1
|
Vaughn SA, Norton NA, Hurley DJ, Hart KA. Validation of a commercially available photometric analytical system for assessment of plasma oxidative status in healthy horses. Vet Immunol Immunopathol 2023; 265:110665. [PMID: 37952346 DOI: 10.1016/j.vetimm.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Reactive oxygen species (ROS) are the end-products of physiologic functions in health. Oxidative stress occurs when endogenous antioxidants are insufficient to neutralize ROS in the system. As a result, ROS can damage DNA, RNA, proteins, lipids, and cell organelles. To obtain accurate measurements of plasma oxidative stress, levels of both oxidants and antioxidants must be measured. This study validates a commercially available, semi-quantitative, photometric analytical system that measures systemic determinants of reactive oxygen metabolites (dROM) and plasma antioxidant capacity (PAC) in stored equine plasma. The objectives of this work were: 1) to validate a photometric analytical system to quantify dROM and PAC in equine plasma; and 2) to determine expected results for these tests in healthy adult horses. We hypothesized that this system would reliably and reproducibly assess dROM and PAC in equine plasma. We observed expected, dose-dependent increases in dROM generated by adding increasing concentrations of H2O2 or ascorbic acid to equine plasma to provide samples containing a known quantity of oxidants or antioxidants respectively. Mean dROM value in healthy horses was 103.3 ±20.7 U. Carr and mean PAC was 2881.0 ± 313.9 U. Cor. This system reliably and reproducibly quantified dROM and PAC in equine plasma samples.
Collapse
Affiliation(s)
- Sarah A Vaughn
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA
| | - Natalie A Norton
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA
| | - David J Hurley
- Department of Population Health, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA
| | - Kelsey A Hart
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
3
|
Guliy OI, Staroverov SA, Fomin AS, Zhnichkova EG, Kozlov SV, Lovtsova LG, Dykman LA. Polymeric Micelles for Targeted Drug Delivery System. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Alghuthaymi MA, Hassan AA, Kalia A, Sayed El Ahl RMH, El Hamaky AAM, Oleksak P, Kuca K, Abd-Elsalam KA. Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects. J Fungi (Basel) 2021; 7:494. [PMID: 34206304 PMCID: PMC8303737 DOI: 10.3390/jof7070494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The global recognition for the potential of nanoproducts and processes in human biomedicine has given impetus for the development of novel strategies for rapid, reliable, and proficient diagnosis, prevention, and control of animal diseases. Nanomaterials exhibit significant antifungal and antimycotoxin activities against mycosis and mycotoxicosis disorders in animals, as evidenced through reports published over the recent decade and more. These nanoantifungals can be potentially utilized for the development of a variety of products of pharmaceutical and biomedical significance including the nano-scale vaccines, adjuvants, anticancer and gene therapy systems, farm disinfectants, animal husbandry, and nutritional products. This review will provide details on the therapeutic and preventative aspects of nanoantifungals against diverse fungal and mycotoxin-related diseases in animals. The predominant mechanisms of action of these nanoantifungals and their potential as antifungal and cytotoxicity-causing agents will also be illustrated. Also, the other theragnostic applications of nanoantifungals in veterinary medicine will be identified.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 19245, Saudi Arabia;
| | - Atef A. Hassan
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, India
| | - Rasha M. H. Sayed El Ahl
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Ahmed A. M. El Hamaky
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., 12619 Giza, Egypt
| |
Collapse
|
5
|
Effects of Vitamin E and Coenzyme Q 10 Supplementation on Oxidative Stress Parameters in Untrained Leisure Horses Subjected to Acute Moderate Exercise. Antioxidants (Basel) 2021; 10:antiox10060908. [PMID: 34205129 PMCID: PMC8227526 DOI: 10.3390/antiox10060908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of antioxidant supplements on exercise-induced oxidative stress have not been investigated in untrained leisure horses. We investigated the effects of 14-day supplementation with vitamin E (1.8 IU/kg/day), coenzyme Q10 (CoQ10; ubiquinone; 800 mg/day), and a combination of both (the same doses as in mono-supplementation) on the blood levels of CoQ10, vitamin E, and oxidative stress parameters in untrained leisure horses subjected to acute moderate exercise. Correlations between lipid peroxidation and muscle enzyme leakage were also determined. Forty client-owned horses were included in the study, with 10 horses in each of the antioxidant and placebo (paraffin oil) groups. Blood parameters were measured before supplementation, before and immediately after exercise, and after 24 h of rest. The differences in individual parameters between blood collection times and groups were analysed with linear mixed models (p ˂ 0.05). None of the supplemented antioxidants affected vitamin E and CoQ10 concentrations, oxidative stress parameters, or serum muscle enzymes. Lipid peroxidation occurred in horses supplemented with placebo and CoQ10 but not in horses supplemented with vitamin E or the combination of both antioxidants. These results suggest that vitamin E alone or in combination with CoQ10 prevented lipid peroxidation in untrained leisure horses subjected to acute moderate exercise.
