1
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
2
|
Owczarzak EJ, Abuelo A. Effect of F-isoprostane class on cow peripheral blood neutrophil microbicidal function in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105180. [PMID: 38641186 DOI: 10.1016/j.dci.2024.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils' functional capacity during OS conditions. This should be tested in vivo.
Collapse
Affiliation(s)
- Eric J Owczarzak
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Angel Abuelo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Chen YC, Orellana Rivas RM, Marins TN, Melo VHLR, Wang Z, Garrick M, Gao J, Liu H, Bernard JK, Melendez P, Tao S. Effects of heat stress abatement on systemic and mammary inflammation in lactating dairy cows. J Dairy Sci 2023; 106:8017-8032. [PMID: 37641342 DOI: 10.3168/jds.2023-23390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 08/31/2023]
Abstract
To examine the effects of evaporative cooling on systemic and mammary inflammation of lactating dairy cows, 30 multiparous Holstein cows (parity = 2.4, 156 d in milk) were randomly assigned to 1 of 2 treatments: cooling (CL) with fans and misters or not (NC). The experiment was divided into a 10-d baseline when all cows were cooled, followed by a 36-d environmental challenge when cooling was terminated for NC cows. The onset of environmental challenge was considered as d 1. Temperature-humidity index averaged 78.4 during the environmental challenge. Milk yield and dry matter intake (DMI) were recorded daily. Blood and milk samples were collected from a subset of cows (n = 9/treatment) on d -3, 1, 3, 7, 14, and 28 of the experiment to measure cortisol, interleukin 10 (IL10), tumor necrosis factor-α (TNF-α), haptoglobin, and lipopolysaccharide binding protein (LBP). Mammary biopsies were collected from a second subset of cows (n = 6/treatment) on d -9, 2, 10, and 36 to analyze gene expression of cytokines and haptoglobin. A subset of cows (n = 7/treatment) who were not subjected to mammary biopsy collection received a bolus of lipopolysaccharides (LPS) in the left rear quarter on d 30 of the experiment. Blood was sampled from cows and milk samples from the LPS-infused quarter were collected at -4, 0, 3, 6, 12, 24, 48, and 96 h relative to infusion, for analyses of inflammatory products. Deprivation of cooling decreased milk yield and DMI. Compared with CL cows, plasma cortisol concentration of NC cows was higher on d 1 but lower on d 28 of the experiment (cooling × time). Deprivation of cooling did not affect circulating TNF-α, IL10, haptoglobin, or LBP. Compared with CL cows, NC cows tended to have higher milk IL10 concentrations but did not show effects in TNF-α, haptoglobin, or LBP. No differences were observed in mammary tissue gene expression of TNF-α, IL10, and haptoglobin. Milk yield declined after LPS infusion but was not affected by treatment. Compared with CL cows, NC cows had greater milk somatic cell count following intramammary LPS infusion. Non-cooled cows had lower circulating TNF-α and IL10 concentrations and tended to have lower circulating haptoglobin concentrations than CL cows. Milk IL10 and TNF-⍺ concentrations were higher 3 h after LPS infusion for NC cows compared with CL cows. Additionally, NC cows tended to have higher milk haptoglobin concentration after LPS infusion than CL cows. In conclusion, deprivation of evaporative cooling had minimal effects on lactating cows' basal inflammatory status, but upregulated mammary inflammatory responses after intramammary LPS infusion.
Collapse
Affiliation(s)
- Y-C Chen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - R M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T N Marins
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Victor H L R Melo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Z Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - M Garrick
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J Gao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - H Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA 31973
| | - P Melendez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
4
|
Pathak RK, Kim JM. Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle. J Biol Eng 2023; 17:59. [PMID: 37752501 PMCID: PMC10523694 DOI: 10.1186/s13036-023-00378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance. RESULTS In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. CONCLUSION Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Rodriguez Z, Picasso-Risso C, Gaire TN, Nakagawa K, Noyes N, Cramer G, Caixeta L. Evaluating variations in metabolic profiles during the dry period related to the time of hyperketonemia onset in dairy cows. PLoS One 2023; 18:e0289165. [PMID: 37561770 PMCID: PMC10414630 DOI: 10.1371/journal.pone.0289165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Hyperketonemia (HYK) in early lactation can have a different impact on health and productivity depending on the timing of HYK onset. While specific metabolites measured during the dry period may serve as biomarkers of HYK, the correlations between metabolites represent a challenge for the use of metabolic profiles dataset, and little has been explored on HYK. This exploratory cohort study aimed a) to characterize the correlations among metabolites measured during the late dry period in dairy cows, and b) to identify biomarkers in the late dry period associated with the onset of HYK at the first (wk1) and second (wk2) week of lactation. Individual blood samples from 440 Holstein dairy cows were collected at 21 ± 3 days before expected parturition. From each sample, 36 different metabolites were measured in serum and plasma. Hyperketonemia was diagnosed in wk1 and wk2 of lactation based on the blood concentration of beta-hydroxybutyrate (BHB > 1.2 mmol/L). Principal component analysis (PCA) was performed to reduce metabolites to a smaller number of uncorrelated components. Multivariable logistic regression models were applied to assess the associations between principal components (PC) and HYK at wk1 only (HYK+ wk1), wk2 only (HYK+ wk2), or both weeks (HYK+ wk1-2). The incidence of HYK was 16.2% in the first week, 13.0% in the second week, and 21.2% within the first two weeks of lactation. The results of PCA highlighted 10 PCs from which two were associated with HYK+ wk1 as compared with cows without HYK during the first two weeks of lactation (non-HYK); the PC a2 led by bilirubin and non-esterified fatty acids (OR = 1.29; 95%CI: 1.02-1.68), and the PC a5 led by alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) (OR = 2.77; 95%CI: 1.61-4.97). There was no evidence of an association between any PC and HYK+ wk2 (vs. non-HYK cows). Cows with elevated PC a5 (led by ALP and GGT) in the dry period were 3.18 times more likely to be HYK+ wk1 than HYK+ wk2 (OR: 3.18, 95%CI: 1.34-8.73; P = 0.013). Overall, the main hypothesis generated by our exploratory study suggests that cows with biomarkers of liver dysfunction (ALP, GGT, bilirubin) assessed by PCA at 3 weeks before calving are more likely to develop HYK during the first week of lactation compared to the second week. In addition, results suggest that cows with HYK in both of the first two weeks of lactation had an overall metabolic disbalance during the onset of the late dry period, which based on PCs, encompass biomarkers related to glucogenic and ketogenic metabolic pathways as well as liver dysfunction and fatty liver. Further research is needed to determine the underlying mechanisms associated with the different adaptations between cows that develop HYK during the first and second week of lactation.
