1
|
Liu J, Sebastià C, Jové-Juncà T, Quintanilla R, González-Rodríguez O, Passols M, Castelló A, Sánchez A, Ballester M, Folch JM. Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs. Genet Sel Evol 2024; 56:66. [PMID: 39327557 PMCID: PMC11426007 DOI: 10.1186/s12711-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.
Collapse
Affiliation(s)
- Junhui Liu
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
2
|
Jung JH, Lee SM, Oh SH. A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods. Anim Biosci 2024; 37:807-816. [PMID: 38637973 PMCID: PMC11065719 DOI: 10.5713/ab.23.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE This study aims to identify the significant regions and candidate genes of growth-related traits (adjusted backfat thickness [ABF], average daily gain [ADG], and days to 90 kg [DAYS90]) in Korean commercial GGP pig (Duroc, Landrace, and Yorkshire) populations. METHODS A genome-wide association study (GWAS) was performed using single-nucleotide polymorphism (SNP) markers for imputation to Illumina PorcineSNP60. The BayesB method was applied to calculate thresholds for the significance of SNP markers. The identified windows were considered significant if they explained ≥1% genetic variance. RESULTS A total of 28 window regions were related to genetic growth effects. Bayesian GWAS revealed 28 significant genetic regions including 52 informative SNPs associated with growth traits (ABF, ADG, DAYS90) in Duroc, Landrace, and Yorkshire pigs, with genetic variance ranging from 1.00% to 5.46%. Additionally, 14 candidate genes with previous functional validation were identified for these traits. CONCLUSION The identified SNPs within these regions hold potential value for future markerassisted or genomic selection in pig breeding programs. Consequently, they contribute to an improved understanding of genetic architecture and our ability to genetically enhance pigs. SNPs within the identified regions could prove valuable for future marker-assisted or genomic selection in pig breeding programs.
Collapse
Affiliation(s)
| | - Sang Min Lee
- National Institute of Animal Science, RDA, Cheonan, 31000,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| |
Collapse
|
3
|
Passols M, Llobet-Cabau F, Sebastià C, Castelló A, Valdés-Hernández J, Criado-Mesas L, Sánchez A, Folch JM. Identification of genomic regions, genetic variants and gene networks regulating candidate genes for lipid metabolism in pig muscle. Animal 2023; 17:101033. [PMID: 38064855 DOI: 10.1016/j.animal.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The intramuscular fat content and fatty acid composition of porcine meat have a significant impact on its quality and nutritional value. This research aimed to investigate the expression of 45 genes involved in lipid metabolism in the longissimus dorsi muscle of three experimental pig backcrosses, with a 25% of Iberian background. To achieve this objective, we conducted an expression Genome-Wide Association Study (eGWAS) using gene expression levels in muscle measured by high-throughput real-time qPCR for 45 target genes and genotypes from the PorcineSNP60 BeadChip or Axiom Porcine Genotyping Array and 65 single nucleotide polymorphisms (SNPs) located in 20 genes genotyped by a custom-designed Taqman OpenArray in a cohort of 354 animals. The eGWAS analysis identified 301 eSNPs associated with 18 candidate genes (ANK2, APOE, ARNT, CIITA, CPT1A, EGF, ELOVL6, ELOVL7, FADS3, FASN, GPAT3, NR1D2, NR1H2, PLIN1, PPAP2A, RORA, RXRA and UCP3). Three cis-eQTL (expression quantitative trait loci) were identified for GPAT3, RXRA, and UCP3 genes, which indicates that a genetic polymorphism proximal to the same gene is affecting its expression. Furthermore, 24 trans-eQTLs were detected, and eight candidate regulatory genes were located in these genomic regions. Additionally, two trans-regulatory hotspots in Sus scrofa chromosomes 13 and 15 were identified. Moreover, a co-expression analysis performed on 89 candidate genes and the fatty acid composition revealed the regulatory role of four genes (FABP5, PPARG, SCD, and SREBF1). These genes modulate the levels of α-linolenic, arachidonic, and oleic acids, as well as regulating the expression of other candidate genes associated with lipid metabolism. The findings of this study offer novel insights into the functional regulatory mechanism of genes involved in lipid metabolism, thereby enhancing our understanding of this complex biological process.
Collapse
Affiliation(s)
- M Passols
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España.
| | - F Llobet-Cabau
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - C Sebastià
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agrigenomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, España; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, España
| |
Collapse
|
4
|
Óvilo C, Trakooljul N, Núñez Y, Hadlich F, Murani E, Ayuso M, García-Contreras C, Vázquez-Gómez M, Rey AI, Garcia F, García-Casco JM, López-Bote C, Isabel B, González-Bulnes A, Wimmers K, Muñoz M. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Sci Rep 2022; 12:16361. [PMID: 36180572 PMCID: PMC9525691 DOI: 10.1038/s41598-022-20817-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Iberian pigs and its crosses are produced to obtain high-quality meat products. The objective of this work was to evaluate a wide panel of DNA markers, selected by biological and functional criteria, for association with traits related to muscle growth, fatness, meat quality and metabolism. We used 18 crossbred Iberian pigs with divergent postnatal growth patterns for whole genome sequencing and SNP discovery, with over 13 million variants being detected. We selected 1023 missense SNPs located on annotated genes and showing different allele frequencies between pigs with makerdly different growth patterns. We complemented this panel with 192 candidate SNPs obtained from literature mining and from muscle RNAseq data. The selected markers were genotyped in 480 Iberian × Duroc pigs from a commercial population, in which phenotypes were obtained, and an association study was performed for the 1005 successfully genotyped SNPs showing segregation. The results confirmed the effects of several known SNPs in candidate genes (such as LEPR, ACACA, FTO, LIPE or SCD on fatness, growth and fatty acid composition) and also disclosed interesting effects of new SNPs in less known genes such as LRIG3, DENND1B, SOWAHB, EPHX1 or NFE2L2 affecting body weight, average daily gain and adiposity at different ages, or KRT10, NLE1, KCNH2 or AHNAK affecting fatness and FA composition. The results provide a valuable basis for future implementation of marker-assisted selection strategies in swine and contribute to a better understanding of the genetic architecture of relevant traits.
Collapse
Affiliation(s)
- C Óvilo
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain.
| | - N Trakooljul
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - F Hadlich
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - E Murani
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Ayuso
- CoPeD, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - C García-Contreras
- Department of Nutrition and Sustainable Animal Production, CSIC, Granada, Spain
| | | | - A I Rey
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - F Garcia
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - C López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - B Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - A González-Bulnes
- Facultad de Medicina Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - K Wimmers
- Research Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Gong X, Zheng M, Zhang J, Ye Y, Duan M, Chamba Y, Wang Z, Shang P. Transcriptomics-Based Study of Differentially Expressed Genes Related to Fat Deposition in Tibetan and Yorkshire Pigs. Front Vet Sci 2022; 9:919904. [PMID: 35754534 PMCID: PMC9218471 DOI: 10.3389/fvets.2022.919904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fat deposition traits are one of the key factors in pig production and breeding. The fat deposition capacity of pigs mainly affects the quality of pork and pig productivity. The aim of this study was to analyze the differential expression of mRNA levels in dorsal adipose tissue of Tibetan and York pigs at different growth stages using transcriptomic data to estimate key genes that regulate fat deposition in pigs. The results showed that a total of 32,747 positively expressed genes were present in the dorsal adipose tissue of the two breeds. Differentially expressed gene (DEG) screening of multiple combinations between the two breeds yielded 324 DEGS. Gene ontology (GO) biofunctional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGS were mainly involved in lipid metabolic pathways, steroid biosynthetic pathways and lipid biosynthetic processes, sterol biosynthetic processes, brown adipocyte differentiation, and other pathways related to lipid deposition and metabolism. The results showed that ACACA, SLC2A4 and THRSP genes positively regulated the lipid deposition ability and CHPT1 gene negatively regulated the lipid deposition ability in pigs. The results of this experiment suggest a theoretical basis for further studies on the regulatory mechanisms of fat deposition in pigs.
Collapse
Affiliation(s)
- Xinglong Gong
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Min Zheng
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Jian Zhang
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Yourong Ye
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Mengqi Duan
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Yangzom Chamba
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Zhongbin Wang
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| | - Peng Shang
- Tibet Agriculture and Animal Husbandry College, Tibet, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet, China
| |
Collapse
|
6
|
Lee JB, Kang YJ, Kim SG, Woo JH, Shin MC, Park NG, Yang BC, Han SH, Han KM, Lim HT, Ryu YC, Park HB, Cho IC. GWAS and Post-GWAS High-Resolution Mapping Analyses Identify Strong Novel Candidate Genes Influencing the Fatty Acid Composition of the Longissimus dorsi Muscle in Pigs. Genes (Basel) 2021; 12:1323. [PMID: 34573305 PMCID: PMC8468772 DOI: 10.3390/genes12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Fatty acid (FA) composition is one of the most important parameters for the assessment of meat quality in pigs. The FA composition in pork can also affect human health. Our aim was to identify quantitative trait loci (QTLs) and positional candidate genes affecting the FA profile of the longissimus dorsi muscle in a large F2 intercross between Landrace and Korean native pigs comprising 1105 F2 progeny by genome-wide association studies (GWAS) and post-GWAS high-resolution mapping analyses. We performed GWAS using the PorcineSNP60K BeadChip and a linear mixed model. Four genome-wide significant QTL regions in SSC8, SSC12, SSC14, and SSC16 were detected (p < 2.53 × 10-7). Several co-localizations of QTLs in SSC12 for oleic acid, linoleic acid, arachidonic acid, monounsaturated FAs, polyunsaturated FAs, and the polyunsaturated/saturated FA ratio were observed. To refine the QTL region in SSC12, a linkage and linkage disequilibrium analysis was applied and could narrow down the critical region to a 0.749 Mb region. Of the genes in this region, GAS7, MYH2, and MYH3 were identified as strong novel candidate genes based on further conditional association analyses. These findings provide a novel insight into the genetic basis of FA composition in pork and could contribute to the improvement of pork quality.