Collapse
|
6
|
Fagan MM, Harris P, Adams A, Pazdro R, Krotky A, Call J, Duberstein KJ. Form of Vitamin E Supplementation Affects Oxidative and Inflammatory Response in Exercising Horses. J Equine Vet Sci 2020; 91:103103. [PMID: 32684249 DOI: 10.1016/j.jevs.2020.103103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
Vitamin E is an essential antioxidant that may benefit athletes by reducing oxidative stress and influencing cytokine expression. Supplements can be derived from natural or manufactured synthetic sources. This study aimed to determine (1) if supplemental vitamin E is beneficial to exercising horses and (2) if there is a benefit of natural versus synthetic vitamin E. After 2 weeks on the control diet (vitamin E-deficient grain and hay), 18 horses were divided into three groups and fed the control diet plus (1) 1000 IU/d synthetic α-tocopherol (SYN-L), (2) 4000 IU/d synthetic α-tocopherol (SYN-H), or (3) 4000 IU/d RRR-α-tocopherol (natural source [NAT]). On day 7, horses began a 6-week training protocol, with standard exercise tests (SETs) performed before and after the 6-week protocol. Venous blood samples were collected on days 0, 7, 29, and 49. Horses fed NAT had higher α-tocopherol (P < .05) at post-SET1 through post-SET2. Plasma thiobarbituric acid-reactive substance levels were lower in NAT versus SYN-L horses after SET2 (P = .02). Serum aspartate aminotransferase was lower after exercise in NAT horses versus SYN-L and SYN-H (P = .02), and less reduction in stride duration was seen after exercise in NAT as compared with SYN-L and SYN-H (P = .02). Gene expression of tumor necrosis factor α was lower in NAT compared with SYN-H (P = .01) but not SYN-L. In conclusion, feeding higher levels of natural vitamin E source resulted in higher serum α-tocopherol levels as well as some improvement in oxidative and inflammatory response and improved functional outcomes in response to an exercise test.
Collapse
Affiliation(s)
- Madison M Fagan
- Department of Animal and Dairy Science, University of Georgia, Athens, GA.
| | - Patricia Harris
- Equine Studies Group, WALTHAM Center for Pet Nutrition, Slough, Berkshire
| | - Amanda Adams
- Department of Veterinary Science, University of Kentucky, Lexington, KY
| | - Robert Pazdro
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | | | - Jarrod Call
- Department of Kinesiology, University of Georgia, Athens, GA
| | - Kylee J Duberstein
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| |
Collapse
|
7
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
8
|
Nanomaterials and nanocomposite applications in veterinary medicine. MULTIFUNCTIONAL HYBRID NANOMATERIALS FOR SUSTAINABLE AGRI-FOOD AND ECOSYSTEMS 2020. [PMCID: PMC7252256 DOI: 10.1016/b978-0-12-821354-4.00024-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, nanotechnology has made huge, significant advancements in biotechnology and biomedicine related to human and animal science, including increasing health safety, production, and the elevation of national income. There are various fields of nanomaterial applications in veterinary medicine such as efficient diagnostic and therapeutic tools, drug delivery, animal nutrition, breeding and reproduction, and valuable additives. Additional benefits include the detection of pathogens, protein, biological molecules, antimicrobial agents, feeding additives, nutrient delivery, and reproductive aids. There are many nanomaterials and nanocomposites that can be used in nanomedicine such as metal nanoparticles, liposomes, carbon nanotubes, and quantum dots. In the near future, nanotechnology research will have the ability to produce novel tools for improving animal health and production. Therefore, this chapter was undertaken to spotlight novel methods created by nanotechnology for application in the improvement of animal health and production. In addition, the toxicity of nanomaterials is fully discussed to avoid the suspected health hazards of toxicity for animal health safety.