Collapse
Affiliation(s)
- Zelmar Rodriguez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States of America
| | - Catalina Picasso-Risso
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Tara N. Gaire
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Noelle Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Gerard Cramer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Luciano Caixeta
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
6
|
Pathak RK, Lim B, Kim DY, Kim JM. Designing multi-epitope-based vaccine targeting surface immunogenic protein of Streptococcus agalactiae using immunoinformatics to control mastitis in dairy cattle. BMC Vet Res 2022; 18:337. [PMID: 36071517 PMCID: PMC9449294 DOI: 10.1186/s12917-022-03432-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background Milk provides energy as well as the basic nutrients required by the body. In particular, milk is beneficial for bone growth and development in children. Based on scientific evidence, cattle milk is an excellent and highly nutritious dietary component that is abundant in vitamins, calcium, potassium, and protein, among other minerals. However, the commercial productivity of cattle milk is markedly affected by mastitis. Mastitis is an economically important disease that is characterized by inflammation of the mammary gland. This disease is frequently caused by microorganisms and is detected as abnormalities in the udder and milk. Streptococcus agalactiae is a prominent cause of mastitis. Antibiotics are rarely used to treat this infection, and other available treatments take a long time to exhibit a therapeutic effect. Vaccination is recommended to protect cattle from mastitis. Accordingly, the present study sought to design a multi-epitope vaccine using immunoinformatics. Results The vaccine was designed to be antigenic, immunogenic, non-toxic, and non-allergic, and had a binding affinity with Toll-like receptor 2 (TLR2) and TLR4 based on structural modeling, docking, and molecular dynamics simulation studies. Besides, the designed vaccine was successfully expressed in E. coli. expression vector (pET28a) depicts its easy purification for production on a larger scale, which was determined through in silico cloning. Further, immune simulation analysis revealed the effectiveness of the vaccine with an increase in the population of B and T cells in response to vaccination. Conclusion This multi-epitope vaccine is expected to be effective at generating an immune response, thereby paving the way for further experimental studies to combat mastitis.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Gyeonggi-do, 17546, Anseong-si, Republic of Korea.
| |
Collapse
|
7
|
Sipka AS, Chandler TL, Weichhart T, Schuberth HJ, Mann S. Inhibition of mTOR in bovine monocyte derived macrophages and dendritic cells provides a potential mechanism for postpartum immune dysfunction in dairy cows. Sci Rep 2022; 12:15084. [PMID: 36064574 PMCID: PMC9445052 DOI: 10.1038/s41598-022-19295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Dairy cattle experience a profound nutrient deficit postpartum that is associated with immune dysfunction characterized by heightened inflammation and reduced pathogen clearance. The activation of the central nutrient-sensing mTOR pathway is comparatively reduced in leukocytes of early postpartum dairy cows during this time of most pronounced nutrient deficit. We assessed the effect of pharmacological mTOR inhibition (Torin-1, rapamycin) on differentiation of monocyte derived classically (M1) and alternatively (M2) activated macrophages (MPh) and dendritic cells (moDC) from 12 adult dairy cows. Treatment with mTOR inhibitors generated M1 MPh with increased oxidative burst and expression of IL12 subunits but decreased phagocytosis and expression of IL1B, IL6, and IL10. In M2 MPh, treatment inhibited expression of regulatory features (CD163, ARG2, IL10) skewing the cells toward an M1-like phenotype. In moDC, mTOR inhibition increased expression of pro-inflammatory cytokines (IL12A, IL12B, IL1B, IL6) and surface CD80. In co-culture with mixed lymphocytes, mTOR-inhibited moDC exhibited a cytokine profile favoring a Th1 response with increased TNF and IFNG production and decreased IL10 concentrations. We conclude that mTOR inhibition in vitro promoted differentiation of inflammatory macrophages with reduced regulatory features and generation of Th1-favoring dendritic cells. These mechanisms could contribute to immune dysregulation in postpartum dairy cows.
Collapse
Affiliation(s)
- Anja S Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 231 Farrier Road, Ithaca, NY, 14853, USA.
| | - Tawny L Chandler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 231 Farrier Road, Ithaca, NY, 14853, USA
| | - Thomas Weichhart
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Hans-Joachim Schuberth
- Institute for Immunology, University of Veterinary Medicine, Buenteweg 2, 30559, Hannover, Germany
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 231 Farrier Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Antanaitis R, Juozaitienė V, Malašauskienė D, Televičius M, Urbutis M, Rutkaukas A, Šertvytytė G, Baumgartner W. Identification of Changes in Rumination Behavior Registered with an Online Sensor System in Cows with Subclinical Mastitis. Vet Sci 2022; 9:vetsci9090454. [PMID: 36136670 PMCID: PMC9503682 DOI: 10.3390/vetsci9090454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study is to determine the relationship between subclinical mastitis and rumination behavior registered with an online sensor system. Based on the findings of the general clinical examination of 650 milking cows, 10 cows with subclinical mastitis (SCM) and 10 clinically healthy cows (HG) were selected (without clinical signs of any diseases). Rumination behavior biomarkers were registered with RumiWatch noseband sensors (RWS; ITIN + HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Sensors were implanted on the first day after calving. Data from the RWS 13 days before diagnosis of SCM and 13 days after diagnosis of SCM were compared with HG data from the same period. Healthy cows were checked alongside SCM cows on the same days. In our study, we found that healthy cows spent more time engaging in rumination and drinking (p < 0.05) and also had more boluses per rumination. Moreover, among cows with subclinical mastitis, rumination time from day 4 to day 0 decreased by 60.91%, drinking time decreased by 48.47%, and the number of boluses per rumination decreased by 8.67% (p < 0.05). The results indicate that subclinical affects time and rumination chews registered with sensor systems. However, additional studies with larger numbers of animals are required to confirm these results. Furthermore, the impact of heat stress, estrus, and other effects on rumination behavior biomarkers should be evaluated.