Collapse
Affiliation(s)
- Jae-Bong Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea;
| | - Yong-Jun Kang
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Sang-Geum Kim
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Jae-Hoon Woo
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Moon-Cheol Shin
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Nam-Geon Park
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Byoung-Chul Yang
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| | - Sang-Hyun Han
- Species Restoration Technology Institute, Korea National Park Service, Yeongju 36015, Korea;
| | - Kang-Min Han
- Department of Pathology, Dongguk University Ilsan Hospital, Goyang 10326, Korea;
| | - Hyun-Tae Lim
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea;
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Chul Ryu
- Division of Biotechnology, Jeju National University, SARI, Jeju 63243, Korea;
| | - Hee-Bok Park
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Korea; (Y.-J.K.); (S.-G.K.); (J.-H.W.); (M.-C.S.); (N.-G.P.); (B.-C.Y.)
| |
Collapse
|
7
|
Marchesi JAP, Ono RK, Cantão ME, Ibelli AMG, Peixoto JDO, Moreira GCM, Godoy TF, Coutinho LL, Munari DP, Ledur MC. Exploring the genetic architecture of feed efficiency traits in chickens. Sci Rep 2021; 11:4622. [PMID: 33633287 PMCID: PMC7907133 DOI: 10.1038/s41598-021-84125-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
Chicken feed efficiency (FE) traits are the most important economic traits in broiler production. Several studies evaluating genetic factors affecting food consumption in chickens are available. However, most of these studies identified genomic regions containing putative quantitative trait loci for each trait separately. It is still a challenge to find common gene networks related to these traits. Therefore, here, a genome-wide association study (GWAS) was conducted to explore candidate genomic regions responsible for Feed Intake (FI), Body Weight Gain (BWG) and Feed Conversion Ratio (FCR) traits and their gene networks. A total of 1430 broilers from an experimental population was genotyped with the high density Affymetrix 600K SNP array. A total of 119 associated SNPs located in 20 chromosomes were identified, where some of them were common in more than one FE trait. In addition, novel genomic regions were prospected considering the SNPs dominance effects and sex interaction, identifying putative candidate genes only when these effects were fit in the model. Relevant candidate genes such as ATRNL1, PIK3C2A, PTPRN2, SORCS3 and gga-mir-1759 were highlighted in this study helping to elucidate the genomic architecture of feed efficiency traits. These results provide new insights on the mechanisms underlying the consumption and utilization of food in chickens.
Collapse
Affiliation(s)
- Jorge Augusto Petroli Marchesi
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, 14884-900, Brazil.,Departamento de Genética, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rafael Keith Ono
- Embrapa Suínos e Aves, Concórdia, SC, 89715-899, Brazil.,Pamplona Alimentos S/A, Rio do Sul, SC, 89164-900, Brazil
| | | | | | | | - Gabriel Costa Monteiro Moreira
- Departamento de Zootecnia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, 13419-900, Brazil
| | - Thaís Fernanda Godoy
- Departamento de Zootecnia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, 13419-900, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias 11, Piracicaba, SP, 13419-900, Brazil
| | - Danísio Prado Munari
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, 14884-900, Brazil
| | | |
Collapse
|
8
|
Expression analysis of porcine miR-33a/b in liver, adipose tissue and muscle and its potential role in fatty acid metabolism. PLoS One 2021; 16:e0245858. [PMID: 33497399 PMCID: PMC7837490 DOI: 10.1371/journal.pone.0245858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022] Open
Abstract
mir-33a and mir-33b are co-transcribed with the SREBF2 and SREBF1 transcription factors, respectively. The main role of SREBF1 is the regulation of genes involved in fatty acid metabolism, while SREBF2 regulates genes participating in cholesterol biosynthesis and uptake. Our objective was to study the expression of both miR-33a and miR-33b, together with their host SREBF genes, in liver, adipose tissue and muscle to better understand the role of miR-33a/b in the lipid metabolism of pigs. In our study, the expression of miR-33a, miR-33b and SREBF2 in liver, adipose tissue, and muscle was studied in 42 BC1_LD (25% Iberian x 75% Landrace backcross) pigs by RT-qPCR. In addition, the expression of in-silico predicted target genes and fatty acid composition traits were correlated with the miR-33a/b expression. We observed different tissue expression patterns for both miRNAs. In adipose tissue and muscle a high correlation between miR-33a and miR-33b expression was found, whereas a lower correlation was observed in liver. The expression analysis of in-silico predicted target-lipid related genes showed negative correlations between miR-33b and CPT1A expression in liver. Conversely, positive correlations between miR-33a and PPARGC1A and USF1 gene expression in liver were observed. Lastly, positive and negative correlations between miR-33a/b expression and saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) content, respectively, were identified. Overall, our results suggested that both miRNAs are differentially regulated and have distinct functions in liver, in contrast to muscle and adipose tissue. Furthermore, the correlations between miR-33a/b expression both with the expression of in-silico predicted target-lipid related genes and with fatty acid composition, opens new avenues to explore the role of miR33a/b in the regulation of lipid metabolism.
Collapse
|
9
|
Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig. Sci Rep 2020; 10:13962. [PMID: 32811870 PMCID: PMC7435270 DOI: 10.1038/s41598-020-70894-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Meat quality has an important genetic component and can be modified by the fatty acid (FA) composition and the amount of fat contained in adipose tissue and muscle. The present study aimed to find genomic regions associated with the FA composition in backfat and muscle (longissimus dorsi) in 439 pigs with three different genetic backgrounds but having the Iberian breed in common. Genome-wide association studies (GWAS) were performed between 38,424 single-nucleotide polymorphisms (SNPs) covering the pig genome and 60 phenotypic traits related to backfat and muscle FA composition. Nine significant associated regions were found in backfat on the Sus scrofa chromosomes (SSC): SSC1, SSC2, SSC4, SSC6, SSC8, SSC10, SSC12, and SSC16. For the intramuscular fat, six significant associated regions were identified on SSC4, SSC13, SSC14, and SSC17. A total of 52 candidate genes were proposed to explain the variation in backfat and muscle FA composition traits. GWAS were also reanalysed including SNPs on five candidate genes (ELOVL6, ELOVL7, FADS2, FASN, and SCD). Regions and molecular markers described in our study may be useful for meat quality selection of commercial pig breeds, although several polymorphisms were breed-specific, and further analysis would be needed to evaluate possible causal mutations.
Collapse
|
10
|
Criado-Mesas L, Ballester M, Crespo-Piazuelo D, Castelló A, Fernández AI, Folch JM. Identification of eQTLs associated with lipid metabolism in Longissimus dorsi muscle of pigs with different genetic backgrounds. Sci Rep 2020; 10:9845. [PMID: 32555447 PMCID: PMC7300017 DOI: 10.1038/s41598-020-67015-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content and its fatty acid composition affect porcine meat quality and its nutritional value. The present work aimed to identify genomic variants regulating the expression in the porcine muscle (Longissimus dorsi) of 45 candidate genes for lipid metabolism and fatty acid composition in three experimental backcrosses based on the Iberian breed. Expression genome-wide association studies (eGWAS) were performed between the muscle gene expression values, measured by real-time quantitative PCR, and the genotypes of 38,426 SNPs distributed along all chromosomes. The eGWAS identified 186 eSNPs located in ten Sus scrofa regions and associated with the expression of ACSM5, ACSS2, ATF3, DGAT2, FOS and IGF2 (FDR < 0.05) genes. Two expression quantitative trait loci (eQTLs) for IGF2 and ACSM5 were classified as cis-acting eQTLs, suggesting a mutation in the same gene affecting its expression. Conversely, ten eQTLs showed trans-regulatory effects on gene expression. When the eGWAS was performed for each backcross independently, only three common trans-eQTL regions were observed, indicating different regulatory mechanisms or allelic frequencies among the breeds. In addition, hotspot regions regulating the expression of several genes were detected. Our results provide new data to better understand the functional regulatory mechanisms of lipid metabolism genes in muscle.
Collapse
Affiliation(s)
- Lourdes Criado-Mesas
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain.
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca y Tecnologia Agraroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Anna Castelló
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Josep M Folch
- Departament de Genòmica Animal, Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
11
|
Zhang J, Zhang Y, Gong H, Cui L, Ma J, Chen C, Ai H, Xiao S, Huang L, Yang B. Landscape of Loci and Candidate Genes for Muscle Fatty Acid Composition in Pigs Revealed by Multiple Population Association Analysis. Front Genet 2019; 10:1067. [PMID: 31708975 PMCID: PMC6824322 DOI: 10.3389/fgene.2019.01067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/04/2019] [Indexed: 01/19/2023] Open
Abstract
Genome wide association analyses in diverse populations can identify complex trait loci that are specifically present in one population or shared across multiple populations, which help to better understand the genetic architecture of complex traits in a broader genetic context. In this study, we conducted genome-wide association studies and meta-analysis for 38 fatty acid composition traits with 12–19 million imputed genome sequence SNPs in 2446 pigs from six populations, encompassing White Duroc × Erhualian F2, Sutai, Duroc-Landrace-Yorkshire (DLY) three-way cross, Laiwu, Erhualian, and Bamaxiang pigs that were originally genotyped with 60 K or 1.4 million single nucleotide polymorphism (SNP) chips. The analyses uncovered 285 lead SNPs (P < 5 × 10-8), among which 78 locate more than 1 Mb to the lead chip SNPs were considered as novel, largely augmented the landscape of loci for porcine muscle fatty acid composition. Meta-analysis enhanced the association significance at loci near FADS2, ABCD2, ELOVL5, ELOVL6, ELOVL7, SCD, and THRSP genes, suggesting possible existence of population shared mutations underlying these loci. Further haplotype analysis at SCD loci identified a shared 3.7 kb haplotype in F2, Sutai and DLY pigs showing consistent effects of decreasing C18:0 contents in the three populations. In contrast, at FASN loci, we found an Erhualian specific haplotype explaining the population specific association signals in Erhualian pigs. This study refines our understanding on landscape of loci and candidate genes for fatty acid composition traits of pigs.
