1
|
Idowu M, Taiwo G, Sidney T, Adewoye A, Ogunade IM. Plasma proteomic analysis reveals key pathways associated with divergent residual body weight gain phenotype in beef steers. Front Vet Sci 2024; 11:1415594. [PMID: 39104547 PMCID: PMC11298483 DOI: 10.3389/fvets.2024.1415594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
We utilized plasma proteomics profiling to explore metabolic pathways and key proteins associated with divergent residual body weight gain (RADG) phenotype in crossbred (Angus × Hereford) beef steers. A group of 108 crossbred growing beef steers (average BW = 282.87 ± 30 kg; age = 253 ± 28 days) were fed a high-forage total mixed ration for 49 days in five dry lot pens (20-22 beef steers per pen), each equipped with two GrowSafe8000 intake nodes to determine their RADG phenotype. After RADG identification, blood samples were collected from the beef steers with the highest RADG (most efficient; n = 15; 0.76 kg/d) and lowest RADG (least efficient; n = 15; -0.65 kg/d). Plasma proteomics analysis was conducted on all plasma samples using a nano LC-MS/MS platform. Proteins with FC ≥ 1.2 and false-discovery rate-adjusted p-values (FDR) ≤ 0.05 were considered significantly differentially abundant. The analysis identified 435 proteins, with 59 differentially abundant proteins (DAPs) between positive and negative-RADG beef steers. Plasma abundance of 38 proteins, such as macrophage stimulating 1 and peptidase D was upregulated (FC ≥ 1.2, FDR ≤ 0.05) in positive-RADG beef steers, while 21 proteins, including fibronectin and ALB protein were greater (FC < 1.2, FDR ≤ 0.05) in negative-RADG beef steers. The results of the Gene Ontology (GO) analysis of all the DAPs showed enrichment of pathways such as metabolic processes, biological regulation, and catalytic activity in positive-RADG beef steers. Results of the EuKaryotic Orthologous Groups (KOG) analysis revealed increased abundance of DAPs involved in energy production and conversion, amino acid transport and metabolism, and lipid transport and metabolism in positive-RADG beef steers. The results of this study revealed key metabolic pathways and proteins associated with divergent RADG phenotype in beef cattle which give more insight into the biological basis of feed efficiency in crossbred beef cattle.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| | - Anjola Adewoye
- Department of Chemistry, West Virginia University, Morgantown, WV, United States
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
2
|
Zhu S, Si J, Zhang H, Qi W, Zhang G, Yan X, Huang Y, Zhao M, Guo Y, Liang J, Lan G. Comparative Serum Proteome Analysis Indicates a Negative Correlation between a Higher Immune Level and Feed Efficiency in Pigs. Vet Sci 2023; 10:vetsci10050338. [PMID: 37235421 DOI: 10.3390/vetsci10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying and verifying appropriate biomarkers is instrumental in improving the prediction of early-stage pig production performance while reducing the cost of breeding and production. The main factor that affects the production cost and environmental protection cost of the pig industry is the feed efficiency of pigs. This study aimed to detect the differentially expressed proteins in the early blood index determination serum between high-feed efficiency and low-feed efficiency pigs and to provide a basis for further identification of biomarkers using the isobaric tandem mass tag and parallel reaction monitoring approach. In total, 350 (age, 90 ± 2 d; body weight, 41.20 ± 4.60 kg) purebred Yorkshire pigs were included in the study, and their serum samples were obtained during the early blood index determination. The pigs were then arranged based on their feed efficiency; 24 pigs with extreme phenotypes were grouped as high-feed efficiency and low-feed efficiency, with 12 pigs in each group. A total of 1364 proteins were found in the serum, and 137 of them showed differential expression between the groups with high- and low-feed efficiency, with 44 of them being upregulated and 93 being downregulated. PRM (parallel reaction monitoring) was used to verify 10 randomly chosen differentially expressed proteins. The proteins that were differentially expressed were shown to be involved in nine pathways, including the immune system, digestive system, human diseases, metabolism, cellular processing, and genetic information processing, according to the KEGG and GO analyses. Moreover, all of the proteins enriched in the immune system were downregulated in the high-feed efficiency pigs, suggesting that a higher immune level may not be conducive to improving feed efficiency in pigs. This study provides insights into the important feed efficiency proteins and pathways in pigs, promoting the further development of protein biomarkers for predicting and improving porcine feed efficiency.
Collapse
Affiliation(s)
- Siran Zhu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530004, China
| | - Huijie Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wenjing Qi
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Guangjie Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xueyu Yan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ye Huang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Mingwei Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Yafen Guo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Gondret F, Louveau I, Langendjik P, Farmer C. Exogenous porcine somatotropin administered to late pregnant gilts alters liver and muscle functionalities in pig foetuses. Animal 2023; 17:100691. [PMID: 36584622 DOI: 10.1016/j.animal.2022.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neonatal maturity depends on the maternal capacity to provide nutrients for foetal growth. This study aimed to investigate the effects of systemic administration of recombinant porcine somatotropin (pST), one of the main regulators of growth and metabolism, to pregnant gilts during late gestation on circulating nutrients and expression levels of genes in liver and skeletal muscle of their 110-day-old foetuses. Gilts received either daily injections of sterile water (control [CTL] group, n = 15) or of 5 mg of pST (pST group, n = 17) from days 90 to 109 of gestation. At day 110 postconceptus, pairs of foetuses (one of small and one of average size within a litter) were selected. Circulating fructose concentrations were greater, but circulating concentrations of urea were lower in pST than in CTL foetuses. Expression levels of genes involved in carbohydrate and lipid metabolism were more affected by pST treatment in liver than in muscle. Hepatic molecular changes suggest an inhibition of energy-consuming processes (glycogen and lipid biosynthesis) and the activation of energy-producing pathway (mitochondrial oxidation) in pST compared to CTL foetuses. Expression levels of some genes involved in intracellular degradation of proteins were greater in the liver of pST foetuses, and combined with lower uremia, this suggests a higher utilisation of protein sources in pST foetuses than in CTL foetuses. In muscle, molecular changes were mainly observed in the IGF-insulin axis. Altogether, pST-treated gilts seem to have a greater ability to support foetal liver development by the reorientation of energy and protein metabolism.
Collapse
Affiliation(s)
- F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| | - I Louveau
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - P Langendjik
- Trouw Nutrition Research & Development, Stationsstraat 77, Amersfoort, The Netherlands
| | - C Farmer
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, 2000 College, Sherbrooke (QC) J1M 0C8, Canada
| |
Collapse
|
4
|
Identification of Differentially Expressed miRNAs in Porcine Adipose Tissues and Evaluation of Their Effects on Feed Efficiency. Genes (Basel) 2022; 13:genes13122406. [PMID: 36553673 PMCID: PMC9778086 DOI: 10.3390/genes13122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breeding enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy metabolism and systemic physiological processes. However, the mechanism by which microRNAs (miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tissues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated. GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of these DEMs were obtained, and DEMs-target mRNA interaction networks were constructed. In addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed efficiency improvement.