Collapse
Affiliation(s)
- Ramūnas Antanaitis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-67349064
| | - Vida Juozaitienė
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio 58, LT-44248 Kaunas, Lithuania
| | - Dovilė Malašauskienė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Televičius
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Mingaudas Urbutis
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Arūnas Rutkaukas
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Greta Šertvytytė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
9
|
Siberski-Cooper CJ, Koltes JE. Opportunities to Harness High-Throughput and Novel Sensing Phenotypes to Improve Feed Efficiency in Dairy Cattle. Animals (Basel) 2021; 12:ani12010015. [PMID: 35011121 PMCID: PMC8749788 DOI: 10.3390/ani12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Sensors, routinely collected on-farm tests, and other repeatable, high-throughput measurements can provide novel phenotype information on a frequent basis. Information from these sensors and high-throughput measurements could be harnessed to monitor or predict individual dairy cow feed intake. Predictive algorithms would allow for genetic selection of animals that consume less feed while producing the same amount of milk. Improved monitoring of feed intake could reduce the cost of milk production, improve animal health, and reduce the environmental impact of the dairy industry. Moreover, data from these information sources could aid in animal management (e.g., precision feeding and health detection). In order to implement tools, the relationship of measurements with feed intake needs to be established and prediction equations developed. Lastly, consideration should be given to the frequency of data collection, the need for standardization of data and other potential limitations of tools in the prediction of feed intake. This review summarizes measurements of feed efficiency, factors that may impact the efficiency and feed consumption of an animal, tools that have been researched and new traits that could be utilized for the prediction of feed intake and efficiency, and prediction equations for feed intake and efficiency presented in the literature to date. Abstract Feed for dairy cattle has a major impact on profitability and the environmental impact of farms. Sustainable dairy production relies on continued improvement in feed efficiency as a way to reduce costs and nutrient loss from feed. Advances in breeding, feeding and management have led to the dilution of maintenance energy and thus more efficient dairy cattle. Still, many additional opportunities are available to improve individual animal feed efficiency. Sensing technologies such as wearable sensors, image-based and high-throughput phenotyping technologies (e.g., milk testing) are becoming more available on commercial farm. The application of these technologies as indicator traits for feed intake and efficiency related traits would be advantageous to provide additional information to predict and manage feed efficiency. This review focuses on precision livestock technologies and high-throughput phenotyping in use today as well as those that could be developed in the future as possible indicators of feed intake. Several technologies such as milk spectral data, activity, rumen measures, and image-based phenotypes have been associated with feed intake. Future applications will depend on the ability to repeatably measure and calibrate these data across locations, so that they can be integrated for use in predicting and managing feed intake and efficiency on farm.
Collapse
|
10
|
Lameness in Early Lactation Is Associated with Lower Productive and Reproductive Performance in a Herd of Supplemented Grazing Dairy Cows. Animals (Basel) 2021; 11:ani11082294. [PMID: 34438752 PMCID: PMC8388509 DOI: 10.3390/ani11082294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary It has been reported that the detrimental impact of clinical diseases, such as mastitis, on lactation and reproduction is highest when the first clinical case occurs in early lactation. Therefore, we run an observational study on 7156 lactations from highly supplemented grazing dairy cows to evaluate the association of the timing of lameness case occurrence in lactation with productive and reproductive performances in dairy cows. We found that cows getting lame before the first service produced less milk than cows getting lame later in lactation (i.e., after the first service), and that both groups of lame cows produced less milk than healthy ones. We also found that cows becoming lame after the first service had an 87 d longer calving to pregnancy interval than healthy herd mate cows and that cows turning lame before the first service had an 38 d longer calving to pregnancy interval than healthy herd mates. In conclusion, the timing of lameness case occurrence in lactation is associated with its impact on productive and reproductive performances in dairy cows. Abstract The main aim of this study was to assess the associations between the timing of lameness clinical case occurrence in lactation with productive and reproductive performances in grazing Holstein cows. A cohort study was carried out on a dataset with records from a commercial dairy herd (Buenos Aires, Argentina) for cows that calved and were dried off from January 2010 through June 2017. The first recorded event of lameness per lactation was considered for the study. Criteria for lactation inclusion included not having uterine diseases, mastitis, or anovulatory cysts during the studied risk period (i.e., up to 200 DIM). Therefore, a total of 7156 out of 20,086 lactations were included in the statistical analysis. The association between lameness case occurrence in lactation (cows not lame (LG0) vs. lame cows between parturition and first service (LG1) vs. lame cows between first service and first pregnancy (LG2)) with productive (i.e., accumulated milk yield to 150 DIM (MILK150) and 300 DIM (MILK305)) and reproductive performances (hazard of insemination and pregnancy) was analyzed with linear regression models and proportional hazard regression models, respectively. Lame cows produced 161 and 183 kg less MILK150 and MILK305 than non-lame herd mates, respectively. Moreover, LG1 cows produced 216 kg less MILK150 and 200 kg less MILK305 than LG0 cows, and LG2 cows also produced 58 kg less MILK150 and 158 kg less MILK305 than LG0 cows. The LG1 cows had a lower hazard of service than LG0 cows (HR = 0.43, 95%CI = 0.39–0.47). Furthermore, LG1 cows had a lower hazard of pregnancy than LG0 cows (HR = 0.52, 95%CI = 0.46–0.59) and took longer to get pregnant than LG0 cows (median [95%CI], 139 [132–144] vs. 101 [99–103]). Moreover, LG2 cows had a much lower hazard of pregnancy than LG0 cows (HR = 0.08, 95%CI = 0.05–0.12) and much longer calving to first pregnancy interval than LG0 cows (188 [183–196] vs. 101 [99–103]). In conclusion, cows that become lame in early lactation produce less milk and have lower hazards of insemination and pregnancy than herd mates that are healthy or become lame later in lactation. In addition, cows that become lame immediately after the voluntarily waiting period have the poorest reproductive performance (i.e., they have the lowest hazard of pregnancy and the longest calving to pregnancy interval).