Collapse
Affiliation(s)
- Junjie Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yifeng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Leilei Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, Zheng E, Hong L, Li Z, Cai G, Huang W, Wu Z, Yang J. Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs. Front Genet 2019; 10:619. [PMID: 31316554 PMCID: PMC6609572 DOI: 10.3389/fgene.2019.00619] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
Intramuscular fat (IMF) is an important quantitative trait of meat, which affects the associated sensory properties and nutritional value of pork. To gain a better understanding of the genetic determinants of IMF, we used a composite strategy, including single-locus and multi-locus association analyses to perform genome-wide association studies (GWAS) for IMF in 1,490 Duroc boars. We estimated the genomic heritability of IMF to be 0.23 ± 0.04. A total of 30 single nucleotide polymorphisms (SNPs) were found to be significantly associated with IMF. The single-locus mixed linear model (MLM) and multiple-locus methods multi-locus random-SNP-effect mixed linear model (mrMLM), fast multi-locus random-SNP-effect efficient mixed model association (FASTmrEMMA), and integrative sure independence screening expectation maximization Bayesian least absolute shrinkage and selection operator model (ISIS EM-BLASSO) analyses identified 5, 9, 8, and 21 significant SNPs, respectively. Interestingly, a novel quantitative trait locus (QTL) on SSC 7 was found to affect IMF. In addition, 10 candidate genes (BDKRB2, GTF2IRD1, UTRN, TMEM138, DPYD, CASQ2, ZNF518B, S1PR1, GPC6, and GLI1) were found to be associated with IMF based on their potential functional roles in IMF. GO analysis showed that most of the genes were involved in muscle and organ development. A significantly enriched KEGG pathway, the sphingolipid signaling pathway, was reported to be associated with fat deposition and obesity. Identification of novel variants and functional genes will advance our understanding of the genetic mechanisms of IMF and provide specific opportunities for marker-assisted or genomic selection in pigs. In general, such a composite single-locus and multi-locus strategy for GWAS may be useful for understanding the genetic architecture of economic traits in livestock.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| |
Collapse
|
13
|
Zhang Y, Zhang J, Gong H, Cui L, Zhang W, Ma J, Chen C, Ai H, Xiao S, Huang L, Yang B. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci 2019; 150:47-55. [DOI: 10.1016/j.meatsci.2018.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
|
14
|
González-Prendes R, Quintanilla R, Mármol-Sánchez E, Pena RN, Ballester M, Cardoso TF, Manunza A, Casellas J, Cánovas Á, Díaz I, Noguera JL, Castelló A, Mercadé A, Amills M. Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles. BMC Genomics 2019; 20:170. [PMID: 30832586 PMCID: PMC6399881 DOI: 10.1186/s12864-019-5557-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content and composition have a strong impact on the nutritional and organoleptic properties of porcine meat. The goal of the current work was to compare the patterns of gene expression and the genetic determinism of IMF traits in the porcine gluteus medius (GM) and longissimus dorsi (LD) muscles. RESULTS A comparative analysis of the mRNA expression profiles of the pig GM and LD muscles in 16 Duroc pigs with available microarray mRNA expression measurements revealed the existence of 106 differentially expressed probes (fold-change > 1.5 and q-value < 0.05). Amongst the genes displaying the most significant differential expression, several loci belonging to the Hox transcription factor family were either upregulated (HOXA9, HOXA10, HOXB6, HOXB7 and TBX1) or downregulated (ARX) in the GM muscle. Differences in the expression of genes with key roles in carbohydrate and lipid metabolism (e.g. FABP3, ORMDL1 and SLC37A1) were also detected. By performing a GWAS for IMF content and composition traits recorded in the LD and GM muscles of 350 Duroc pigs, we identified the existence of one region on SSC14 (110-114 Mb) displaying significant associations with C18:0, C18:1(n-7), saturated and unsaturated fatty acid contents in both GM and LD muscles. Moreover, we detected several genome-wide significant associations that were not consistently found in both muscles. Further studies should be performed to confirm whether these associations are muscle-specific. Finally, the performance of an eQTL scan for 74 genes, located within GM QTL regions and with available microarray measurements of gene expression, made possible to identify 14 cis-eQTL regulating the expression of 14 loci, and six of them were confirmed by RNA-Seq. CONCLUSIONS We have detected significant differences in the mRNA expression patterns of the porcine LD and GM muscles, evidencing that the transcriptomic profile of the skeletal muscle tissue is affected by anatomical, metabolic and functional factors. A highly significant association with IMF composition on SSC14 was replicated in both muscles, highlighting the existence of a common genetic determinism, but we also observed the existence of a few associations whose magnitude and significance varied between LD and GM muscles.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Rovira Roure 191, 25198 Lleida, Spain
| | - Emilio Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ramona N. Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, 25198 Lleida, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Rovira Roure 191, 25198 Lleida, Spain
| | - Tainã Figueiredo Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70.040-020 Brazil
| | - Arianna Manunza
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 Canada
| | - Isabel Díaz
- Institute for Research and Technology in Food and Agriculture (IRTA), Tecnologia dels Aliments, 17121 Monells, Spain
| | - José Luis Noguera
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Rovira Roure 191, 25198 Lleida, Spain
| | - Anna Castelló
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
15
|
Amaral AJ, Bressan MC, Almeida J, Bettencourt C, Moreira O, Sá J, Gama-Carvalho M, Bessa R, Gama LT. Combining genome-wide association analyses and gene interaction networks to reveal new genes associated with carcass traits, meat quality and fatty acid profiles in pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
|
17
|
Miao Z, Wei P, Khan MA, Zhang J, Guo L, Liu D, Zhang X, Bai Y, Wang S. Transcriptome analysis reveals differential gene expression in intramuscular adipose tissues of Jinhua and Landrace pigs. J Vet Med Sci 2018; 80:953-959. [PMID: 29709900 PMCID: PMC6021883 DOI: 10.1292/jvms.18-0074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Meat is a rich source of protein, fatty acids and carbohydrates for human needs. In
addition to necessary nutrients, high fat contents in pork increase the tenderness and
juiciness of the meat, featuring diverse application in various dishes. This study
investigated the transcriptomic profiles of intramuscular adipose tissues in Jinhua and
Landrace pigs by employing advanced RNA sequencing. Results showed significant interesting
to note that there were significant differences in the expression of genes. 1,632 genes
showed significant differential expression, 837 genes were up-regulated and 195 genes were
down-regulated. Variations in genes responsible for cell aggregation, extracellular matrix
formation, cellular lipid catabolic process, and fatty acid binding strongly supported
that both pig breeds feature variable fat and muscle metabolism. Certain differentially
expressed genes are included in the pathway of mitogen-activated protein kinase signaling
pathway, Ras signaling pathway and insulin pathway. Results from real-time quantitative
polymerase chain reaction also validated the differential expression of 17 mRNAs between
meats of the two pig breeds. Overall, these findings reveal significant differences in fat
and protein metabolism of intramuscular adipose tissues of two pig breeds at the
transcriptomic level and suggest diversification at the genetic level between breeds of
the same species.
Collapse
Affiliation(s)
- Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Panpeng Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Muhammad Akram Khan
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, PMAS- Arid Agriculture University Rawalpindi, 46000, Pakistan
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Liping Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Yueyu Bai
- Animal Health Supervision of Henan Province, Bureau of Animal Husbandry of Henan province, Zhengzhou, 450000, P.R. China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| |
Collapse
|
18
|
Yang W, Tang K, Wang Y, Zan L. MiR-27a-5p Increases Steer Fat Deposition Partly by Targeting Calcium-sensing Receptor (CASR). Sci Rep 2018; 8:3012. [PMID: 29445089 PMCID: PMC5813002 DOI: 10.1038/s41598-018-20168-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
Castration increases fat deposition, improving beef quality in cattle. Here, the steer group exhibited a significantly higher intramuscular fat (IMF) content than the bull group. To determine the potential roles of microRNAs (miRNAs) in castration-induced fat deposition, differential expression patterns of miRNA in liver tissue were investigated in bulls and steers. A total of 7,827,294 clean reads were obtained from the bull liver library, and 8,312,483 were obtained from the steer liver library; 452 conserved bovine miRNAs and 20 novel miRNAs were identified. The results showed that the expression profiles of miRNA in liver tissue were changed by castration, and 12 miRNAs that were differentially expressed between bulls and steers were identified. Their target genes were majorly involved in the metabolic, PI3K-Akt, and MAPK signaling pathways. Furthermore, six differentially expressed miRNAs were validated by quantitative real-time PCR, and luciferase reporter assays verified that calcium-sensing receptor (CASR) was the direct target of miR-27a-5p. Meantime, we found that the expression level of CASR was significantly higher in steers than in bulls, and revealed that CASR gene silencing in bovine hepatocytes significantly inhibited triacylglycerol (TAG) accumulation and reduced secretion of very low density lipoprotein (VLDL). These results obtained in the liver indicate that miR-27a-5p may increase fat deposition partly by targeting CASR in steers.
