treating myoblasts with lactacystin reversed the decrease in ID1 protein but not in ID1 mRNA expression. Surprisingly, this reversal was not observed when myoblasts were also treated with the mRNA translation inhibitor cycloheximide. Direct incubation of ID1 protein with proteasomes from myoblasts did not show differentiation stage-associated degradation of ID1 protein. Furthermore, ubiquitinated ID1 protein was not detected in lactacystin-treated myoblasts. Overall, the results of this study suggest that, during myoblast differentiation, the proteasomal activity is up-regulated to further myoblast differentiation and that the increased proteasomal activity improves myoblast differentiation partly by inhibiting the synthesis, not the degradation, of ID1 protein.-Leng, X., Ji, X., Hou, Y., Settlage, R., Jiang, H. Roles of the proteasome and inhibitor of DNA binding 1 protein in myoblast differentiation.
Collapse
Affiliation(s)
- Xinyan Leng
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Xu Ji
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Yuguo Hou
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert Settlage
- Advanced Research Computing Unit, Division of Information Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
16
|
Velleman SG. Recent Developments in Breast Muscle Myopathies Associated with Growth in Poultry. Annu Rev Anim Biosci 2019; 7:289-308. [DOI: 10.1146/annurev-animal-020518-115311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional unit in skeletal muscle is the multinucleated myofiber, which is composed of parallel arrays of microfibrils. The myofiber and sarco-mere structure of skeletal muscle are established during embryogenesis, when mononuclear myoblast cells fuse to form multinucleated myotubes and develop into muscle fibers. With the myoblasts permanently unable to enter a proliferative state again after they fuse to form the multinucleated myotube, postnatal myofiber growth, muscle homeostasis, and myofiber regeneration are dependent on a myogenic stem cell, the satellite cell. Because the satellite cell is a partially differentiated stem cell controlling the state of skeletal muscle structure throughout the life of the bird, it can impact muscle development and structure, growth, and regeneration and, subsequently, meat quality. When myofibers are damaged, muscle repair is dependent on the satellite cells. Regenerated myofibers after the repair process should be similar to the original muscle fiber. Despite significant improvements in meat-type birds, degenerative myopathies have arisen. In many of these degenerative breast muscle myopathies, like Wooden Breast, satellite cell–mediated regeneration of muscle is suppressed. Thus, the biological function of avian myogenic satellite cells and their influence on cellular mechanisms affecting breast muscle development and growth, function during degenerative myopathies, and meat quality are discussed.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| |
Collapse
|
17
|
Geiger A, Daughtry M, Gow C, Siegel P, Shi H, Gerrard D. Long-term selection of chickens for body weight alters muscle satellite cell behaviors. Poult Sci 2018; 97:2557-2567. [DOI: 10.3382/ps/pey050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022] Open
|
18
|
Reed KM, Mendoza KM, Abrahante JE, Barnes NE, Velleman SG, Strasburg GM. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells. BMC Genomics 2017; 18:352. [PMID: 28477619 PMCID: PMC5420122 DOI: 10.1186/s12864-017-3740-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. RESULTS Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. CONCLUSIONS This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN USA
| | - Natalie E. Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH USA
- Ohio Agricultural Research and Development Center, Wooster, OH USA
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI USA
| |
Collapse
|
19
|
Velleman SG. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Dis 2016; 59:525-31. [PMID: 26629627 DOI: 10.1637/11223-063015-review.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
20
|
Gao YQ, Chen X, Wang P, Lu L, Zhao W, Chen C, Chen CP, Tao T, Sun J, Zheng YY, Du J, Li CJ, Gan ZJ, Gao X, Chen HQ, Zhu MS. Regulation of DLK1 by the maternally expressed miR-379/miR-544 cluster may underlie callipyge polar overdominance inheritance. Proc Natl Acad Sci U S A 2015; 112:13627-32. [PMID: 26487685 PMCID: PMC4640741 DOI: 10.1073/pnas.1511448112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.
Collapse
Affiliation(s)
- Yun-Qian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Lei Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Du
- Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Zhen-Ji Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing 210009, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China; Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China;
| |
Collapse
|
21
|
Albrecht E, Kuzinski J, Komolka K, Gotoh T, Maak S. Localization and abundance of early markers of fat cell differentiation in the skeletal muscle of cattle during growth — Are DLK1-positive cells the origin of marbling flecks? Meat Sci 2015; 100:237-45. [DOI: 10.1016/j.meatsci.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 12/01/2022]
|
22
|
Jiang H, Ge X. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle. J Anim Sci 2013; 92:21-9. [PMID: 24166991 DOI: 10.2527/jas.2013-7095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.
Collapse
Affiliation(s)
- H Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24060
| | | |
Collapse
|
23
|
Dayton WR, White ME. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--role of satellite cells in anabolic steroid-induced muscle growth in feedlot steers. J Anim Sci 2013; 92:30-8. [PMID: 24166993 DOI: 10.2527/jas.2013-7077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both androgenic and estrogenic steroids are widely used as growth promoters in feedlot steers because they significantly enhance feed efficiency, rate of gain, and muscle growth. However, despite their widespread use relatively little is known about the biological mechanism by which androgenic and estrogenic steroids enhance rate and efficiency of muscle growth in cattle. Treatment of feedlot steers with a combined estradiol (E2) and trenbolone acetate (TBA) implant results in an increased number of muscle satellite cells, increased expression of IGF-1 mRNA in muscle tissue, and increased levels of circulating IGF-1. Similarly, treatment of bovine satellite cell (BSC) cultures with either TBA or E2 results in increased expression of IGF-1 mRNA, increased rates of proliferation and protein synthesis, and decreased rates of protein degradation. Effects of E2 on BSC are mediated at least in part through the classical E2 receptor, estrogen receptor-α (ESR1), the IGF-1 receptor (IGFR1), and the G protein-coupled estrogen receptor-1 (GPER-1), formerly known as G protein-coupled receptor-30 (GPR30). The effects of TBA appear to be primarily mediated through the androgen receptor. Based on current research results, it is becoming clear that anabolic steroid-enhanced bovine muscle growth involves a complex interaction of numerous pathways and receptors. Consequently, additional in vivo and in vitro studies are necessary to understand the mechanisms involved in this complex process. The fundamental information generated by this research will help in developing future, safe, and effective strategies to increase rate and efficiency of muscle growth in beef cattle.
Collapse
Affiliation(s)
- W R Dayton
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
24
|
Du M, Carlin KM. Meat Science and Muscle Biology Symposium: extracellular matrix in skeletal muscle development and meat quality. J Anim Sci 2012; 90:922-3. [PMID: 22345108 DOI: 10.2527/jas.2011-4937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- M Du
- Department of Animal Science, University of Wyoming, Laramie 82071, USA.
| | | |
Collapse
|
25
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|