Collapse
|
11
|
Morin Protects LPS-Induced Mastitis via Inhibiting NLRP3 Inflammasome and NF-κB Signaling Pathways. Inflammation 2021; 43:1293-1303. [PMID: 32140901 DOI: 10.1007/s10753-020-01208-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mastitis is one of the most common diseases that both affects human and animals. Morin is derived from the member of Moraceae family, which has been used in the treatment of many inflammatory diseases. The purpose of this study was to test the protective effect of morin on LPS-induced mastitis and to clarify the possible mechanism. In vivo, the mastitis model was established by lipopolysaccharide (LPS), and morin was treated 1 h before stimulation of LPS. In vitro, peritoneal macrophages were used to test the regulation mechanisms of morin on mastitis. The inflammatory cytokines (TNF-α, IL-1β, and IL-6) was tested by ELISA. Myeloperoxidase (MPO) activity was measured by MPO kit. The expression of NLRP3 inflammasome and NF-κB signaling pathway proteins were detected by western blotting. The results showed that morin alleviated the pathological damage of mammary gland tissues, MPO activity, and the production of TNF-α, IL-1β, and IL-6 in mammary gland tissues. In vitro, morin significantly suppressed the production of inflammatory cytokines. In addition, it also inhibited the activation of NLRP3 inflammasome and NF-κB signaling pathway induced by LPS. In conclusion, the present study suggested that the protective effect of morin against LPS-induced mastitis may be due to its ability to inhibit NLRP3 inflammasome expression and NF-κB signaling pathway.
Collapse
|
12
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
13
|
Prepartum Fat Mobilization in Dairy Cows with Equal Body Condition and Its Impact on Health, Behavior, Milk Production and Fertility during Lactation. Animals (Basel) 2020; 10:ani10091478. [PMID: 32842661 PMCID: PMC7552160 DOI: 10.3390/ani10091478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/26/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary An excess of lipolysis and subsequent increase on non-esterified fatty acids concentrations may impair animal health, welfare, and productivity after calving. In this study, we evaluated the effect of fat mobilization in dairy cows with a recommended body condition score at the beginning of the close-up period on blood indicators of health, incidence of diseases, behavior, milk production, and fertility during postpartum. An increased fat mobilization in dairy cows with an equal body condition score modified the inflammatory and oxidative stress responses during the early postpartum without impairing their health status and fertility. Moreover, behavior and milk production were sensitive indicators that reflected the negative effects of the excess of prepartum fat mobilization through lactation. Abstract The objective of this study was to evaluate the effect of two levels of fat mobilization at the close-up period in dairy cows with an equal body condition score (BCS = 3.0) on the circulating concentrations of metabolic, inflammatory, and oxidative stress biomarkers, incidence of diseases, behavior, milk production, and fertility during the postpartum. Late-gestation multiparous Holstein cows (n = 59) with a body condition score of 3.0 (5-point scale) were enrolled at the beginning of the close-up period and then were followed during the entire lactation. Cows were retrospectively allocated into two groups: animals with prepartum non-esterified fatty acids concentration over 0.3 mmol/L were categorized as high fat mobilization (HFM) (n = 26), and below this threshold as low fat mobilization (LFM) (n = 33). Blood samples were collected 21 d before expected calving and once weekly for 3 wk postpartum in order to analyze β-hydroxybutirate, haptoglobin, fibrinogen, total proteins, and malondialdehyde. Health was observed daily for 21 d postpartum. Behavioral data was collected with an accelerometer and milk production and fertility were obtained from the farm records. An increased fat mobilization in dairy cows with equal BCS modified the inflammatory and oxidative stress responses during the early postpartum without impairing their health status and fertility. Moreover, milk production and behavior were markedly affected by excessive prepartum fat mobilization through lactation.
Collapse
|
14
|
Review: Relationships between metabolism and neutrophil function in dairy cows in the peripartum period. Animal 2020; 14:s44-s54. [PMID: 32024567 DOI: 10.1017/s1751731119003227] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Aspects of neutrophil function are diminished or dysregulated in dairy cows in the weeks just before and after calving, which appears to be an important contributor to the occurrence of retained placenta, mastitis, metritis and endometritis. The timing and mechanisms by which specific elements of neutrophil function are impaired are only partially understood. Oxidative burst capacity is the element of neutrophil function most consistently shown to be impaired in the week after calving, but that observation may partially be biased because oxidative burst has been studied more than other functions. There is sufficient evidence to conclude that the availability of calcium and glucose, and exposure to elevated concentrations of non-esterified fatty acids or β-hydroxybutyrate affect some aspects of neutrophil function. However, these factors have mostly been studied in isolation and their effects are not consistent. Social stressors such as a competitive environment for feeding or lying space should plausibly impair innate immune function, but when studied under controlled conditions such effects have generally not been produced. Similarly, treatment with recombinant bovine granulocyte colony-stimulating factor consistently produces large increases in circulating neutrophil count with modest improvements in function, but this does not consistently reduce the incidence of clinical diseases thought to be importantly attributable to impaired innate immunity. Research is now needed that considers the interactions among known and putative risk factors for impaired neutrophil function in dairy cows in the transition period.