Collapse
Affiliation(s)
- Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Revilla M, Puig-Oliveras A, Crespo-Piazuelo D, Criado-Mesas L, Castelló A, Fernández AI, Ballester M, Folch JM. Expression analysis of candidate genes for fatty acid composition in adipose tissue and identification of regulatory regions. Sci Rep 2018; 8:2045. [PMID: 29391556 PMCID: PMC5794915 DOI: 10.1038/s41598-018-20473-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this work was to study the genetic basis of the backfat expression of lipid-related genes associated with meat quality traits in pigs. We performed a genome-wide association study with the backfat gene expression measured in 44 genes by qPCR and the PorcineSNP60 BeadChip genotypes in 115 Iberian x Landrace backcross animals. A total of 193 expression-associated SNPs located in 19 chromosomal regions were associated with expression levels of ACSM5, ELOVL6, FABP4, FADS2, and SLC27A4 genes. Three expression quantitative trail loci (eQTLs) corresponding to ACSM5, FABP4, and FADS2 were classified as cis-acting eQTLs, whereas the remaining 16 eQTLs have trans-regulatory effects. Remarkably, a SNP in the ACSM5 promoter region and a SNP in the 3′UTR region of FABP4 were the most associated polymorphisms with the ACSM5 and FABP4 expression levels, respectively. Moreover, relevant lipid-related genes mapped in the trans-eQTLs regions associated with the ACSM5, FABP4, FADS2, and SLC27A4 genes. Interestingly, a trans-eQTL hotspot on SSC13 regulating the gene expression of ELOVL6, ELOLV5, and SCD, three important genes implicated in the elongation and desaturation of fatty acids, was identified. These findings provide new data to further understand the functional regulatory mechanisms implicated in the variation of fatty acid composition in pigs.
Collapse
Affiliation(s)
- Manuel Revilla
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Anna Puig-Oliveras
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Lourdes Criado-Mesas
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Anna Castelló
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Ana I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Animal Genomics Department, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| |
Collapse
|
20
|
Zhang J, Cui L, Ma J, Chen C, Yang B, Huang L. Transcriptome analyses reveal genes and pathways associated with fatty acid composition traits in pigs. Anim Genet 2017; 48:645-652. [DOI: 10.1111/age.12597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2017] [Indexed: 11/30/2022]
Affiliation(s)
- J. Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - L. Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - J. Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - C. Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - B. Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| | - L. Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology; Jiangxi Agricultural University; 330045 Nanchang China
| |
Collapse
|
21
|
van Son M, Enger EG, Grove H, Ros-Freixedes R, Kent MP, Lien S, Grindflek E. Genome-wide association study confirm major QTL for backfat fatty acid composition on SSC14 in Duroc pigs. BMC Genomics 2017; 18:369. [PMID: 28494783 PMCID: PMC5426056 DOI: 10.1186/s12864-017-3752-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Fatty acid composition contributes importantly to meat quality and is essential to the nutritional value of the meat. Identification of genetic factors underlying levels of fatty acids can be used to breed for pigs with healthier meat. The aim of this study was to conduct genome-wide association studies (GWAS) to identify QTL regions affecting fatty acid composition in backfat from the pig breeds Duroc and Landrace. Results Using data from the Axiom porcine 660 K array, we performed GWAS on 454 Duroc and 659 Landrace boars for fatty acid phenotypes measured by near-infrared spectroscopy (NIRS) technology (C16:0, C16:1n-7, C18:0, C18:1n-9, C18:2n-6, C18:3n-3, total saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids). Two QTL regions on SSC4 and SSC14 were identified in Duroc for the de novo synthesized fatty acids traits, whereas one QTL on SSC8 was detected in Landrace for C16:1n-7. The QTL region on SSC14 has been reported in previous studies and a putative causative mutation has been suggested in the promoter region of the SCD gene. Whole genome re-sequencing data was used for genotype imputation and to fine map the SSC14 QTL region in Norwegian Duroc. This effort confirms the location of the QTL on this chromosome as well as suggesting other putative candidate genes in the region. The most significant single nucleotide polymorphisms (SNPs) located on SSC14 explain between 55 and 76% of the genetic variance and between 27 and 54% of the phenotypic variance for the de novo synthesized fatty acid traits in Norwegian Duroc. For the QTL region on SSC8 in Landrace, the most significant SNP explained 19% of the genetic variance and 5% of the phenotypic variance for C16:1n-7. Conclusions This study confirms a major QTL affecting fatty acid composition on SSC14 in Duroc, which can be used in genetic selection to increase the level of fatty acid desaturation. The SSC14 QTL was not segregating in the Landrace population, but another QTL on SSC8 affecting C16:1n-7 was identified and might be used to increase the level of desaturation in meat products from this breed. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3752-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maren van Son
- Norsvin SA, Storhamargata 44, , 2317, Hamar, Norway.
| | | | - Harald Grove
- Centre for Integrative Genetics (CIGENE), Department for Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, 191 Av Alcalde Rovira Roure, 25198, Lleida, Catalonia, Spain.,Present address: The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, EH25 9RG, Midlothian, Scotland, UK
| | - Matthew P Kent
- Centre for Integrative Genetics (CIGENE), Department for Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department for Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P. O. Box 5003, 1432, Ås, Norway
| | | |
Collapse
|
22
|
Revilla M, Puig-Oliveras A, Castelló A, Crespo-Piazuelo D, Paludo E, Fernández AI, Ballester M, Folch JM. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS One 2017; 12:e0177014. [PMID: 28472114 PMCID: PMC5417718 DOI: 10.1371/journal.pone.0177014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
Copy number variations (CNVs) are important genetic variants complementary to SNPs, and can be considered as biomarkers for some economically important traits in domestic animals. In the present study, a genomic analysis of porcine CNVs based on next-generation sequencing data was carried out to identify CNVs segregating in an Iberian x Landrace backcross population and study their association with fatty acid composition and growth-related traits. A total of 1,279 CNVs, including duplications and deletions, were detected, ranging from 106 to 235 CNVs across samples, with an average of 183 CNVs per sample. Moreover, we detected 540 CNV regions (CNVRs) containing 245 genes. Functional annotation suggested that these genes possess a great variety of molecular functions and may play a role in production traits in commercial breeds. Some of the identified CNVRs contained relevant functional genes (e.g., CLCA4, CYP4X1, GPAT2, MOGAT2, PLA2G2A and PRKG1, among others). The variation in copy number of four of them (CLCA4, GPAT2, MOGAT2 and PRKG1) was validated in 150 BC1_LD (25% Iberian and 75% Landrace) animals by qPCR. Additionally, their contribution regarding backfat and intramuscular fatty acid composition and growth–related traits was analyzed. Statistically significant associations were obtained for CNVR112 (GPAT2) for the C18:2(n-6)/C18:3(n-3) ratio in backfat and carcass length, among others. Notably, GPATs are enzymes that catalyze the first step in the biosynthesis of both triglycerides and glycerophospholipids, suggesting that this CNVR may contribute to genetic variation in fatty acid composition and growth traits. These findings provide useful genomic information to facilitate the further identification of trait-related CNVRs affecting economically important traits in pigs.
Collapse
Affiliation(s)
- Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- * E-mail:
| | - Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Ediane Paludo
- Department of Animal Science, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| |
Collapse
|
23
|
Ballester M, Ramayo-Caldas Y, Revilla M, Corominas J, Castelló A, Estellé J, Fernández AI, Folch JM. Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs. Sci Rep 2017; 7:46539. [PMID: 28422154 PMCID: PMC5396199 DOI: 10.1038/srep46539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
In the present study, liver co-expression networks and expression Genome Wide Association Study (eGWAS) were performed to identify DNA variants and molecular pathways implicated in the functional regulatory mechanisms of meat quality traits in pigs. With this purpose, the liver mRNA expression of 44 candidates genes related with lipid metabolism was analysed in 111 Iberian x Landrace backcross animals. The eGWAS identified 92 eSNPs located in seven chromosomal regions and associated with eight genes: CROT, CYP2U1, DGAT1, EGF, FABP1, FABP5, PLA2G12A, and PPARA. Remarkably, cis-eSNPs associated with FABP1 gene expression which may be determining the C18:2(n-6)/C18:3(n-3) ratio in backfat through the multiple interaction of DNA variants and genes were identified. Furthermore, a hotspot on SSC8 associated with the gene expression of eight genes was identified and the TBCK gene was pointed out as candidate gene regulating it. Our results also suggested that the PI3K-Akt-mTOR pathway plays an important role in the control of the analysed genes highlighting nuclear receptors as the NR3C1 or PPARA. Finally, sex-dimorphism associated with hepatic lipid metabolism was identified with over-representation of female-biased genes. These results increase our knowledge of the genetic architecture underlying fat composition traits.