Collapse
|
5
|
Quéméner A, Perruchot MH, Dessauge F, Vincent A, Merlot E, Le Floch N, Louveau I. Hygiene of housing conditions and proinflammatory signals alter gene expressions in porcine adipose tissues and blood cells. PeerJ 2022; 10:e14405. [PMID: 36530394 PMCID: PMC9756862 DOI: 10.7717/peerj.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue is an organ with metabolic, endocrine and immune functions. In this tissue, the expressions of genes associated with several metabolic pathways, including lipid metabolism, have been shown to be affected by genetic selection for feed efficiency, an important trait to consider in livestock. We hypothesized that the stimulation of immune system caused by poor hygiene conditions of housing impacts the molecular and cellular features of adipose tissue and that the impact may differ between pigs that diverge in feed efficiency. At the age of 12 weeks, Large White pigs from two genetic lines divergent for residual feed intake (RFI) were housed in two contrasting hygiene conditions (good vs poor). After six weeks of exposure, pigs were slaughtered (n = 36). Samples of blood, subcutaneous (SCAT) and perirenal (PRAT) adipose tissues were collected for cell response and gene expression investigations. The decrease in the relative weight of PRAT was associated with a decline in mRNA levels of FASN, ME, LCN2 and TLR4 (P < 0.05) in pigs housed in poor conditions compared with pigs housed in good conditions for both RFI lines. In SCAT, the expressions of only two key genes (PPARG and TLR4) were significantly affected by the hygiene of housing conditions. Besides, the mRNA levels of both LCN2 and GPX3 were influenced by the RFI line (P < 0.05). Because we suspected an effect of poor hygiene at the cellular levels, we investigated the differentiation of stromal vascular cells isolated from SCAT in vitro in the absence or presence of a pro-inflammatory cytokine, Tumor Necrosis Factor-α (TNF-α). The ability of these cells to differentiate in the absence or presence of TNF-α did not differ among the four groups of animals (P > 0.05). We also investigated the expressions of genes involved in the immune response and lipid metabolism in whole blood cells cultured in the absence and presence of LPS. The hygiene conditions had no effect but, the relative expression of the GPX3 gene was higher (P < 0.001) in high RFI than in low RFI pigs while the expressions of IL-10 (P = 0.027), TGFβ1 (P = 0.023) and ADIPOR2 (P = 0.05) genes were lower in high RFI than in low RFI pigs. Overall, the current study indicates that the hygiene of housing had similar effects on both RFI lines on the expression of genes in adipose tissues and on the features of SCAT adipose cells and whole blood cells in response to TNF-α and LPS. It further demonstrates that the number of genes with expression impacted by housing conditions was higher in PRAT than in SCAT. It suggests a depot-specific response of adipose tissue to the current challenge.
Collapse
|
6
|
Wang Z, He Y, Tan Z. Transcription Analysis of Liver and Muscle Tissues from Landrace Finishing Pigs with Different Feed Conversion Ratios. Genes (Basel) 2022; 13:2067. [PMID: 36360304 PMCID: PMC9690258 DOI: 10.3390/genes13112067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
The efficiency of feed utilization determines the cost and economic benefits of pig production. In the present study, two pairs of full-sibling and two pairs of half-sibling female Landrace finishing pigs were selected, with each pair including individuals with different feed conversion rates, with liver and longissimus muscle tissue samples collected from each group for transcriptome analysis. A total of 561 differentially expressed genes (DEGs), among which 224 were up-regulated and 337 were down-regulated, were detected in the liver transcriptomes in the high-feed efficiency group compared to the low-feed efficiency group. The DEGs related to phosphorus and phosphate metabolism, arginine biosynthesis, chemical carcinogenesis, cytokine-cytokine receptor interaction, the biosynthesis of amino acids, and drug metabolism-cytochrome P450 in liver tissue were also associated with feed efficiency. In total, 215 DEGs were screened in the longissimus muscle tissue and were mainly related to disease and immune regulation, including complement and coagulation cascades, systemic lupus erythematosus, and prion diseases. The combination of gene expression and functional annotation results led to the identification of candidate feed efficiency-related biomarkers, such as ARG1, ARG2, GOT1, GPT2, ACAA2, ACADM, and ANGPTL4, members of cytochrome P450 family, and complement component family genes. Although the novel feed efficiency-related candidate genes need to be further evaluated by a larger sample size and functional studies, the present study identifies novel candidate biomarkers for the identification of functional SNPs underlying porcine feed efficiency.
Collapse
Affiliation(s)
| | | | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Cardoso TF, Bruscadin JJ, Afonso J, Petrini J, Andrade BGN, de Oliveira PSN, Malheiros JM, Rocha MIP, Zerlotini A, Ferraz JBS, Mourão GB, Coutinho LL, Regitano LCA. EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle. Mamm Genome 2022; 33:619-628. [PMID: 35816191 DOI: 10.1007/s00335-022-09959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Cis-acting effects of noncoding variants on gene expression and regulatory molecules constitute a significant factor for phenotypic variation in complex traits. To provide new insights into the impacts of single-nucleotide polymorphisms (SNPs) on transcription factors (TFs) and transcription cofactors (TcoF) coding genes, we carried out a multi-omic analysis to identify cis-regulatory effects of SNPs on these genes' expression in muscle and describe their association with feed efficiency-related traits in Nelore cattle. As a result, we identified one SNP, the rs137256008C > T, predicted to impact the EEF1A1 gene expression (β = 3.02; P-value = 3.51E-03) and the residual feed intake trait (β = - 3.47; P-value = 0.02). This SNP was predicted to modify transcription factor sites and overlaps with several QTL for feed efficiency traits. In addition, co-expression network analyses showed that animals containing the T allele of the rs137256008 SNP may be triggering changes in the gene network. Therefore, our analyses reinforce and contribute to a better understanding of the biological mechanisms underlying gene expression control of feed efficiency traits in bovines. The cis-regulatory SNP can be used as biomarker for feed efficiency in Nelore cattle.