Collapse
|
15
|
Ballou MA, Davis EM, Kasl BA. Nutraceuticals: An Alternative Strategy for the Use of Antimicrobials. Vet Clin North Am Food Anim Pract 2019; 35:507-534. [PMID: 31590900 PMCID: PMC7127241 DOI: 10.1016/j.cvfa.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Livestock industries strive to improve the health of their animals and, in the future, they are going to be required to do this with a continued reduction in antimicrobial use. Nutraceuticals represent a group of compounds that may help fill that void because they exert some health benefits when supplemented to livestock. This review is focused on the mechanisms of action, specifically related to the immune responses and health of ruminants. The nutraceutical classes discussed include probiotics, prebiotics, phytonutrients (essential oils and spices), and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Emily M Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin A Kasl
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Marins TN, Monteiro APA, Weng X, Guo J, Orellana Rivas RM, Bernard JK, Tomlinson DJ, DeFrain JM, Tao S. Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: intake, milk yield and composition, and hematologic profile1. J Anim Sci 2019; 97:2053-2065. [PMID: 30844051 DOI: 10.1093/jas/skz082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to determine the effect of dietary supplemental Zn source and evaporative cooling on intake, milk yield and composition, and the rate of leukocyte migration into the mammary gland following intramammary lipopolysaccharide (LPS) infusion. Multiparous Holstein cows (n = 72) were assigned to one of four treatments with a 2×2 factorial arrangement including two sources of supplemental Zn: 75 mg/kg Zn hydroxychloride or 35 mg/kg Zn hydroxychloride + 40 mg/kg Zn-Met complex (ZMC) each with or without evaporative cooling. The cooling system was implemented by the use of fans and misters over the freestall and feeding areas. On day 34 of the experiment, cows (n = 16; days in milk = 263 ± 63 d) received an infusion of 10 μg of LPS, or a saline control, in the left or right rear quarters. Individual milk samples from both quarters were collected at -12, -4, 0, 6, 12, 24, 48, 72, 96, 120, 144, and 168 h relative to infusion and analyzed for composition and bovine serum albumin. Rectal temperature and respiration rate were assessed and blood samples were collected at the same time points (with an additional sample at 3 h) for analyses of lactose and cortisol. Complete blood counts were performed on samples collected within the first 24 h post infusion. Intramammary LPS infusion reduced (P < 0.01) milk yield, DMI and feed efficiency regardless of dietary or cooling treatments. Non-cooled cows tended (P = 0.09) to have greater feed efficiency (=milk yield/DMI) at 1 d after infusion than those subjected to cooling. Intramammary LPS infusion dramatically increased (P < 0.01) milk somatic cell count (SCC) but treatments had no apparent impact on milk SCC. Compared with cooled cows, non-cooled cows had greater (P < 0.05) plasma lactose concentrations, but lower (P < 0.03) blood concentrations of neutrophils and lymphocytes at 3 h post infusion. This suggests a greater leukocyte migration into the mammary gland of heat-stressed cows. In conclusion, noncooled cows tended to maintain greater feed efficiency and appeared to have greater leukocyte migration into the mammary gland immediately after intramammary LPS infusion compared with cooled cows. Dietary supplemental Zn source had no impact on measures assessed after intramammary LPS infusion.
Collapse
Affiliation(s)
- Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Ana P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Xisha Weng
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Jinru Guo
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | | | - Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton
| |
Collapse
|
17
|
Shaffer JE, Mamedova LK, DeFrain JM, Pandalaneni K, Amamcharla JK, Takiya CS, Bradford BJ. Dietary Zinc-Amino Acid Complex Does Not Affect Markers of Mammary Epithelial Integrity or Heat Stability of Milk in Mid-Lactating Cows. Biol Trace Elem Res 2019; 190:349-357. [PMID: 30382478 DOI: 10.1007/s12011-018-1556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
Supplying dietary zinc in excess of traditional requirements has clear impacts on the gut epithelium, but little research has explored whether similar impacts on the mammary epithelium may occur. Our objective was to determine the effects of supplemental Zn sources, in excess of minimal requirements, on markers of mammary epithelial integrity in blood and in milk as well as the heat stability of milk in mid-lactation cows. Twelve multiparous Holstein cows (132 ± 21 days in milk and 51 ± 3 kg/day milk) were blocked according to milk yield and enrolled in a replicated 3 × 3 Latin square experiment. Experimental periods were 21 days, with 17 days allowed for diet adaptation and 4 days for sampling. Treatment sequences were randomly assigned to animals and treatments were as follows: (1) 0.97 g Zn/day provided as ZnSO4 (34.5 mg supplemental Zn/kg diet DM; 30-ZS), (2) 1.64 g Zn/day provided as ZnSO4 (56.5 mg supplemental Zn/kg diet DM; 60-ZS), and (3) 0.55 g Zn/day provided as ZnSO4 plus 1.13 g Zn/day provided as a zinc-methionine complex (58.2 mg supplemental Zn/kg diet DM; 60-ZM). Treatments were administered once daily as an oral bolus containing all supplemental trace minerals. Rumen-bypass methionine was also included in the 30-ZS and 60-ZS boluses to provide metabolizable methionine equivalent to that provided in 60-ZM rations. Milk samples were assessed for electrolytes, somatic cell transcript abundance of genes related to zinc metabolism, and heat coagulation time. Whole blood samples were analyzed for Na and K concentrations, and plasma samples were analyzed for lactose concentration. Cows fed 60-ZS or 60-ZM had greater zinc intake compared to 30-ZS. Dry matter intake and milk fat content tended to be greater in 60-ZS and 60-ZM cows compared to 30-ZS. Somatic cell linear score was similar among treatments. Treatments neither affected markers of mammary epithelial integrity in blood nor in milk of cows, including plasma concentration of lactose, milk concentrations of Na+ and K+, and SLC30A2 and CLU transcript abundance. Treatments had no effect on milk N fractions or heat coagulation time. This study provided no evidence that supplemental Zn above the established requirements can improve blood-milk epithelial barrier or heat stability of milk in healthy mid-lactation dairy cows.