Collapse
Affiliation(s)
- Maria Ballester
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- IRTA, Genètica i Millora Animal, Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Yuliaxis Ramayo-Caldas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jordi Corominas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. de la Coruña km. 7, 28040, Madrid, Spain
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
24
|
Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito T, Sakuma H, Miyashita S, Arata S, Suzuki K. Genome-wide association studies reveal additional related loci for fatty acid composition in a Duroc pig multigenerational population. Anim Sci J 2017; 88:1482-1490. [PMID: 28402008 DOI: 10.1111/asj.12793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/15/2017] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to detect quantitative trait loci affecting fatty acid composition in back fat and intramuscular fat in a Duroc pig population comprising seventh-generation pedigrees using genome-wide association studies (GWAS). In total, 305 animals were genotyped using single nucleotide polymorphisms (SNPs) array and five selected SNPs from regions containing known candidate genes related to fatty acid synthesis or metabolism. In total, 24 genome-wide significant SNP regions were detected in 12 traits, and 76 genome-wide suggestive SNP regions were detected in 33 traits. The Sus scrofa chromosome (SSC) 7 at 10.3 Mb was significantly associated with C17:0 in intramuscular fat, while the SSC9 at 13.6 Mb was significantly associated with C14:0 in intramuscular fat. The SSC12 at 1.0 Mb was significantly associated with C14:0 in back fat and the SSC14 at 121.0 Mb was significantly associated with C18:0 in intramuscular fat. These regions not only replicated previously reported loci containing some candidate genes involved in fatty acid composition (fatty acid synthase and stearoyl-CoA desaturase) but also included several additional related loci.
Collapse
Affiliation(s)
- Shuji Sato
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | | | - Takashi Kikuchi
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Sachiko Egawa
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, Japan
| | - Kimiko Kohira
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Tomomi Saito
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Hironori Sakuma
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Satoshi Miyashita
- Miyazaki Branch of National Livestock Breeding Center, Kobayashi, Miyazaki, Japan
| | - Shinji Arata
- National Livestock Breeding Center, Nishigo, Fukushima, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
González-Prendes R, Quintanilla R, Cánovas A, Manunza A, Figueiredo Cardoso T, Jordana J, Noguera JL, Pena RN, Amills M. Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits. Sci Rep 2017; 7:39830. [PMID: 28054563 PMCID: PMC5215505 DOI: 10.1038/srep39830] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Meat quality traits have an increasing importance in the pig industry because of their strong impact on consumer acceptance. Herewith, we have combined phenotypic and microarray expression data to map loci with potential effects on five meat quality traits recorded in the longissimus dorsi (LD) and gluteus medius (GM) muscles of 350 Duroc pigs, i.e. pH at 24 hours post-mortem (pH24), electric conductivity (CE) and muscle redness (a*), lightness (L*) and yellowness (b*). We have found significant genome-wide associations for CE of LD on SSC4 (~104 Mb), SSC5 (~15 Mb) and SSC13 (~137 Mb), while several additional regions were significantly associated with meat quality traits at the chromosome-wide level. There was a low positional concordance between the associations found for LD and GM traits, a feature that reflects the existence of differences in the genetic determinism of meat quality phenotypes in these two muscles. The performance of an eQTL search for SNPs mapping to the regions associated with meat quality traits demonstrated that the GM a* SSC3 and pH24 SSC17 QTL display positional concordance with cis-eQTL regulating the expression of several genes with a potential role on muscle metabolism.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Angela Cánovas
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Arianna Manunza
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Tainã Figueiredo Cardoso
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia D. F., Zip Code 70.040-020, Brazil
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - José Luis Noguera
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida - Agrotecnio Center, Lleida 25198, Spain
| | - Marcel Amills
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
26
|
Park HB, Han SH, Yoo CK, Lee JB, Kim JH, Baek KS, Son JK, Shin SM, Lim HT, Cho IC. Genome scan linkage analysis identifies a major quantitative trait loci for fatty acid composition in longissimus dorsi muscle in an F 2 intercross between Landrace and Korean native pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1061-1065. [PMID: 28111443 PMCID: PMC5494477 DOI: 10.5713/ajas.16.0562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/25/2016] [Accepted: 12/29/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was conducted to locate quantitative trait loci (QTL) influencing fatty acid (FA) composition in a large F2 intercross between Landrace and Korean native pigs. METHODS Eighteen FA composition traits were measured in more than 960 F2 progeny. All experimental animals were genotyped with 165 microsatellite markers located throughout the pig autosomes. RESULTS We detected 112 QTLs for the FA composition; Forty seven QTLs reached the genome-wide significant threshold. In particular, we identified a cluster of highly significant QTLs for FA composition on SSC12. QTL for polyunsaturated fatty acid on pig chromosome 12 (F-value = 97.2 under additive and dominance model, nominal p-value 3.6×10-39) accounted for 16.9% of phenotypic variance. In addition, four more QTLs for C18:1, C18:2, C20:4, and monounsaturated fatty acids on the similar position explained more than 10% of phenotypic variance. CONCLUSION Our findings of a major QTL for FA composition presented here could provide helpful information to locate causative variants to improve meat quality traits in pigs.
Collapse
Affiliation(s)
- Hee-Bok Park
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Sang-Hyun Han
- Educational Science Research Institute, Jeju National University, Jeju 63243, Korea
| | - Chae-Kyoung Yoo
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Bong Lee
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 54531, Korea
| | - Ji-Hyang Kim
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Kwang-Soo Baek
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Jun-Kyu Son
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Sang-Min Shin
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Hyun-Tae Lim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea.,Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| |
Collapse
|
27
|
Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. Int J Mol Sci 2016; 17:ijms17122100. [PMID: 27983643 PMCID: PMC5187900 DOI: 10.3390/ijms17122100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022] Open
Abstract
Among the large number of attributes that define pork quality, fat content and composition have attracted the attention of breeders in the recent years due to their interaction with human health and technological and sensorial properties of meat. In livestock species, fat accumulates in different depots following a temporal pattern that is also recognized in humans. Intramuscular fat deposition rate and fatty acid composition change with life. Despite indication that it might be possible to select for intramuscular fat without affecting other fat depots, to date only one depot-specific genetic marker (PCK1 c.2456C>A) has been reported. In contrast, identification of polymorphisms related to fat composition has been more successful. For instance, our group has described a variant in the stearoyl-coA desaturase (SCD) gene that improves the desaturation index of fat without affecting overall fatness or growth. Identification of mutations in candidate genes can be a tedious and costly process. Genome-wide association studies can help in narrowing down the number of candidate genes by highlighting those which contribute most to the genetic variation of the trait. Results from our group and others indicate that fat content and composition are highly polygenic and that very few genes explain more than 5% of the variance of the trait. Moreover, as the complexity of the genome emerges, the role of non-coding genes and regulatory elements cannot be disregarded. Prediction of breeding values from genomic data is discussed in comparison with conventional best linear predictors of breeding values. An example based on real data is given, and the implications in phenotype prediction are discussed in detail. The benefits and limitations of using large SNP sets versus a few very informative markers as predictors of genetic merit of breeding candidates are evaluated using field data as an example.
Collapse
|
28
|
Berton MP, Fonseca LFS, Gimenez DFJ, Utembergue BL, Cesar ASM, Coutinho LL, de Lemos MVA, Aboujaoude C, Pereira ASC, Silva RMDO, Stafuzza NB, Feitosa FLB, Chiaia HLJ, Olivieri BF, Peripolli E, Tonussi RL, Gordo DM, Espigolan R, Ferrinho AM, Mueller LF, de Albuquerque LG, de Oliveira HN, Duckett S, Baldi F. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genomics 2016; 17:972. [PMID: 27884102 PMCID: PMC5123393 DOI: 10.1186/s12864-016-3232-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique. Results Differential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for α-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for ω3, 627 for ω6, and 22 for ω6/ω3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP. Conclusion Several genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3232-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana P Berton
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Larissa F S Fonseca
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Daniela F J Gimenez
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Bruno L Utembergue
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Aline S M Cesar
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, 13418-900, SP, Brazil
| | - Luiz L Coutinho
- Departamento de Zootecnia, Universidade de São Paulo, Piracicaba, 13418-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Marcos Vinicius A de Lemos
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Carolyn Aboujaoude
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Angélica S C Pereira
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Rafael M de O Silva
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Nedenia B Stafuzza
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Fabieli L B Feitosa
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Hermenegildo L J Chiaia
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Bianca F Olivieri
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Elisa Peripolli
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael L Tonussi
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Daniel M Gordo
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael Espigolan
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil
| | - Adrielle M Ferrinho
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, 13635-900, SP, Brazil
| | - Lenise F Mueller
- Departamento de Zootecnia, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, SP, Brazil
| | - Lucia G de Albuquerque
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Henrique N de Oliveira
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil
| | - Susan Duckett
- Animal and Veterinary Science Department of Clemson University, Clemson, 29634, SC, USA
| | - Fernando Baldi
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, 14884-900, SP, Brazil. .,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Lago Sul, 71605-001, DF, Brazil.
| |
Collapse
|
29
|
Ibáñez-Escriche N, Magallón E, Gonzalez E, Tejeda JF, Noguera JL. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J Anim Sci 2016; 94:28-37. [PMID: 26812309 DOI: 10.2527/jas.2015-9433] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to estimate the genetic and environmental parameters and crossbreeding effects on fatty acid and fat traits in the Iberian pig. Our final goal is to explore target selection traits and define crossbreeding strategies. The phenotypes were obtained under intensive management from 470 animals in a diallelic experiment involving Retinto, Torbiscal, and Entrepelado lines. The data set was composed of backfat thickness at the fourth rib (BFT), intramuscular fat (IMF) in the longissimus thoracis (LT), and the fatty acid profile for IMF and subcutaneous fat (SCF) traits. Data were analyzed through a Bayesian bivariate animal model by using a reparameterization of Dickerson's model. The results obtained showed an important genetic determinism for all traits analyzed with heritability ranging from 0.09 to 0.67. The common environment litter effect also had an important effect on IMF (0.34) and its fatty acid composition (0.06-0.53) at slaughter. The additive genetic correlation between BFT and IMF (additive genetic correlation [] = 0.31) suggested that it would be possible to improve lean growth independent of the IMF with an appropriate selection index. Furthermore, the high additive genetic correlation ( = 0.68) found between MUFA tissues would seem to indicate that either the LT or SCF could be used as the reference tissue for MUFA selection. The relevance of the crossbreeding parameters varied according to the traits analyzed. Backfat thickness at the fourth rib and the fatty acid profile of the IMF showed relevant differences between crosses, mostly due to line additive genetic effects associated with the Retinto line. On the contrary, those for IMF crosses were probably mainly attributable to heterosis effects. Particularly, heterosis effects were relevant for the Retinto and Entrepelado crosses (approximately 16% of the trait), which could be valuable for a crossbreeding system involving these lines.