Collapse
Affiliation(s)
- T F Cardoso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J J Bruscadin
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J Afonso
- Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - J Petrini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - B G N Andrade
- Computer Science Department, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - P S N de Oliveira
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - J M Malheiros
- Federal University of Latin American Integration, Foz do Iguaçu, Paraná, Brazil
| | - M I P Rocha
- Program on Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - A Zerlotini
- Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - J B S Ferraz
- Department of Veterinary Medicine, University of São Paulo/FZEA, Pirassununga, Brazil
| | - G B Mourão
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | - L L Coutinho
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo/ESALQ, Piracicaba, SP, Brazil
| | | |
Collapse
|
8
|
Mota LFM, Santos SWB, Júnior GAF, Bresolin T, Mercadante MEZ, Silva JAV, Cyrillo JNSG, Monteiro FM, Carvalheiro R, Albuquerque LG. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genomics 2022; 23:424. [PMID: 35672696 PMCID: PMC9172108 DOI: 10.1186/s12864-022-08671-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Feed efficiency (FE) related traits play a key role in the economy and sustainability of beef cattle production systems. The accurate knowledge of the physiologic background for FE-related traits can help the development of more efficient selection strategies for them. Hence, multi-trait weighted GWAS (MTwGWAS) and meta-analyze were used to find genomic regions associated with average daily gain (ADG), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), and residual feed intake (RFI). The FE-related traits and genomic information belong to two breeding programs that perform the FE test at different ages: post-weaning (1,024 animals IZ population) and post-yearling (918 animals for the QLT population). Results The meta-analyze MTwGWAS identified 14 genomic regions (-log10(p -value) > 5) regions mapped on BTA 1, 2, 3, 4, 7, 8, 11, 14, 15, 18, 21, and 29. These regions explained a large proportion of the total genetic variance for FE-related traits across-population ranging from 20% (FCR) to 36% (DMI) in the IZ population and from 22% (RFI) to 28% (ADG) in the QLT population. Relevant candidate genes within these regions (LIPE, LPL, IGF1R, IGF1, IGFBP5, IGF2, INS, INSR, LEPR, LEPROT, POMC, NPY, AGRP, TGFB1, GHSR, JAK1, LYN, MOS, PLAG1, CHCD7, LCAT, and PLA2G15) highlighted that the physiological mechanisms related to neuropeptides and the metabolic signals controlling the body's energy balance are responsible for leading to greater feed efficiency. Integrated meta-analysis results and functional pathway enrichment analysis highlighted the major effect of biological functions linked to energy, lipid metabolism, and hormone signaling that mediates the effects of peptide signals in the hypothalamus and whole-body energy homeostasis affecting the genetic control of FE-related traits in Nellore cattle. Conclusions Genes and pathways associated with common signals for feed efficiency-related traits provide better knowledge about regions with biological relevance in physiological mechanisms associated with differences in energy metabolism and hypothalamus signaling. These pleiotropic regions would support the selection for feed efficiency-related traits, incorporating and pondering causal variations assigning prior weights in genomic selection approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08671-w.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.
| | - Samuel W B Santos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Gerardo A Fernandes Júnior
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Tiago Bresolin
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil
| | - Maria E Z Mercadante
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Josineudson A V Silva
- National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.,School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu - SP, 18618-681, Brazil
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Fábio M Monteiro
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho - SP, São Paulo, 14174-000, Brazil
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil.,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil
| | - Lucia G Albuquerque
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal - SP, São Paulo, 14884-900, Brazil. .,National Council for Science and Technological Development, Brasilia - DF, 71605-001, Brazil.
| |
Collapse
|
9
|
Esmaeili N, Carter CG, Wilson R, Walker SP, Miller MR, Bridle AR, Symonds JE. Protein metabolism in the liver and white muscle is associated with feed efficiency in Chinook salmon (Oncorhynchus tshawytscha) reared in seawater: Evidence from proteomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100994. [PMID: 35533546 DOI: 10.1016/j.cbd.2022.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/13/2023]
Abstract
Understanding the molecular mechanisms that underlie differences in feed efficiency (FE) is an important step toward optimising growth and achieving sustainable salmonid aquaculture. In this study, the liver and white muscle proteomes of feed efficient (EFF) and inefficient (INEFF) Chinook salmon (Oncorhynchus tshawytscha) reared in seawater were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 2746 liver and 702 white muscle proteins were quantified and compared between 21 EFF and 22 INEFF fish. GSEA showed that gene sets related to protein synthesis were enriched in the liver and white muscle of the EFF group, while conversely, pathways related to protein degradation (amino acid catabolism and proteolysis, respectively) were the most affected processes in the liver and white muscle of INEFF fish. Estimates of individual daily feed intake and share of the meal within tank were significantly higher in the INEFF than the EFF fish showing INEFF fish were likely more dominant during feeding and overfed. Overeating by the INEFF fish was associated with an increase in protein catabolism. This study found that fish with different FE values had expression differences in the gene sets related to protein turnover, and this result supports the hypothesis that protein metabolism plays a role in FE.
Collapse
Affiliation(s)
- Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia.
| | - Chris G Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia
| | - Richard Wilson
- Central Science Laboratory, Research Division, University of Tasmania, Hobart 7001, Australia
| | | | - Matthew R Miller
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia; Cawthron Institute, Nelson 7010, New Zealand
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia
| | - Jane E Symonds
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Private Bag 49, Australia; Cawthron Institute, Nelson 7010, New Zealand
| |
Collapse
|
10
|
Wang K, Zhang L, Duan D, Qiao R, Li X, Li X, Han X. Genomic Analysis Reveals Human-Mediated Introgression From European Commercial Pigs to Henan Indigenous Pigs. Front Genet 2021; 12:705803. [PMID: 34220966 PMCID: PMC8249855 DOI: 10.3389/fgene.2021.705803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introgression of genetic features from European pigs into Chinese pigs was reported possibly contributing to improvements in productivity traits, such as feed conversion efficiency and body size. However, the genomic differences from European pigs and the potential role of introgression in Henan indigenous pigs remains unclear. In this study, we found significant introgression from European pigs into the genome of Chinese indigenous pigs, especially in Henan indigenous pigs. The introgression in Henan indigenous pigs, particularly in the Nanyang black pig, was mainly derived from Duroc pigs. Most importantly, we found that the NR6A1, GPD2, and CSRNP3 genes were introgressed and reshaped by artificial selection, and these may have contributed to increases in pig body size and feed conversion efficiency. Our results suggest that human-mediated introgression and selection have reshaped the genome of Henan pigs and improved several of their desired traits. These findings contribute to our understanding of the history of Henan indigenous pigs and provide insights into the genetic mechanisms affecting economically important traits in pig populations.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lige Zhang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dongdong Duan
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruimin Qiao
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiuling Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinjian Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xuelei Han
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Gondret F, Le Floc'h N, Batonon-Alavo DI, Perruchot MH, Mercier Y, Lebret B. Flash dietary methionine supply over growth requirements in pigs: Multi-facetted effects on skeletal muscle metabolism. Animal 2021; 15:100268. [PMID: 34087692 DOI: 10.1016/j.animal.2021.100268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
Dietary methionine affects protein metabolism, lean gain and growth performance and acts in the control of oxidative stress. When supplied in large excess relative to growth requirements in diets for pigs, positive effects on pork quality traits have been recently reported. This study aimed to decipher the molecular and biochemical mechanisms affected by a dietary methionine supply above growth requirements in the loin muscle of finishing pigs. During the last 14 days before slaughter, crossbred female pigs (n = 15 pigs/diet) were fed a diet supplemented with hydroxy-methionine (Met5; 1.1% of methionine) or not (CONT, 0.22% of methionine). Blood was sampled at slaughter to assess key metabolites. At the same time, free amino acid concentrations and expression or activity levels of genes involved in protein or energy metabolism were measured in the longissimus lumborum muscle (LM). The Met5 pigs exhibited a greater activity of creatine kinase in plasma when compared with CONT pigs. The concentrations of free methionine, alpha-aminobutyric acid, anserine, 3-methyl-histidine, lysine, and proline were greater in the LM of Met5 pigs than in CONT pigs. Expression levels of genes involved in protein synthesis, protein breakdown or autophagy were only scarcely affected by the diet. Among ubiquitin ligases, MURF1, a gene known to target creatine kinase and muscle contractile proteins, and OTUD1 coding for a deubiquitinase protease, were up-regulated in the LM of Met5 pigs. A lower activity of citrate synthase, a reduced expression level of ME1 acting in lipogenesis but a higher expression of PPARD regulating energy metabolism, were also observed in the LM of Met5 pigs compared with CONT pigs. Principal component analysis revealed that expression levels of many studied genes involved in protein and energy metabolism were correlated with meat quality traits across dietary treatments, suggesting that subtle modifications in expression of those genes had cumulative effects on the regulation of processes leading to the muscle transformation into meat. In conclusion, dietary methionine supplementation beyond nutritional requirements in pigs during the last days before slaughter modified the free amino acid profile in muscle and its redox capacities, and slightly affected molecular pathways related to protein breakdown and energy metabolism. These modifications were associated with benefits on pork quality traits.