Collapse
Affiliation(s)
- James E Shaffer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Laman K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Karthik Pandalaneni
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Jayendra K Amamcharla
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Caio S Takiya
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Barry J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
18
|
Li T, Gao J, Zhao X, Ma Y. Digital gene expression analyses of mammary glands from meat ewes naturally infected with clinical mastitis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181604. [PMID: 31417691 PMCID: PMC6689637 DOI: 10.1098/rsos.181604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/06/2023]
Abstract
Clinical mastitis in sheep has gravely restrained production performance for a long time. Knowledge of mechanisms of its pathogenesis and resistance in meat sheep mammary gland with clinical mastitis are not yet understood, especially for clinical mastitis caused by natural infection. In this work, RNA-sequencing was firstly used to screen the differentially expressed genes (DEGs) in clinical mastitic mammary tissues (CMMTs) when compared with healthy mammary tissues (HMTs) from meat sheep flocks. We identified 420 DEGs including 316 upregulated and 104 downregulated genes in CMMTs. Gene ontology annotation revealed these DEGs were mainly engaged in immune response and inflammation response. Pathway enrichment showed they were primarily enriched in pathways relevant to inflammation, immune response and metabolism. Alternative splicing analysis showed most common differential splicing genes in CMMTs and HMTs were implicated in immune response. Immunostaining for three immune response-related proteins encoded by DEGs were mainly observed in mammary epithelium from both CMMTs and HMTs, and their positive signals were more intensive in CMMTs than those in HMTs. These findings provide experimental basis and reference for further researching the molecular genetic mechanisms, particularly immune defence mechanisms, of sheep mammary gland during clinical mastitis.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
19
|
Dickson MJ, Kvidera SK, Horst EA, Wiley CE, Mayorga EJ, Ydstie J, Perry GA, Baumgard LH, Keating AF. Impacts of chronic and increasing lipopolysaccharide exposure on production and reproductive parameters in lactating Holstein dairy cows. J Dairy Sci 2019; 102:3569-3583. [PMID: 30738665 DOI: 10.3168/jds.2018-15631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) administration causes immunoactivation, which negatively affects production and fertility, but experimental exposure via an acute bolus is unlikely to resemble natural infections. Thus, the objectives were to characterize effects of chronic endotoxemia on production parameters and follicular development in estrous-synchronized lactating cows. Eleven Holstein cows (169 ± 20 d in milk; 681 ± 16 kg of body weight) were acclimated to their environmental surroundings for 3 d and then enrolled in 2 experimental periods (P). During P1 (3 d) cows consumed feed ad libitum and baseline samples were obtained. During P2 (7 d), cows were assigned to continuous infusion of either (1) saline-infused and pair-fed (CON-PF; 40 mL/h of saline i.v.; n = 5) or (2) LPS infused and ad libitum fed (LPS-AL; Escherichia coli O55:B5; 0.017, 0.020, 0.026, 0.036, 0.055, 0.088, and 0.148 μg/kg of body weight/h i.v. on d 1 to 7, respectively; n = 6). Controls were pair-fed to the LPS-AL group to eliminate confounding effects of dissimilar nutrient intake. Infusing LPS temporally caused mild hyperthermia on d 1 to 3 (+0.49°C) relative to baseline. Dry matter intake of LPS-AL cows decreased (28%) on d 1 of P2, then progressively returned to baseline. Relative to baseline, milk yield from LPS-AL cows was decreased on d 1 of P2 (12%). No treatment differences were observed in milk yield during P2. Follicular growth, dominant follicle size, serum progesterone (P4), and follicular P4 and 17β-estradiol concentrations were similar between treatments. Serum 17β-estradiol tended to increase (115%) and serum amyloid A and LPS-binding protein were increased (118 and 40%, respectively) in LPS-AL relative to CON-PF cows. Compared with CON-PF, neutrophils in LPS-AL cows were initially increased (45%), then gradually decreased. In contrast, monocytes were initially decreased (40%) and progressively increased with time in the LPS-AL cows. Hepatic mRNA abundance of cytochrome P450 family 2 subfamily C (CYP2C) or CYP3A was not affected by LPS, nor was there a treatment effect on toll-like receptor 4 or LBP; however, acyloxyacyl hydrolase and RELA subunit of nuclear factor kappa B tended to be increased in LPS-AL cows. These data suggest lactating dairy cows become tolerant to chronic and exponentially increasing LPS infusion in terms of production and reproductive parameters.
Collapse
Affiliation(s)
- M J Dickson
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - C E Wiley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - J Ydstie
- Department of Animal Science, Iowa State University, Ames 50011
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings 57006
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
20
|
Korkmaz F, Elsasser T, Kerr D. Variation in fibroblast expression of toll-like receptor 4 and lipopolysaccharide-induced cytokine production between animals predicts control of bacterial growth but not severity of Escherichia coli mastitis. J Dairy Sci 2018; 101:10098-10115. [DOI: 10.3168/jds.2017-14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
|
21
|
Oliveira JTA, Souza PFN, Vasconcelos IM, Dias LP, Martins TF, Van Tilburg MF, Guedes MIF, Sousa DOB. Mo-CBP 3-PepI, Mo-CBP 3-PepII, and Mo-CBP 3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie 2018; 157:10-21. [PMID: 30389515 DOI: 10.1016/j.biochi.2018.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
The efficiency of current antimicrobial drugs is noticeably decreasing and thus the development of new treatments is necessary. Natural and synthetic antimicrobial peptides (AMPs) have attracted great attention as promising candidates. Inspired on Mo-CBP3, an antimicrobial protein from Moringa oleifera seeds, we designed and synthesized three AMPs named Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII. All these three peptides inhibited the growth of Candida species and pathogenic bacteria, penetrate into microbial cells, but none is hemolytic or toxic to human cells. Mo-CBP3-PepIII, particularly, showed the strongest antimicrobial activity against Staphylococcus aureus and Candida species, important human pathogens. Additionally, Mo-CBP3-PepIII did not exhibit hemolytic or toxic activity to mammalian cells, but increased Staphylococcus aureus plasma membrane permeabilization. In Candida parapsilosis, Mo-CBP3-PepIII induced pore formation in the plasma membrane and overproduction of reactive oxygen species. Bioinformatics analysis suggested that Mo-CBP3-PepIII is resistant to pepsin digestion and other proteolytic enzymes present in the intestinal environment, which opens the possibility of oral delivery in future treatments. Together, these results suggest that Mo-CBP3-PepIII has great potential as an antimicrobial agent against the bacterium S. aureus and the fungi C. parapsilosis.