Collapse
|
30
|
Supakankul P, Kumchoo T, Mekchay S. Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:338-346. [PMID: 27608636 PMCID: PMC5337912 DOI: 10.5713/ajas.16.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
Objective This study was conducted to identify and evaluate the effective single nucleotide polymorphism (SNP) markers for fat deposition in the longissimus dorsi muscles of pigs using the amplified fragment length polymorphism (AFLP) approach. Methods Sixty-four selective primer combinations were used to identify the AFLP markers in the 20 highest- and 20 lowest-intramuscular fat (IMF) content phenotypes. Five AFLP fragments were converted into simple codominant SNP markers. These SNP markers were tested in terms of their association with IMF content and fatty acid (FA) composition traits in 620 commercially crossbred pigs. Results The SSC7 g.4937240C>G marker showed an association with IMF content (p<0.05). The SSC9 g.5496647_5496662insdel marker showed a significant association with IMF content and arachidonic levels (p<0.05). The SSC10 g.71225134G>A marker revealed an association with palmitoleic and ω9 FA levels (p<0.05), while the SSC17 g.61976696G>T marker showed a significant association with IMF content and FA levels of palmitoleic, eicosenoic, arachidonic, monounsaturated fatty acids, and ω9 FA levels. However, no significant association of SSC8 g.47338181G>A was observed with any IMF and FA levels in this study. Conclusion Four SNP markers (SSC7 g.4937240C>G, SSC9 g.5496647_5496662insdel, SSC10 g.71225134G>A, and SSC17 g.61976696G>T) were found to be associated with IMF and/or FA content traits in commercially crossbred pigs. These findings provide evidence of the novel SNP markers as being potentially useful for selecting pigs with the desirable IMF content and FA composition.
Collapse
Affiliation(s)
- Pantaporn Supakankul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.,Human and Animal Biotechnology Program, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanavadee Kumchoo
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Puig-Oliveras A, Revilla M, Castelló A, Fernández AI, Folch JM, Ballester M. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat. Sci Rep 2016; 6:31803. [PMID: 27666082 PMCID: PMC4989154 DOI: 10.1038/srep31803] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this work is to better understand the genetic mechanisms determining two complex traits affecting porcine meat quality: intramuscular fat (IMF) content and its fatty acid (FA) composition. With this purpose, expression Genome-Wide Association Study (eGWAS) of 45 lipid-related genes associated with meat quality traits in swine muscle (Longissimus dorsi) of 114 Iberian × Landrace backcross animals was performed. The eGWAS identified 241 SNPs associated with 11 genes: ACSM5, CROT, FABP3, FOS, HIF1AN, IGF2, MGLL, NCOA1, PIK3R1, PLA2G12A and PPARA. Three expression Quantitative Trait Loci (eQTLs) for IGF2, ACSM5 and MGLL were identified, showing cis-acting effects, whereas 16 eQTLs had trans regulatory effects. A polymorphism in the ACSM5 promoter region associated with its expression was identified. In addition, strong candidate genes regulating ACSM5, FOS, PPARA, PIK3R1, PLA2G12A and HIF1AN gene expression were also seen. Notably, the analysis highlighted the NR3C1 transcription factor as a strong candidate gene involved in the regulation of the 45 genes analysed. Finally, the IGF2, MGLL, MC2R, ARHGAP6, and NR3C1 genes were identified as potential regulators co-localizing within QTLs for fatness and growth traits in the IBMAP population. The results obtained increase our knowledge in the functional regulatory mechanisms involved in these complex traits.
Collapse
Affiliation(s)
- Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193 Bellaterra, Spain
| | - Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193 Bellaterra, Spain
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193 Bellaterra, Spain
| | - Ana I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193 Bellaterra, Spain
| | - Maria Ballester
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), 08193 Bellaterra, Spain.,Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| |
Collapse
|
32
|
Ballester M, Revilla M, Puig-Oliveras A, Marchesi JAP, Castelló A, Corominas J, Fernández AI, Folch JM. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits. Anim Genet 2016; 47:552-9. [PMID: 27296287 DOI: 10.1111/age.12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
APOA2 is a protein implicated in triglyceride, fatty acid and glucose metabolism. In pigs, the APOA2 gene is located on pig chromosome 4 (SSC4) in a QTL region affecting fatty acid composition, fatness and growth traits. In this study, we evaluated APOA2 as a candidate gene for meat quality traits in an Iberian × Landrace backcross population. The APOA2:c.131T>A polymorphism, located in exon 3 of APOA2 and determining a missense mutation, was associated with the percentage of hexadecenoic acid [C16:1(n-9)], linoleic acid [C18:2(n-6)], α-linolenic acid [C18:3(n-3)], dihomo-gamma-linolenic acid [C20:3(n-6)] and polyunsaturated fatty acids (PUFAs) in backfat. Furthermore, this SNP was associated with the global mRNA expression levels of APOA2 in liver and was used as a marker to determine allelic expression imbalance by pyrosequencing. We determined an overexpression of the T allele in heterozygous samples with a mean ratio of 2.8 (T/A), observing a high variability in the allelic expression among individuals. This result suggests that complex regulatory mechanisms, beyond a single polymorphism (e.g. epigenetic effects or multiple cis-acting polymorphisms), may be regulating APOA2 gene expression.
Collapse
Affiliation(s)
- M Ballester
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,IRTA, Genètica i Millora Animal, Torre Marimon, 08140, Caldes de Montbui, Spain.
| | - M Revilla
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - J A P Marchesi
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A Castelló
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - J Corominas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - A I Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain
| | - J M Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
33
|
Bressan MC, Almeida J, Santos Silva J, Bettencourt C, Francisco A, Gama LT. Carcass characteristics and fat depots in Iberian and F1 Large White × Landrace pigs intensively finished or raised outdoors in oak-tree forests1. J Anim Sci 2016; 94:2592-602. [DOI: 10.2527/jas.2016-0276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M. C. Bressan
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), I.P., 2005-048 Vale de Santarém, Portugal
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - J. Almeida
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), I.P., 2005-048 Vale de Santarém, Portugal
| | - J. Santos Silva
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), I.P., 2005-048 Vale de Santarém, Portugal
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - C. Bettencourt
- Direcção Regional de Agricultura e Pescas do Alentejo, Herdade da Abóbada, 7830-908 Serpa, Portugal
| | - A. Francisco
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - L. T. Gama
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
34
|
Multi-breed genome-wide association study reveals heterogeneous loci associated with loin eye area in pigs. J Appl Genet 2016; 57:511-518. [DOI: 10.1007/s13353-016-0351-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/15/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023]
|
35
|
Zhang W, Bin Yang, Zhang J, Cui L, Ma J, Chen C, Ai H, Xiao S, Ren J, Huang L. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations. Sci Rep 2016; 6:24718. [PMID: 27097669 PMCID: PMC4838829 DOI: 10.1038/srep24718] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/05/2016] [Indexed: 01/09/2023] Open
Abstract
Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition.
Collapse
Affiliation(s)
- Wanchang Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Leilei Cui
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, P.R. China
| |
Collapse
|
36
|
Li XJ, Zhou J, Liu LQ, Qian K, Wang CL. Identification of genes in longissimus dorsi muscle differentially expressed between Wannanhua and Yorkshire pigs using RNA-sequencing. Anim Genet 2016; 47:324-33. [DOI: 10.1111/age.12421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
- X.-J. Li
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
- College of Animal Science and Technology; Anhui Agricultural University; Hefei 230036 China
| | - J. Zhou
- College of Animal Science and Technology; Anhui Agricultural University; Hefei 230036 China
| | - L.-Q. Liu
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| | - K. Qian
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| | - C.-L. Wang
- Anhui Academy of Agricultural Sciences; Institute of Animal Husbandry and Veterinary Medicine; Hefei 230031 China
| |
Collapse
|
37
|
Ros-Freixedes R, Gol S, Pena RN, Tor M, Ibáñez-Escriche N, Dekkers JCM, Estany J. Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS One 2016; 11:e0152496. [PMID: 27023885 PMCID: PMC4811567 DOI: 10.1371/journal.pone.0152496] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18:1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18:1/C18:0 (0.48–0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork.