Collapse
Affiliation(s)
- F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France.
| | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | | | - M-H Perruchot
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - Y Mercier
- ADISSEO France SAS, 03600 Commentry, France
| | - B Lebret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| |
Collapse
|
12
|
Li W, Zheng M, Zhao G, Wang J, Liu J, Wang S, Feng F, Liu D, Zhu D, Li Q, Guo L, Guo Y, Liu R, Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet Sel Evol 2021; 53:13. [PMID: 33549052 PMCID: PMC7866652 DOI: 10.1186/s12711-021-00608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Feed accounts for about 70% of the total cost of poultry meat production. Residual feed intake (RFI) has become the preferred measure of feed efficiency because it is phenotypically independent of growth rate and body weight. In this study, our aim was to estimate genetic parameters and identify quantitative trait loci (QTL) for feed efficiency in 3314 purebred broilers using a genome-wide association study. Broilers were genotyped using a custom 55 K single nucleotide polymorphism (SNP) array. RESULTS Estimates of genomic heritability for seven growth and feed efficiency traits, including body weight at 28 days of age (BW28), BW42, average daily feed intake (ADFI), RFI, and RFI adjusted for weight of abdominal fat (RFIa), ranged from 0.12 to 0.26. Eleven genome-wide significant SNPs and 15 suggestively significant SNPs were detected, of which 19 clustered around two genomic regions. A region on chromosome 16 (2.34-2.66 Mb) was associated with both BW28 and BW42, and the most significant SNP in this region, AX_101003762, accounted for 7.6% of the genetic variance of BW28. The other region, on chromosome 1 (91.27-92.43 Mb) was associated with RFI and ADFI, and contains the NSUN3 and EPHA6 as candidate genes. The most significant SNP in this region, AX_172588157, accounted for 4.4% of the genetic variance of RFI. In addition, a genomic region containing the gene AGK on chromosome 1 was found to be associated with RFIa. The NSUN3 and AGK genes were found to be differentially expressed in breast muscle, thigh muscle, and abdominal fat between male broilers with high and low RFI. CONCLUSIONS We identified QTL regions for BW28 and BW42 (spanning 0.32 Mb) and RFI (spanning 1.16 Mb). The NSUN3, EPHA6, and AGK were identified as the most likely candidate genes for these QTL. These genes are involved in mitochondrial function and behavioral regulation. These results contribute to the identification of candidate genes and variants for growth and feed efficiency in poultry.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shunli Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liping Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
13
|
Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms 2020; 8:microorganisms8121886. [PMID: 33260665 PMCID: PMC7761281 DOI: 10.3390/microorganisms8121886] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
This review summarises the evidence for a link between the porcine intestinal microbiota and growth and feed efficiency (FE), and suggests microbiota-targeted strategies to improve productivity. However, there are challenges in identifying reliable microbial predictors of host phenotype; environmental factors impact the microbe–host interplay, sequential differences along the intestine result in segment-specific FE- and growth-associated taxa/functionality, and it is often difficult to distinguish cause and effect. However, bacterial taxa involved in nutrient processing and energy harvest, and those with anti-inflammatory effects, are consistently linked with improved productivity. In particular, evidence is emerging for an association of Treponema and methanogens such as Methanobrevibacter in the small and large intestines and Lactobacillus in the large intestine with a leaner phenotype and/or improved FE. Bacterial carbohydrate and/or lipid metabolism pathways are also generally enriched in the large intestine of leaner pigs and/or those with better growth/FE. Possible microbial signalling routes linked to superior growth and FE include increased intestinal propionate production and reduced inflammatory response. In summary, the bacterial taxa and/or metabolic pathways identified here could be used as biomarkers for FE/growth in pigs, the taxa exploited as probiotics or the taxa/functionality manipulated via dietary/breeding strategies in order to improve productivity in pigs.
Collapse
|
14
|
López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Application of Proteomic Technologies to Assess the Quality of Raw Pork and Pork Products: An Overview from Farm-To-Fork. BIOLOGY 2020; 9:E393. [PMID: 33187082 PMCID: PMC7696211 DOI: 10.3390/biology9110393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The quality assurance of pork meat and products includes the study of factors prior to slaughter such as handling practices, diet and castration, and others during the post-mortem period such as aging, storage, and cooking. The development over the last two decades of high-throughput techniques such as proteomics offer great opportunities to examine the molecular mechanisms and study a priori the proteins in the living pigs and main post-mortem changes and post-translational modifications during the conversion of the muscle into the meat. When the most traditional crossbreeding and rearing strategies to improve pork quality were assessed, the main findings indicate that metabolic pathways early post-mortem were affected. Among the factors, it is well documented that pre-slaughter stress provokes substantial changes in the pork proteome that led to defective meat, and consequently, novel protein biomarkers should be identified and validated. Additionally, modifications in pork proteins had a strong effect on the sensory attributes due to the impact of processing, either physical or chemical. Maillard compounds and protein oxidation should be monitored in order to control proteolysis and volatile compounds. Beyond this, the search of bioactive peptides is becoming a paramount goal of the food and nutraceutical industry. In this regard, peptidomics is a major tool to identify and quantify these peptides with beneficial effects for human health.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, D15 DY05 Dublin 15, Ireland;
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| |
Collapse
|
15
|
Dorji J, MacLeod IM, Chamberlain AJ, Vander Jagt CJ, Ho PN, Khansefid M, Mason BA, Prowse-Wilkins CP, Marett LC, Wales WJ, Cocks BG, Pryce JE, Daetwyler HD. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle. J Dairy Sci 2020; 104:575-587. [PMID: 33162069 DOI: 10.3168/jds.2020-18503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Feed efficiency and energy balance are important traits underpinning profitability and environmental sustainability in animal production. They are complex traits, and our understanding of their underlying biology is currently limited. One measure of feed efficiency is residual feed intake (RFI), which is the difference between actual and predicted intake. Variation in RFI among individuals is attributable to the metabolic efficiency of energy utilization. High RFI (H_RFI) animals require more energy per unit of weight gain or milk produced compared with low RFI (L_RFI) animals. Energy balance (EB) is a closely related trait calculated very similarly to RFI. Cellular energy metabolism in mitochondria involves mitochondrial protein (MiP) encoded by both nuclear (NuMiP) and mitochondrial (MtMiP) genomes. We hypothesized that MiP genes are differentially expressed (DE) between H_RFI and L_RFI animal groups and similarly between negative and positive EB groups. Our study aimed to characterize MiP gene expression in white blood cells of H_RFI and L_RFI cows using RNA sequencing to identify genes and biological pathways associated with feed efficiency in dairy cattle. We used the top and bottom 14 cows ranked for RFI and EB out of 109 animals as H_RFI and L_RFI, and positive and negative EB groups, respectively. The gene expression counts across all nuclear and mitochondrial genes for animals in each group were used for differential gene expression analyses, weighted gene correlation network analysis, functional enrichment, and identification of hub genes. Out of 244 DE genes between RFI groups, 38 were MiP genes. The DE genes were enriched for the oxidative phosphorylation (OXPHOS) and ribosome pathways. The DE MiP genes were underexpressed in L_RFI (and negative EB) compared with the H_RFI (and positive EB) groups, suggestive of reduced mitochondrial activity in the L_RFI group. None of the MtMiP genes were among the DE MiP genes between the groups, which suggests a non-rate limiting role of MtMiP genes in feed efficiency and warrants further investigation. The role of MiP, particularly the NuMiP and OXPHOS pathways in RFI, was also supported by our gene correlation network analysis and the hub gene identification. We validated the findings in an independent data set. Overall, our study suggested that differences in feed efficiency in dairy cows may be linked to differences in cellular energy demand. This study broadens our knowledge of the biology of feed efficiency in dairy cattle.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083.