Collapse
Affiliation(s)
- Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | - Thiago F Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | | | - Maria I F Guedes
- Department of Biotechnology, State University of Ceara (UECE), Ceara, 60741, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| |
Collapse
|
22
|
Potter T, Arndt C, Hristov A. Short communication: Increased somatic cell count is associated with milk loss and reduced feed efficiency in lactating dairy cows. J Dairy Sci 2018; 101:9510-9515. [DOI: 10.3168/jds.2017-14062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 06/06/2018] [Indexed: 01/01/2023]
|
23
|
Horst E, Kvidera S, Mayorga E, Shouse C, Al-Qaisi M, Dickson M, Ydstie J, Ramirez Ramirez H, Keating A, Dickson D, Griswold K, Baumgard L. Effect of chromium on bioenergetics and leukocyte dynamics following immunoactivation in lactating Holstein cows. J Dairy Sci 2018; 101:5515-5530. [DOI: 10.3168/jds.2017-13899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
|
24
|
Korkmaz FT, Kerr DE. Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. BMC Genomics 2017; 18:405. [PMID: 28545453 PMCID: PMC5445414 DOI: 10.1186/s12864-017-3796-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Differences in DNA methylation are known to contribute to the development of immune-related disorders in humans but relatively little is known about how methylation regulates immune function in cattle. Utilizing whole-transcriptome analyses of bovine dermal fibroblasts, we have previously identified an age and breed-dependent up-regulation of genes within the toll-like receptor 4 (TLR4) pathway that correlates with enhanced fibroblast production of IL-8 in response to lipopolysaccharide (LPS). Age-dependent differences in IL-8 production are abolished by treatment with 5-aza-2-deoxycytidine and Trichostatin A (AZA-TSA), suggesting epigenetic regulation of the innate response to LPS. In the current study, we performed reduced representation bisulfite sequencing (RRBS) on fibroblast cultures isolated from the same animals at 5- and 16-months of age to identify genes that exhibit variable methylation with age. To validate the role of methylation in gene expression, six innate response genes that were hyper-methylated in young animals were assessed by RT-qPCR in fibroblasts from animals at different ages and from different breeds. RESULTS We identified 14,094 differentially methylated CpGs (DMCs) that differed between fibroblast cultures at 5- versus 16-months of age. Of the 5065 DMCs that fell within gene regions, 1117 were located within promoters, 1057 were within gene exons and 2891 were within gene introns and 67% were more methylated in young cultures. Transcription factor enrichment of the promoter regions hyper-methylated in young cultures revealed significant regulation by the key pro-inflammatory regulator, NF-κB. Additionally, five out of six chosen genes (PIK3R1, FES, NFATC1, TNFSF13 and RORA) that were more methylated in young cultures showed a significant reduction in expression post-LPS treatment in comparison with older cultures. Two of these genes, FES and NFATC1, were similarly down-regulated in Angus cultures that also exhibit a low LPS response phenotype. CONCLUSIONS Our study has identified immune-related loci regulated by DNA methylation in cattle that may contribute to differential cellular response to LPS, two of which exhibit an identical expression profile in both low-responding age and breed phenotypes. Methylation biomarkers of differential immunity may prove useful in developing selection strategies for replacement cows that are less susceptible to severe infections, such as coliform mastitis.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA. .,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA.
| | - David E Kerr
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA.,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA
| |
Collapse
|
25
|
Kvidera S, Horst E, Abuajamieh M, Mayorga E, Fernandez MS, Baumgard L. Glucose requirements of an activated immune system in lactating Holstein cows. J Dairy Sci 2017; 100:2360-2374. [DOI: 10.3168/jds.2016-12001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/06/2016] [Indexed: 12/31/2022]
|
26
|
Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. ACTA ACUST UNITED AC 2015. [DOI: 10.14405/kjvr.2015.55.4.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Moyes KM. TRIENNIAL LACTATION SYMPOSIUM: Nutrient partitioning during intramammary inflammation: A key to severity of mastitis and risk of subsequent diseases?1. J Anim Sci 2015; 93:5586-93. [DOI: 10.2527/jas.2015-8945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Bradford BJ, Yuan K, Farney JK, Mamedova LK, Carpenter AJ. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J Dairy Sci 2015. [PMID: 26210279 DOI: 10.3168/jds.2015-9683] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For dairy cattle, the first several weeks of lactation represent the highest-risk period in their lives after their own neonatal period. Although more than 50% of cows during this period are estimated to suffer from at least one subclinical disorder, the complicated admixture of normal adaptations to lactation, infectious challenges, and metabolic disorders has made it difficult to determine which physiological processes are adaptive and which are pathological during this time. Subacute inflammation, a condition that has been well documented in obesity, has been a subject of great interest among dairy cattle physiologists in the past decade. Many studies have now clearly shown that essentially all cows experience some degree of systemic inflammation in the several days after parturition. The magnitude and likely persistence of the inflammatory state varies widely among cows, and several studies have linked the degree of postpartum inflammation to increased disease risk and decreased whole-lactation milk production. In addition to these associations, enhancing postpartum inflammation with repeated subacute administration of cytokines has impaired productivity and markers of health, whereas targeted use of nonsteroidal anti-inflammatory drugs during this window of time has enhanced whole-lactation productivity in several studies. Despite these findings, many questions remain about postpartum inflammation, including which organs are key initiators of this state and what signaling molecules are responsible for systemic and tissue-specific inflammatory states. Continued in vivo work should help clarify the degree to which mild postpartum inflammation is adaptive and whether the targeted use of anti-inflammatory drugs or nutrients can improve the health and productivity of dairy cows.