Collapse
Affiliation(s)
- Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
- * E-mail: (RRF); (JE)
| | - Sofia Gol
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
| | - Ramona N. Pena
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
| | - Marc Tor
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
| | - Noelia Ibáñez-Escriche
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
- IRTA, Genètica i Millora Animal, Lleida, Catalonia, Spain
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Joan Estany
- Departament de Ciència Animal, Universitat de Lleida–Agrotecnio Center, Lleida, Catalonia, Spain
- * E-mail: (RRF); (JE)
| |
Collapse
|
38
|
Zhang W, Zhang J, Cui L, Ma J, Chen C, Ai H, Xie X, Li L, Xiao S, Huang L, Ren J, Yang B. Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genet Sel Evol 2016; 48:5. [PMID: 26796620 PMCID: PMC4722735 DOI: 10.1186/s12711-016-0184-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Background Fatty acid composition in muscle is an important factor that affects the nutritive value and taste of pork. To investigate the genetic architecture of fatty acid composition of pork, we measured fatty acid contents in longissimus dorsi muscle of 1244 pigs from three divergent populations and conducted genome-wide association studies (GWAS) for fatty acid contents. Results We detected 26 genome-wide significant quantitative trait loci (QTL) on eight chromosomes (SSC for Sus scrofa) for eight fatty acids. These loci not only replicated previously reported QTL for C18:0 on SSC14 and C20:0 on SSC16, but also included several novel QTL such as those for C20:1 on SSC7, C14:0 on SSC9, and C14:0, C16:0 and C16:1 on SSC12. Furthermore, we performed a meta-analysis of GWAS on five populations, including the three populations that were investigated in this study and two additional populations that we had previously examined. This enhanced the strength of the associations detected between fatty acid composition and several marker loci, especially for those for C18:0 on SSC14 and C20:0 on SSC16. The genes ELOVL5, ELOVL6, ELOVL7, FASN, SCD and THRSP, which have functions that are directly relevant to fatty acid metabolism, are proximal to the top associated markers at six significant QTL. Conclusions The findings improve our understanding of the genetic architecture of fatty acid composition in pork and contribute to further fine-map and characterize genes that influence fatty acid composition. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0184-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanchang Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Junjie Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Leilei Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Congying Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xianhua Xie
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lin Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jun Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
39
|
Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine. Sci Rep 2015; 5:12535. [PMID: 26234186 PMCID: PMC4522650 DOI: 10.1038/srep12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023] Open
Abstract
Pork quality is important both to the meat processing industry and consumers' purchasing attitude. Copy number variation (CNV) is a burgeoning kind of variants that may influence meat quality. In this study, a genome-wide association study (GWAS) was performed between CNVs and meat quality traits in swine. After false discovery rate (FDR) correction, a total of 8 CNVs on 6 chromosomes were identified to be significantly associated with at least one meat quality trait. All of the 8 CNVs were verified by next generation sequencing and six of them were verified by qPCR. Only the haplotype block containing CNV12 is adjacent to significant SNPs associated with meat quality, suggesting the effects of those CNVs were not likely captured by tag SNPs. The DNA dosage and EST expression of CNV12, which overlap with an obesity related gene Netrin-1 (Ntn1), were consistent with Ntn1 RNA expression, suggesting the CNV12 might be involved in the expression regulation of Ntn1 and finally influence meat quality. We concluded that CNVs may contribute to the genetic variations of meat quality beyond SNPs, and several candidate CNVs were worth further exploration.
Collapse
|
40
|
Corominas J, Marchesi JAP, Puig-Oliveras A, Revilla M, Estellé J, Alves E, Folch JM, Ballester M. Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs. Genet Sel Evol 2015; 47:20. [PMID: 25887840 PMCID: PMC4371617 DOI: 10.1186/s12711-015-0111-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
Background In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue. The main goal of the current work was to further study the role of ELOVL6 on these traits by analyzing the regulation of the expression of ELOVL6 and the implication of ELOVL6 polymorphisms on meat quality traits in pigs. Results High-throughput sequencing of BAC clones that contain the porcine ELOVL6 gene coupled to RNAseq data re-analysis showed that two isoforms of this gene are expressed in liver and adipose tissue and that they differ in number of exons and 3’UTR length. Although several SNPs in the 3’UTR of ELOVL6 were associated with palmitic and palmitoleic acid contents, this association was lower than that previously observed with SNP ELOVL6:c.-533C > T. This SNP is in full linkage disequilibrium with SNP ELOVL6:c.-394G > A that was identified in the binding site for estrogen receptor alpha (ERα). Interestingly, the ELOVL6:c.-394G allele is associated with an increase in methylation levels of the ELOVL6 promoter and with a decrease of ELOVL6 expression. Therefore, ERα is clearly a good candidate to explain the regulation of ELOVL6 expression through dynamic epigenetic changes in the binding site of known regulators of ELOVL6 gene, such as SREBF1 and SP1. Conclusions Our results strongly suggest the ELOVL6:c.-394G > A polymorphism as the causal mutation for the QTL on pig chromosome 8 that affects fatty acid composition in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12711-015-0111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordi Corominas
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Jorge A P Marchesi
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Anna Puig-Oliveras
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Manuel Revilla
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Jordi Estellé
- INRA, UMR 1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas F, 78352, France. .,AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas F, 78352, France. .,CEA, DSV/iRCM/SREIT/LREG, Jouy-en-Josas F, 78352, France.
| | - Estefânia Alves
- Departamento de Mejora Genética Animal, INIA, Ctra. de la Coruña km. 7, Madrid, 28040, Spain.
| | - Josep M Folch
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Maria Ballester
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| |
Collapse
|
41
|
Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014; 3:242-55. [PMID: 26317048 DOI: 10.4161/adip.28546] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 12/23/2022] Open
Abstract
Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.
Collapse
|
42
|
Manunza A, Casellas J, Quintanilla R, González-Prendes R, Pena RN, Tibau J, Mercadé A, Castelló A, Aznárez N, Hernández-Sánchez J, Amills M. A genome-wide association analysis for porcine serum lipid traits reveals the existence of age-specific genetic determinants. BMC Genomics 2014; 15:758. [PMID: 25189197 PMCID: PMC4164741 DOI: 10.1186/1471-2164-15-758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days). Results Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism. Conclusions Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
43
|
Puig-Oliveras A, Ramayo-Caldas Y, Corominas J, Estellé J, Pérez-Montarelo D, Hudson NJ, Casellas J, Folch JM, Ballester M. Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition. PLoS One 2014; 9:e99720. [PMID: 24926690 PMCID: PMC4057286 DOI: 10.1371/journal.pone.0099720] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Besides having an impact on human health, the porcine muscle fatty acid profile determines meat quality and taste. The RNA-Seq technologies allowed us to explore the pig muscle transcriptome with an unprecedented detail. The aim of this study was to identify differentially-expressed genes between two groups of 6 sows belonging to an Iberian × Landrace backcross with extreme phenotypes according to FA profile. RESULTS We sequenced the muscle transcriptome acquiring 787.5 M of 75 bp paired-end reads. About 85.1% of reads were mapped to the reference genome. Of the total reads, 79.1% were located in exons, 6.0% in introns and 14.9% in intergenic regions, indicating expressed regions not annotated in the reference genome. We identified a 34.5% of the intergenic regions as interspersed repetitive regions. We predicted a total of 2,372 putative proteins. Pathway analysis with 131 differentially-expressed genes revealed that the most statistically-significant metabolic pathways were related with lipid metabolism. Moreover, 18 of the differentially-expressed genes were located in genomic regions associated with IMF composition in an independent GWAS study in the same genetic background. Thus, our results indicate that the lipid metabolism of FAs is differently modulated when the FA composition in muscle differs. For instance, a high content of PUFA may reduce FA and glucose uptake resulting in an inhibition of the lipogenesis. These results are consistent with previous studies of our group analysing the liver and the adipose tissue transcriptomes providing a view of each of the main organs involved in lipid metabolism. CONCLUSIONS The results obtained in the muscle transcriptome analysis increase the knowledge of the gene regulation of IMF deposition, FA profile and meat quality, in terms of taste and nutritional value. Besides, our results may be important in terms of human health.
Collapse
Affiliation(s)
- Anna Puig-Oliveras
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Jordi Corominas
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Estellé
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
- Génétique Animale et Biologie Intégrative UMR1313 (GABI), AgroParisTech, Jouy-en-Josas, France
- Laboratoire de Radiobiologie et Etude du Génome (LREG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Jouy-en-Josas, France
| | - Dafne Pérez-Montarelo
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Nicholas J. Hudson
- Computational and Systems Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Animal, Food and Health SciencesQLD, Brisbane, Australia
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Lleida, Spain
| | - Josep M. Folch
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
44
|
Ramayo-Caldas Y, Fortes MRS, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W, Kelly M, Moore SS, Goddard ME, Lehnert SA, Reverter A. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle. J Anim Sci 2014; 92:2832-45. [PMID: 24778332 DOI: 10.2527/jas.2013-7484] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
High intramuscular fat (IMF) awards price premiums to beef producers and is associated with meat quality and flavor. Studying gene interactions and pathways that affect IMF might unveil causative physiological mechanisms and inform genomic selection, leading to increased accuracy of predictions of breeding value. To study gene interactions and pathways, a gene network was derived from genetic markers associated with direct measures of IMF, other fat phenotypes, feedlot performance, and a number of meat quality traits relating to body conformation, development, and metabolism that might be plausibly expected to interact with IMF biology. Marker associations were inferred from genomewide association studies (GWAS) based on high density genotypes and 29 traits measured on 10,181 beef cattle animals from 3 breed types. For the network inference, SNP pairs were assessed according to the strength of the correlation between their additive association effects across the 29 traits. The co-association inferred network was formed by 2,434 genes connected by 28,283 edges. Topological network parameters suggested a highly cohesive network, in which the genes are strongly functionally interconnected. Pathway and network analyses pointed towards a trio of transcription factors (TF) as key regulators of carcass IMF: PPARGC1A, HNF4G, and FOXP3. Importantly, none of these genes would have been deemed as significantly associated with IMF from the GWAS. Instead, a total of 313 network genes show significant co-association with the 3 TF. These genes belong to a wide variety of biological functions, canonical pathways, and genetic networks linked to IMF-related phenotypes. In summary, our GWAS and network predictions are supported by the current literature and suggest a cooperative role for the 3 TF and other interacting genes including CAPN6, STC2, MAP2K4, EYA1, COPS5, XKR4, NR2E1, TOX, ATF1, ASPH, TGS1, and TTPA as modulators of carcass and meat quality traits in beef cattle.