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Leah C Marett
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - William J Wales
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Jennie E Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| |
Collapse
|
16
|
Carmelo VAO, Kadarmideen HN. Genetic variations (eQTLs) in muscle transcriptome and mitochondrial genes, and trans-eQTL molecular pathways in feed efficiency from Danish breeding pigs. PLoS One 2020; 15:e0239143. [PMID: 32941478 PMCID: PMC7498092 DOI: 10.1371/journal.pone.0239143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023] Open
Abstract
Feed efficiency (FE) is a key trait in pig production, as improvement in FE has positive economic and environmental impact. FE is a complex phenotype and testing animals for FE is costly. Therefore, there has been a desire to find functionally relevant single nucleotide polymorphisms (SNPs) as biomarkers, to improve our biological understanding of FE as well as accuracy of genomic prediction for FE. We have performed a cis- and trans- eQTL (expression quantitative trait loci) analysis, in a population of Danbred Durocs (N = 11) and Danbred Landrace (N = 27) using both a linear and ANOVA model based on muscle tissue RNA-seq. We analyzed a total of 1425x19179 or 2.7x107 Gene-SNP combinations in eQTL detection models for FE. The 1425 genes were from RNA-Seq based differential gene expression analyses using 25880 genes related to FE and additionally combined with mitochondrial genes. The 19179 SNPs were from applying stringent quality control and linkage disequilibrium filtering on genotype data using a GGP Porcine HD 70k SNP array. We applied 1000 fold bootstrapping and enrichment analysis to further validate and analyze our detected eQTLs. We identified 13 eQTLs with FDR < 0.1, affecting several genes found in previous studies of commercial pig breeds. Examples include MYO19, CPT1B, ACSL1, IER5L, CPT1A, SUCLA2, CSRNP1, PARK7 and MFF. The bootstrapping results showed statistically significant enrichment (p-value<2.2x10-16) of eQTLs with p-value < 0.01 in both cis and trans-eQTLs. Enrichment analysis of top trans-eQTLs revealed high enrichment for gene categories and gene ontologies associated with genomic context and expression regulation. This included transcription factors (p-value = 1.0x10-13), DNA-binding (GO:0003677, p-value = 8.9x10-14), DNA-binding transcription factor activity (GO:0003700,) nucleus gene (GO:0005634, p-value<2.2x10-16), negative regulation of expression (GO:0010629, p-value<2.2x10-16). These results would be useful for future genome assisted breeding of pigs to improve FE, and in the improved understanding of the functional mechanism of trans eQTLs.
Collapse
Affiliation(s)
- Victor A. O. Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
17
|
Hewitt DJ, Dekkers JCM, Antonick T, Gheisari A, Rakhshandeh AR, Rakhshandeh A. Effects of divergent selection for residual feed intake on nitrogen metabolism and lysine utilization in growing pigs. J Anim Sci 2020; 98:5829700. [PMID: 32367123 DOI: 10.1093/jas/skaa152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
A study was conducted to evaluate the effects of divergent genetic selection for residual feed intake (RFI) on nitrogen (N) metabolism and lysine utilization in growing pigs. Twenty-four gilts (body weight [BW] 66 ± 5 kg) were selected from generation nine of the low RFI (LRFI; n = 12) and high RFI (HRFI; n = 12) Iowa State University Yorkshire RFI selection lines. Six pigs from each genetic line were assigned to each of two levels of lysine intake: 70% and 100% of estimated requirements based on the potential of each genetic line for protein deposition (PD) and feed intake. For all diets, lysine was first limiting among amino acids. Using isotope tracer, N-balance, and nutrient digestibility evaluation approaches, whole-body N metabolism and the efficiency of lysine utilization were determined for each treatment group. No significant interaction effects of line and diet on dietary N or gross energy digestibility, PD, and the efficiency of lysine utilization for PD were observed. The line did not have a significant effect on PD and digestibility of dietary N and GE. An increase in lysine intake improved N retention in both lines (from 15.0 to 19.6 g/d, SE 1.44, in LRFI pigs; and from 16.9 to 19.8 g/d, SE 1.67, in HRFI pigs; P < 0.01). At the low lysine intakes and when lysine clearly limited PD, the efficiency of using available lysine intake (above maintenance requirements) for PD was 80% and 91% (SE 4.6) for the LRFI and HRFI pigs, respectively (P = 0.006). There were no significant effects of line or of the line by diet interaction on N flux, protein synthesis, and protein degradation. Lysine intake significantly increased (P < 0.05) N flux (from 119 to 150, SE 8.7 g/d), protein synthesis (from 99 to 117, SE 10.6 g of N/d), and protein degradation (from 85 to 100, SE 6.6 g of N/d). The protein synthesis-to-retention ratio tended to be higher in the LRFI line compared with the HRFI line (6.5 vs. 5.8 SE 0.62; P = 0.06), indicating a tendency for the lower efficiency of PD in this group. Collectively, these results indicate that genetic selection for low RFI is not associated with improvements in lysine utilization efficiency, protein turnover, and nutrient digestibility.
Collapse
Affiliation(s)
- Deltora J Hewitt
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | | | - Treyson Antonick
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | - Abbasali Gheisari
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| | | | - Anoosh Rakhshandeh
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
18
|
Banerjee P, Carmelo VAO, Kadarmideen HN. Integrative Analysis of Metabolomic and Transcriptomic Profiles Uncovers Biological Pathways of Feed Efficiency in Pigs. Metabolites 2020; 10:E275. [PMID: 32640603 PMCID: PMC7408121 DOI: 10.3390/metabo10070275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would help to reduce the production cost and provide sustainability to the pig industry. We carried out metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the same animals. After data quality control, we used a linear model approach to integrate the data and find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis. We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes. While some of the genes and metabolites identified were known for their association with FE, others are novel and provide new avenues for further research. Further validation of genes, metabolites, and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and pathways underlying FE.