Collapse
Affiliation(s)
- B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| | - K Yuan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J K Farney
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - A J Carpenter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|
29
|
Yuan K, Mendonça L, Hulbert L, Mamedova L, Muckey M, Shen Y, Elrod C, Bradford B. Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows. J Dairy Sci 2015; 98:3236-46. [DOI: 10.3168/jds.2014-8469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022]
|
30
|
Benjamin A, Green B, Hayden L, Barlow J, Kerr D. Cow-to-cow variation in fibroblast response to a toll-like receptor 2/6 agonist and its relation to mastitis caused by intramammary challenge with Staphylococcus aureus. J Dairy Sci 2015; 98:1836-50. [DOI: 10.3168/jds.2014-9075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
|
31
|
Moyes KM, Larsen T, Sørensen P, Ingvartsen KL. Changes in various metabolic parameters in blood and milk during experimental Escherichia coli mastitis for primiparous Holstein dairy cows during early lactation. J Anim Sci Biotechnol 2014; 5:47. [PMID: 25368807 PMCID: PMC4216841 DOI: 10.1186/2049-1891-5-47] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to characterize the changes in various metabolic parameters in blood and milk during IMI challenge with Escherichia coli (E. coli) for dairy cows during early lactation. Thirty, healthy primiparous Holstein cows were infused (h = 0) with ~20-40 cfu of live E. coli into one front mammary quarter at ~4-6 wk in lactation. Daily feed intake and milk yield were recorded. At –12, 0, 3, 6, 12, 18, 24, 36, 48, 60, 72, 96, 108, 120, 132, 144, 156, 168, 180 and 192 h relative to challenge rectal temperatures were recorded and quarter foremilk was collected for analysis of shedding of E. coli. Composite milk samples were collected at -180, -132, -84, -36, -12, 12, 24, 36, 48, 60, 72, 84, 96, 132 and 180 h relative to challenge (h = 0) and analyzed for lactate dehydrogenase (LDH), somatic cell count, fat, protein, lactose, citrate, beta-hydroxybutyrate (BHBA), free glucose (fglu), and glucose-6-phosphate (G6P). Blood was collected at -12, 0, 3, 6, 12, 18, 24, 36, 60, 72, 84, 132 and 180 h relative to challenge and analyzed for plasma non-esterified fatty acids (NEFA), BHBA and glucose concentration. A generalized linear mixed model was used to determine the effect of IMI challenge on metabolic responses of cows during early lactation. Results By 12 h, E. coli was recovered from challenged quarters and shedding continued through 72 h. Rectal temperature peaked by 12 h post-challenge and returned to pre-challenge values by 36 h post-IMI challenge. Daily feed intake and milk yield decreased (P <0.05) by 1 and 2 d, respectively, after mastitis challenge. Plasma BHBA decreased (12 h; P <0.05) from 0.96 ± 1.1 at 0 h to 0.57 ± 0.64 mmol/L by 18 h whereas concentration of plasma NEFA (18 h) and glucose (24 h) were significantly greater, 11 and 27%, respectively, after challenge. In milk, fglu, lactose, citrate, fat and protein yield were lower whereas yield of BHBA and G6P were higher after challenge when compared to pre-challenge values. Conclusions Changes in metabolites in blood and milk were most likely associated with drops in feed intake and milk yield. However, the early rise in plasma NEFA may also signify enhanced adipose tissue lipolysis. Lower concentrations of plasma BHBA may be attributed to an increase transfer into milk after IMI. Decreases in both milk lactose yield and % after challenge may be partly attributed to reduced conversion of fglu to lactose. Rises in G6P yield and concentration in milk after challenge (24 h) may signify increased conversion of fglu to G6P. Results identify changes in various metabolic parameters in blood and milk after IMI challenge with E. coli in dairy cows that may partly explain the partitioning of nutrients and changes in milk components after IMI for cows during early lactation.
Collapse
Affiliation(s)
- Kasey M Moyes
- Department of Animal and Avian Sciences, University of Maryland, 142 Animal Sciences Building, MD 20742-2311, 20910 College Park, MD USA
| | - Torben Larsen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| | - Peter Sørensen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| | - Klaus L Ingvartsen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| |
Collapse
|
32
|
Thompson-Crispi K, Atalla H, Miglior F, Mallard BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol 2014; 5:493. [PMID: 25339959 PMCID: PMC4188034 DOI: 10.3389/fimmu.2014.00493] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow's natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity(+)™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population.
Collapse
Affiliation(s)
- Kathleen Thompson-Crispi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Heba Atalla
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada
| | - Filippo Miglior
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Canadian Dairy Network, Guelph, ON, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Cardozo VF, Lancheros CA, Narciso AM, Valereto EC, Kobayashi RK, Seabra AB, Nakazato G. Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int J Pharm 2014; 473:20-9. [DOI: 10.1016/j.ijpharm.2014.06.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/28/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
34
|
Farney J, Mamedova L, Coetzee J, Minton J, Hollis L, Bradford B. Sodium salicylate treatment in early lactation increases whole-lactation milk and milk fat yield in mature dairy cows. J Dairy Sci 2013; 96:7709-18. [DOI: 10.3168/jds.2013-7088] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/01/2013] [Indexed: 01/04/2023]
|
35
|
TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows. PLoS One 2013; 8:e80316. [PMID: 24260367 PMCID: PMC3833956 DOI: 10.1371/journal.pone.0080316] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα), affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous) were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control), 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P<0.10) by rbTNFα administration, but no dose effect (P>0.10) was detected; rbTNFα treatments increased (P<0.01) concentrations of plasma haptoglobin. Most plasma eicosanoids were not affected (P>0.10) by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P<0.05) over the first week of lactation, reflecting elevated inflammatory mediators in the days immediately following parturition. Dry matter and water intake, milk yield, and milk fat and protein yields were all decreased (P<0.05) by rbTNFα treatments by 15 to 18%. Concentrations of plasma glucose, insulin, β-hydroxybutyrate, non-esterified fatty acids, triglyceride, 3-methylhistidine, and liver triglyceride were unaffected (P>0.10) by rbTNFα treatment. Glucose turnover rate was unaffected (P = 0.18) by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P = 0.08). Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.
Collapse
|
36
|
Comin A, Peric T, Corazzin M, Veronesi M, Meloni T, Zufferli V, Cornacchia G, Prandi A. Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised. Livest Sci 2013. [DOI: 10.1016/j.livsci.2012.11.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Connor EE, Baldwin RL, Blanton JR, Johnson SE, Poulos S, Welsh TH. Growth and Development Symposium: Understanding and mitigating the impacts of inflammation on animal growth and development. J Anim Sci 2012; 90:1436-7. [PMID: 22573835 DOI: 10.2527/jas.2011-5234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- E E Connor
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|