Collapse
Affiliation(s)
- Y Ramayo-Caldas
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia Departament de Ciencia Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain INRA, UMR1313 Génétique Animale et Biologie Intégrative (GABI), Domaine de Vilvert, Bâtiment GABI-320, 78352 Jouy-en-Josas, France
| | - M R S Fortes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - N J Hudson
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - L R Porto-Neto
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - S Bolormaa
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia
| | - W Barendse
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - M Kelly
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - S S Moore
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Center for Animal Science, QLD 4062, Australia
| | - M E Goddard
- Victorian Department of Environment and Primary Industries, Bundoora, VIC 3083, Australia School of Land and Environment, University of Melbourne, Parkville, VIC 3010, Australia
| | - S A Lehnert
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| | - A Reverter
- CSIRO Food Futures Flagship and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, Brisbane, QLD 4067, Australia
| |
Collapse
|
45
|
Revilla M, Ramayo-Caldas Y, Castelló A, Corominas J, Puig-Oliveras A, Ibáñez-Escriche N, Muñoz M, Ballester M, Folch JM. New insight into the SSC8 genetic determination of fatty acid composition in pigs. Genet Sel Evol 2014; 46:28. [PMID: 24758572 PMCID: PMC4043687 DOI: 10.1186/1297-9686-46-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/10/2014] [Indexed: 01/26/2023] Open
Abstract
Background Fat content and fatty acid composition in swine are becoming increasingly studied because of their effect on sensory and nutritional quality of meat. A QTL (quantitative trait locus) for fatty acid composition in backfat was previously detected on porcine chromosome 8 (SSC8) in an Iberian x Landrace F2 intercross. More recently, a genome-wide association study detected the same genomic region for muscle fatty acid composition in an Iberian x Landrace backcross population. ELOVL6, a strong positional candidate gene for this QTL, contains a polymorphism in its promoter region (ELOVL6:c.-533C < T), which is associated with percentage of palmitic and palmitoleic acids in muscle and adipose tissues. Here, a combination of single-marker association and the haplotype-based approach was used to analyze backfat fatty acid composition in 470 animals of an Iberian x Landrace F2 intercross genotyped with 144 SNPs (single nucleotide polymorphisms) distributed along SSC8. Results Two trait-associated SNP regions were identified at 93 Mb and 119 Mb on SSC8. The strongest statistical signals of both regions were observed for palmitoleic acid (C16:1(n-7)) content and C18:0/C16:0 and C18:1(n-7)/C16:1(n-7) elongation ratios. MAML3 and SETD7 are positional candidate genes in the 93 Mb region and two novel microsatellites in MAML3 and nine SNPs in SETD7 were identified. No significant association for the MAML3 microsatellite genotypes was detected. The SETD7:c.700G > T SNP, although statistically significant, was not the strongest signal in this region. In addition, the expression of MAML3 and SETD7 in liver and adipose tissue varied among animals, but no association was detected with the polymorphisms in these genes. In the 119 Mb region, the ELOVL6:c.-533C > T polymorphism showed a strong association with percentage of palmitic and palmitoleic fatty acids and elongation ratios in backfat. Conclusions Our results suggest that the polymorphisms studied in MAML3 and SETD7 are not the causal mutations for the QTL in the 93 Mb region. However, the results for ELOVL6 support the hypothesis that the ELOVL6:c.-533C > T polymorphism has a pleiotropic effect on backfat and intramuscular fatty acid composition and that it has a role in the determination of the QTL in the 119 Mb region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Josep M Folch
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Spain.
| |
Collapse
|
46
|
Ramayo-Caldas Y, Ballester M, Fortes MRS, Esteve-Codina A, Castelló A, Noguera JL, Fernández AI, Pérez-Enciso M, Reverter A, Folch JM. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genomics 2014; 15:232. [PMID: 24666776 PMCID: PMC3987146 DOI: 10.1186/1471-2164-15-232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. Results The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. Conclusions Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fernández AI, Barragán C, Fernández A, Rodríguez MC, Villanueva B. Copy number variants in a highly inbred Iberian porcine strain. Anim Genet 2014; 45:357-66. [PMID: 24597621 DOI: 10.1111/age.12137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
Abstract
We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole-genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty-nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole-genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.
Collapse
Affiliation(s)
- A I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7.5, Madrid, 28040, Spain
| | | | | | | | | |
Collapse
|
48
|
Muñoz M, Rodríguez MC, Alves E, Folch JM, Ibañez-Escriche N, Silió L, Fernández AI. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics 2013; 14:845. [PMID: 24295214 PMCID: PMC4046688 DOI: 10.1186/1471-2164-14-845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/25/2013] [Indexed: 01/15/2023] Open
Abstract
Background Porcine fatty acid composition is a key factor for quality and nutritive value of pork. Several QTLs for fatty acid composition have been reported in diverse fat tissues. The results obtained so far seem to point out different genetic control of fatty acid composition conditional on the fat deposits. Those studies have been conducted using simple approaches and most of them focused on one single tissue. The first objective of the present study was to identify tissue-specific and tissue-consistent QTLs for fatty acid composition in backfat and intramuscular fat, combining linkage mapping and GWAS approaches and conducted under single and multitrait models. A second aim was to identify powerful candidate genes for these tissue-consistent QTLs, using microarray gene expression data and following a targeted genetical genomics approach. Results The single model analyses, linkage and GWAS, revealed over 30 and 20 chromosomal regions, 24 of them identified here for the first time, specifically associated to the content of diverse fatty acids in BF and IMF, respectively. The analyses with multitrait models allowed identifying for the first time with a formal statistical approach seven different regions with pleiotropic effects on particular fatty acids in both fat deposits. The most relevant were found on SSC8 for C16:0 and C16:1(n-7) fatty acids, detected by both linkage and GWAS approaches. Other detected pleiotropic regions included one on SSC1 for C16:0, two on SSC4 for C16:0 and C18:2, one on SSC11 for C20:3 and the last one on SSC17 for C16:0. Finally, a targeted eQTL scan focused on regions showing tissue-consistent effects was conducted with Longissimus and fat gene expression data. Some powerful candidate genes and regions were identified such as the PBX1, RGS4, TRIB3 and a transcription regulatory element close to ELOVL6 gene to be further studied. Conclusions Complementary genome scans have confirmed several chromosome regions previously associated to fatty acid composition in backfat and intramuscular fat, but even more, to identify new ones. Although most of the detected regions were tissue-specific, supporting the hypothesis that the major part of genes affecting fatty acid composition differs among tissues, seven chromosomal regions showed tissue-consistent effects. Additional gene expression analyses have revealed powerful target regions to carry the mutation responsible for the pleiotropic effects. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-845) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Muñoz
- INIA, Mejora Genética Animal, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genomics 2013; 14:843. [PMID: 24289474 PMCID: PMC3879068 DOI: 10.1186/1471-2164-14-843] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/25/2013] [Indexed: 01/18/2023] Open
Abstract
Background In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). Results High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. Conclusions These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.
Collapse
|
50
|
Saura M, Fernández A, Rodríguez MC, Toro MA, Barragán C, Fernández AI, Villanueva B. Genome-wide estimates of coancestry and inbreeding in a closed herd of ancient Iberian pigs. PLoS One 2013; 8:e78314. [PMID: 24205195 PMCID: PMC3814548 DOI: 10.1371/journal.pone.0078314] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/11/2013] [Indexed: 01/19/2023] Open
Abstract
Maintaining genetic variation and controlling the increase in inbreeding are crucial requirements in animal conservation programs. The most widely accepted strategy for achieving these objectives is to maximize the effective population size by minimizing the global coancestry obtained from a particular pedigree. However, for most natural or captive populations genealogical information is absent. In this situation, microsatellites have been traditionally the markers of choice to characterize genetic variation, and several estimators of genealogical coefficients have been developed using marker data, with unsatisfactory results. The development of high-throughput genotyping techniques states the necessity of reviewing the paradigm that genealogical coancestry is the best parameter for measuring genetic diversity. In this study, the Illumina PorcineSNP60 BeadChip was used to obtain genome-wide estimates of rates of coancestry and inbreeding and effective population size for an ancient strain of Iberian pigs that is now in serious danger of extinction and for which very accurate genealogical information is available (the Guadyerbas strain). Genome-wide estimates were compared with those obtained from microsatellite and from pedigree data. Estimates of coancestry and inbreeding computed from the SNP chip were strongly correlated with genealogical estimates and these correlations were substantially higher than those between microsatellite and genealogical coefficients. Also, molecular coancestry computed from SNP information was a better predictor of genealogical coancestry than coancestry computed from microsatellites. Rates of change in coancestry and inbreeding and effective population size estimated from molecular data were very similar to those estimated from genealogical data. However, estimates of effective population size obtained from changes in coancestry or inbreeding differed. Our results indicate that genome-wide information represents a useful alternative to genealogical information for measuring and maintaining genetic diversity.
Collapse
Affiliation(s)
- María Saura
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - M. Carmen Rodríguez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel A. Toro
- Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Madrid, Spain
| | - Carmen Barragán
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|