Collapse
Affiliation(s)
| | | | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.B.); (V.A.O.C.)
| |
Collapse
|
19
|
Fu L, Jiang Y, Wang C, Mei M, Zhou Z, Jiang Y, Song H, Ding X. A Genome-Wide Association Study on Feed Efficiency Related Traits in Landrace Pigs. Front Genet 2020; 11:692. [PMID: 32719719 PMCID: PMC7350416 DOI: 10.3389/fgene.2020.00692] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic improvement of FE related traits in pigs might significantly reduce production cost and energy consumption. Hence, our study aimed at identifying SNPs and candidate genes associated with FE related traits, including feed conversion ratio (FCR), average daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI). A genome-wide association study (GWAS) was performed for the four FE related traits in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS), were implemented. Our results showed that the two methods showed high consistency with respect to SNP identification. A total of 32 common significant SNPs associated with the four FE related traits were identified. Bioinformatics analysis revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI traits were overlapped. Gene ontology analysis revealed six common candidate genes (PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits. These genes are involved in the processes of fat synthesis and decomposition, lipid transport process, insulin metabolism, among others. Our results provide, new insights into the genetic mechanisms and candidate function genes of FE related traits in pigs. However, further investigations to validate these results are warranted.
Collapse
Affiliation(s)
- Lu Fu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Mengran Mei
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ziwen Zhou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailiang Song
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Huang S, Wu Z, Yuan X, Li N, Li T, Wang J, Levesque CL, Feng C. Transcriptome Differences Suggest Novel Mechanisms for Intrauterine Growth Restriction Mediated Dysfunction in Small Intestine of Neonatal Piglets. Front Physiol 2020; 11:561. [PMID: 32655399 PMCID: PMC7324767 DOI: 10.3389/fphys.2020.00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Impaired intestinal function is frequently detected in newborns with intrauterine growth restriction (IUGR), whereas the mechanism between transcriptome profiles and small intestinal dysfunction is still unclear. Therefore, this study was conducted by using IUGR neonatal piglets to uncover the mechanism underlying intestinal dysfunction. Neonatal piglets with IUGR and normal birth weight (NBW) were sacrificed at birth. Transcriptomic sequencing was performed on jejunum samples and generated 18,997 and 17,531 genes in NBW and IUGR groups, respectively. A total of 10 differentially expressed genes (DEGs) were identified; of note, only seven were mapped to the genome reference database, with two up-regulated (HSF4 and NR1H4; heat shock transcription factor 4 and nuclear receptor subfamily 1 group H member 4, respectively) and five down-regulated (SLC35C1, BTNL3, BPI, NLRP6, and SLC5A8; Solute carrier family 35 member C1, butyrophilin like 3, bactericidal permeability increasing protein, NLR family pyrin domain containing 6, and solute carrier family 5 member 8, respectively). Combining an enrichment analysis and reverse transcriptase–quantitative polymerase chain reaction validation of DEGs, our results proved the lipid metabolism disorder, intestinal dysfunction, and inflammatory response in IUGR piglets. Here, IUGR piglets presented lower concentration of glucose and triglyceride and higher concentration of total cholesterol and low-density lipoprotein cholesterol in plasma, compared with NBW piglets. Histological analysis revealed decreased mucins and increased apoptosis in both jejunum and ileum for IUGR piglets. Collectively, we found that IUGR induced intestinal dysfunction by altering lipid metabolism, intestinal barrier, and inflammatory response in neonatal piglets at birth, which provides new insights into the prevention and treatment of IUGR that protects against metabolic disorders and inflammatory-related diseases.
Collapse
Affiliation(s)
- Shimeng Huang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiongkun Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Crystal L Levesque
- Department of Animal Sciences, South Dakota State University, Brookings, SD, United States
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Carmelo VAO, Kadarmideen HN. Genome Regulation and Gene Interaction Networks Inferred From Muscle Transcriptome Underlying Feed Efficiency in Pigs. Front Genet 2020; 11:650. [PMID: 32655625 PMCID: PMC7324801 DOI: 10.3389/fgene.2020.00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023] Open
Abstract
Improvement of feed efficiency (FE) is key for Sustainability and cost reduction in pig production. Our aim was to characterize the muscle transcriptomic profiles in Danbred Duroc (Duroc; n = 13) and Danbred Landrace (Landrace; n = 28), in relation to FE for identifying potential biomarkers. RNA-seq data on the 41 pigs was analyzed employing differential gene expression methods, gene-gene interaction and network analysis, including pathway and functional analysis. We also compared the results with genome regulation in human exercise data, hypothesizing that increased FE mimics processes triggered in exercised muscle. In the differential expression analysis, 13 genes were differentially expressed, including: MRPS11, MTRF1, TRIM63, MGAT4A, KLH30. Based on a novel gene selection method, the divergent count, we performed pathway enrichment analysis. We found five significantly enriched pathways related to feed conversion ratio (FCR). These pathways were mainly related to mitochondria, and summarized in the mitochondrial translation elongation (MTR) pathway. In the gene interaction analysis, the most interesting genes included the mitochondrial genes: PPIF, MRPL35, NDUFS4 and the fat metabolism and obesity genes: AACS, SMPDL3B, CTNNBL1, NDUFS4, and LIMD2. In the network analysis, we identified two modules significantly correlated with FCR. Pathway enrichment of module genes identified MTR, electron transport chain and DNA repair as enriched pathways. The network analysis revealed the mitochondrial gene group NDUF as key network hub genes, showing their potential as biomarkers. Results show that genes related to human exercise were enriched in identified FCR related genes. We conclude that mitochondrial activity is a key driver for FCR in muscle tissue, and mitochondrial genes could be potential biomarkers for FCR in pigs.
Collapse
Affiliation(s)
- Victor A O Carmelo
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Xu C, Wang X, Zhuang Z, Wu J, Zhou S, Quan J, Ding R, Ye Y, Peng L, Wu Z, Zheng E, Yang J. A Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively Associated with Feed Efficiency in DLY Pigs. Sci Rep 2020; 10:9874. [PMID: 32555275 PMCID: PMC7303214 DOI: 10.1038/s41598-020-66988-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China.
| |
Collapse
|
23
|
Mullins Y, Keogh K, Kenny DA, Kelly A, O' Boyle P, Waters SM. Label-free quantitative proteomic analysis of M. longissimus dorsi from cattle during dietary restriction and subsequent compensatory growth. Sci Rep 2020; 10:2613. [PMID: 32054912 PMCID: PMC7018817 DOI: 10.1038/s41598-020-59412-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Compensatory growth (CG) is a naturally occurring physiological process whereby an animal has the ability to undergo enhanced growth following a period of restricted feeding. This studies objective was to identify key proteins involved in the expression of CG. Forty Holstein Friesian bulls were equally assigned to one of four groups. R1 and R2 groups were subjected to restricted feed allowance for 125 days (Period 1). A1 and A2 animals had ad libitum access to feed in Period 1. Following Period 1, all animals from R1 and A1 were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum access to feed for successive 55 days (Period 2). M. longissimus dorsi samples were collected at slaughter from all animals. Proteins were isolated from samples and subjected to label-free mass spectrometry proteomic quantification. Proteins which were differentially abundant during CG (n = 39) were involved in cellular binding processes, oxidative phosphorylation and mitochondrial function. There was also evidence for up regulation of three pathways involved in nucleotide biosynthesis. Genetic variants in or regulating genes pertaining to proteins identified in this study may hold potential for use as DNA based biomarkers for genomic selection of animals with a greater ability to undergo CG.