Collapse
|
9
|
Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19:ijms19113299. [PMID: 30352960 PMCID: PMC6274759 DOI: 10.3390/ijms19113299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoscience and nanotechnology shows immense interest in various areas of research and applications, including biotechnology, biomedical sciences, nanomedicine, and veterinary medicine. Studies and application of nanotechnology was explored very extensively in the human medical field and also studies undertaken in rodents extensively, still either studies or applications in veterinary medicine is not up to the level when compared to applications to human beings. The application in veterinary medicine and animal production is still relatively innovative. Recently, in the era of health care technologies, Veterinary Medicine also entered into a new phase and incredible transformations. Nanotechnology has tremendous and potential influence not only the way we live, but also on the way that we practice veterinary medicine and increase the safety of domestic animals, production, and income to the farmers through use of nanomaterials. The current status and advancements of nanotechnology is being used to enhance the animal growth promotion, and production. To achieve these, nanoparticles are used as alternative antimicrobial agents to overcome the usage alarming rate of antibiotics, detection of pathogenic bacteria, and also nanoparticles being used as drug delivery agents as new drug and vaccine candidates with improved characteristics and performance, diagnostic, therapeutic, feed additive, nutrient delivery, biocidal agents, reproductive aids, and finally to increase the quality of food using various kinds of functionalized nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, micellar nanoparticles, and metal nanoparticles. It seems that nanotechnology is ideal for veterinary applications in terms of cost and the availability of resources. The main focus of this review is describes some of the important current and future principal aspects of involvement of nanotechnology in Veterinary Medicine. However, we are not intended to cover the entire scenario of Veterinary Medicine, despite this review is to provide a glimpse at potential important targets of nanotechnology in the field of Veterinary Medicine. Considering the strong potential of the interaction between the nanotechnology and Veterinary Medicine, the aim of this review is to provide a concise description of the advances of nanotechnology in Veterinary Medicine, in terms of their potential application of various kinds of nanoparticles, secondly we discussed role of nanomaterials in animal health and production, and finally we discussed conclusion and future perspectives of nanotechnology in veterinary medicine.
Collapse
Affiliation(s)
- Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin-Yu Lin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi-Fan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Duberstein KJ, Pazdro R, Lee KC, Abrams A, Kane E, Stuart RL. Effect of Supplemental Vitamin E Form on Serum α-Tocopherol Levels and Blood Oxidative Stress Parameters in Response to a Novel Exercise Challenge. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Rey A, López-Bote C, Litta G. Effects of dietary vitamin E (DL-α-tocopheryl acetate) and vitamin C combination on piglets oxidative status and immune response at weaning. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/76595/2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Kusano K, Yamazaki M, Kiuchi M, Kaneko K, Koyama K. Reference range of blood biomarkers for oxidative stress in Thoroughbred racehorses (2-5 years old). J Equine Sci 2016; 27:125-129. [PMID: 27703408 PMCID: PMC5048360 DOI: 10.1294/jes.27.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/10/2016] [Indexed: 11/11/2022] Open
Abstract
The oxidant and antioxidant equilibrium is known to play an important role in equine medicine and equine exercise physiology. There are abundant findings in
this field; however, not many studies have been conducted for reference ranges of oxidative stress biomarkers in horses. This study was conducted to determine
the reference values of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) using blood samples from 372 (191 males, 181 females)
Thoroughbred racehorse aged 2 to 5 (3.43 ± 1.10 (mean ± SD)) years old. There were obvious gender differences in oxidative biomarkers, and growth/age-related
changes were observed especially in females. Gender and age must be considered when interpreting obtained oxidative stress biomarkers for diagnosis of disease
or fitness alterations in Thoroughbred racehorses.
Collapse
Affiliation(s)
- Kanichi Kusano
- Miho Training Center, Racehorse Hospital, Japan Racing Association, Ibaraki 300-0493, Japan
| | | | - Masataka Kiuchi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 400-8510, Japan
| | | | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|