Collapse
Affiliation(s)
- Yvonne Mullins
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Alan Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Padraig O' Boyle
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Athenry, Co., Galway, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co., Meath, Ireland.
| |
Collapse
|
24
|
Hou X, Pu L, Wang L, Liu X, Gao H, Yan H, Zhang J, Zhang Y, Yue J, Zhang L, Wang L. Transcriptome Analysis of Skeletal Muscle in Pigs with Divergent Residual Feed Intake Phenotypes. DNA Cell Biol 2020; 39:404-416. [PMID: 32004088 DOI: 10.1089/dna.2019.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Residual feed intake (RFI) is defined as the difference between the observed and expected feed intake for maintenance and growth requirements. In this study, the expression profiles of mRNAs and long noncoding RNAs (lncRNAs) from skeletal muscle in Duroc pigs with divergent RFI phenotypes were investigated by Illumina sequencing. Finally, a total of 2195 annotated lncRNAs and 1976 novel lncRNAs were obtained. About 210 mRNAs and 43 lncRNAs were differentially expressed among high and low RFI pigs. The differentially expressed mRNAs were potentially involved in the biological processes of lipid metabolism, extracellular matrix organization, cell proliferation, and cell adhesion. The lipolysis in skeletal muscle was increased in high RFI pigs, suggesting that high RFI pigs might need more energy than low RFI pigs. However, skeletal muscle development was increased in low RFI pigs. These results suggested that low RFI pigs might be more efficient in energy utilization during skeletal muscle growth. The function of lncRNA was also analyzed by target prediction. Nine lncRNAs might be candidate lncRNAs for the determination of RFI phenotype, by the regulation of the biological processes of lipid metabolism, cell proliferation, and cell adhesion. This study should facilitate a further understanding of the molecular mechanism for the determination of RFI phenotype in pigs.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinshan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuebo Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Conde-Aguilera JA, Lefaucheur L, Gondret F, Delgado-Andrade C, Mercier Y, Tesseraud S, van Milgen J. Skeletal muscle proteome of piglets is affected in a muscle-dependent manner by a limiting total sulfur amino acid supply. Eur J Nutr 2019; 59:2939-2951. [DOI: 10.1007/s00394-019-02133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
|
26
|
Huang S, Liu C, Li N, Wu Z, Li T, Han D, Li Z, Zhao J, Wang J. Membrane proteomic analysis reveals the intestinal development is deteriorated by intrauterine growth restriction in piglets. Funct Integr Genomics 2019; 20:277-291. [PMID: 31586277 DOI: 10.1007/s10142-019-00714-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The alterations of the intestinal proteome were observed in intrauterine growth restriction (IUGR) piglets during early life by gel-based approaches. Nevertheless, how IUGR affects the intestinal membrane proteome during neonatal development remains unclear. Here, we applied the iTRAQ-based proteomics technology and biochemical analysis to investigate the impact of IUGR on the membrane proteome of the jejunal mucosa in the piglets. Three hundred sixty-one membrane proteins were screened by functional prediction. Among them, eight, five, and one differentially expressed membrane proteins were identified between IUGR and NBW piglets at day 0, day 7, and day 21 after birth, respectively. Differentially expressed membrane proteins (DEMPs) including F1SBL3, F1RRW8, F1S539, F1S2Z2, F1RIR2, F1RUF2 I3LP60, Q2EN79, and F1SIH8 were reduced while the relative abundance of I3L6A2, F1SCJ1, F1RI18, I3LRJ7, and F1RNN0 were increased in IUGR piglets than NBW piglets. From the aspects of function, F1RRW8, F1S539, F1S2Z2, and F1RIR2 are mainly associated with D2 dopamine receptor binding, transmembrane transport of small molecules, signal transduction, and translocation of GLUT4, respectively, and F1SIH8, I3LRJ7, and F1RNN0 are related to autophagy, metabolism of vitamins, and intracellular protein transport. Additionally, IUGR decreased the level of proteins (F1RRW8, Q2EN79, and F1RI18) that are involved in response to oxidative stress.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
A Transcriptome Analysis Identifies Biological Pathways and Candidate Genes for Feed Efficiency in DLY Pigs. Genes (Basel) 2019; 10:genes10090725. [PMID: 31540540 PMCID: PMC6771153 DOI: 10.3390/genes10090725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Feed cost accounts for approximately 65–75% of overall commercial pork production costs. Therefore, improving the feed efficiency of pig production is important. In this study, 12 individuals with either extremely high (HE) or low (LE) feed efficiency were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs. After the pigs were slaughtered, we collected small intestine mucosal tissue. Next, RNA sequencing (RNA-seq) analysis was used to reveal the presence and quantity of genes expressed between these extremely HE- and LE-groups. We found 433 significantly differentially expressed genes (DEGs) between the HE- and LE-groups. Of these, 389 and 44 DEGs were upregulated and downregulated in the HE-group, respectively. An enrichment analysis showed that the DEGs were mainly enriched in functions related to apical plasma membrane composition, transporter activity, transport process and hormone regulation of digestion and absorption. Protein network interaction and gene function analyses revealed that SLC2A2 was an important candidate gene for FE in pigs, which may give us a deeper understanding of the mechanism of feed efficiency. Furthermore, some significant DEGs identified in the current study could be incorporated into artificial selection programs for increased feeding efficiency in pigs.
Collapse
|
28
|
Ramayo-Caldas Y, Mármol-Sánchez E, Ballester M, Sánchez JP, González-Prendes R, Amills M, Quintanilla R. Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Genet Sel Evol 2019; 51:48. [PMID: 31477014 PMCID: PMC6721172 DOI: 10.1186/s12711-019-0490-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/19/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population. RESULTS We applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes' expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions. CONCLUSIONS Candidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Emilio Mármol-Sánchez
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Ballester
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Juan Pablo Sánchez
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Rayner González-Prendes
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marcel Amills
- grid.7080.fDepartment of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- grid.7080.fDepartament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Quintanilla
- 0000 0001 1943 6646grid.8581.4Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| |
Collapse
|
29
|
Messad F, Louveau I, Koffi B, Gilbert H, Gondret F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genomics 2019; 20:659. [PMID: 31419934 PMCID: PMC6697907 DOI: 10.1186/s12864-019-6010-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023] Open
Abstract
Background Improving feed efficiency (FE) is a major challenge in pig production. This complex trait is characterized by a high variability. Therefore, the identification of predictors of FE may be a relevant strategy to reduce phenotyping efforts in breeding and selection programs. The aim of this study was to investigate the suitability of expressed muscle genes in prediction of FE traits in growing pigs. The approach considered different transcriptomics experiments to cover a large range of FE values and identify reliable predictors. Results Microarrays data were obtained from longissimus muscles of two lines divergently selected for residual feed intake (RFI). Pigs (n = 71) from three experiments belonged to generations 6 to 8 of selection, were fed either a diet with a standard composition or a diet rich in fiber and lipids, received feed ad libitum or at restricted level, and weighed between 80 and 115 kg at slaughter. For each pig, breeding value for RFI was estimated (RFI-BV), and feed conversion ratio (FCR) and energy-based feed conversion ratio (FCRe) were calculated during the test periods. Gradient boosting algorithms were used on the merged muscle transcriptomes to identify very important predictors of FE traits. About 20,405 annotated molecular probes were commonly expressed in longissimus muscle across experiments. Six to 267 expressed muscle genes covering a variety of biological processes were found as important predictors for RFI-BV (R2 = 0.63–0.65), FCR (R2 = 0.61–0.70) and FCRe (R2 = 0.49–0.52). The error of prediction was less than 8% for FCR. Altogether, 56 predictors were common to RFI-BV and FCR. Expression levels of 24 target genes were further measured by qPCR. Linear regression confirmed the good accuracy of combining mRNA levels of these genes to fit FE traits (RFI-BV: R2 = 0.73, FRC: R2 = 0.76; FCRe: R2 = 0.75). Stepwise regression procedure highlighted 10 genes (FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1) in a linear combination predicting FCR and FCRe. In addition, FKBP5 and expression levels of five other genes (IGF2, SERINC3, CSRNP3, EZR and RPL16) significantly contributed to RFI-BV. Conclusion It was possible to identify few genes expressed in muscle that might be reliable predictors of feed efficiency. Electronic supplementary material The online version of this article (10.1186/s12864-019-6010-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farouk Messad
- Pegase, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| | | | - Basile Koffi
- Pegase, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France
| | | | | |
Collapse
|
30
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
31
|
Vigors S, O'Doherty JV, Bryan K, Sweeney T. A comparative analysis of the transcriptome profiles of liver and muscle tissue in pigs divergent for feed efficiency. BMC Genomics 2019; 20:461. [PMID: 31170913 PMCID: PMC6555042 DOI: 10.1186/s12864-019-5740-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The improvement of feed efficiency is a key economic goal within the pig production industry. The objective of this study was to examine transcriptomic differences in both the liver and muscle of pigs divergent for feed efficiency, thus improving our understanding of the molecular mechanisms influencing feed efficiency and enabling the identification of candidate biomarkers. Residual feed intake (RFI) was calculated for two populations of pigs from two different farms of origin/genotype. The 6 most efficient (LRFI) and 6 least efficient (HRFI) animals from each population were selected for further analysis of Longissimus Dorsi muscle (n = 22) and liver (n = 23). Transcriptomic data were generated from liver and muscle collected post-slaughter. RESULTS The transcriptomic data segregated based on the RFI value of the pig rather than genotype/farm of origin. A total of 6463 genes were identified as being differentially expressed (DE) in muscle, while 964 genes were identified as being DE in liver. Genes that were commonly DE between muscle and liver (n = 526) were used for the multi-tissue analysis. These 526 genes were associated with protein targeting to membrane, extracellular matrix organisation and immune function. In the muscle-only analysis, genes associated with RNA processing, protein synthesis and energy metabolism were down regulated in the LRFI animals while in the liver-only analysis, genes associated with cell signalling and lipid homeostasis were up regulated in the LRFI animals. CONCLUSIONS Differences in the transcriptome segregated on pig RFI value rather than the genotype/farm of origin. Multi-tissue analysis identified that genes associated with GO terms protein targeting to membrane, extracellular matrix organisation and a range of terms relating to immune function were over represented in the differentially expressed genes of both liver and muscle.
Collapse
Affiliation(s)
- Stafford Vigors
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth Bryan
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Darhan H, Zoda A, Kikusato M, Toyomizu M, Katoh K, Roh SG, Ogawa S, Uemoto Y, Satoh M, Suzuki K. Correlations between mitochondrial respiration activity and residual feed intake after divergent genetic selection for high- and low- oxygen consumption in mice. Anim Sci J 2019; 90:818-826. [PMID: 31016830 DOI: 10.1111/asj.13210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/22/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
Abstract
The aims of the present study were to identify the differences between two mouse lines (high (H)- and low (L)-oxygen consumption) in terms of mitochondrial respiratory activity when GMP (glutamate, malate, and pyruvate) and succinic acid are used as substrates and to examine the relationship between mitochondrial respiration activity and feed efficiency in both lines. The average daily feed intake, feed conversion ratio (FCR), and residual feed intake (RFI) were significantly higher in the H than the L line. The correlation between FCR and RFI was significant (r = 0.60, p < 0.05). RFI was effective as an indicator of feed efficiency. When succinic acid was used as a substrate, mitochondrial respiration states 2-4, ACR, and proton leak were significantly higher in the H than the L line. When GMP was used as a substrate, respiration states 3 and 4 in the H line were significantly higher than those in the L line, and there were significant positive correlations between FCR and RFI and mitochondrial respiration states 2-4. The results indicated that selection for high or low OC changed the basal metabolic rates estimated from liver mitochondrial respiration activity and feed efficiency.
Collapse
Affiliation(s)
- Hongyu Darhan
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Atsushi Zoda
- Zen-noh Embryo Transfer Center, Kamishihoro, Japan
| | - Motoi Kikusato
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Kazuo Katoh
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Sang-Gun Roh
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Shinichiro Ogawa
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Yoshinobu Uemoto
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Masahiro Satoh
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| | - Keiichi Suzuki
- Faculty of Agriculture, Graduate School of Agricultural Science, Tokoku University, Sendai, Japan
| |
Collapse
|
33
|
Fonseca LD, Eler JP, Pereira MA, Rosa AF, Alexandre PA, Moncau CT, Salvato F, Rosa-Fernandes L, Palmisano G, Ferraz JBS, Fukumasu H. Liver proteomics unravel the metabolic pathways related to Feed Efficiency in beef cattle. Sci Rep 2019; 9:5364. [PMID: 30926873 PMCID: PMC6441086 DOI: 10.1038/s41598-019-41813-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Improving nutrient utilization efficiency is essential for livestock, given the current scenario of increasing demand for animal protein and sustainable resource use. In this context, understanding the biology of feed efficiency (FE) in beef cattle allows the development of markers for identification and selection of best animals for animal production. Thus, 98 young Nellore bulls were evaluated for FE and at the end of the experiment liver samples from six High Feed Efficient (HFE) and six Low Feed Efficient (LFE) animals were collected for protein extraction, digestion and analysis by HPLC-MS/MS. Data were analyzed for differential abundant proteins (DAPs), protein networks, and functional enrichment. Serum endotoxin was also quantified. We found 42 DAPs and 3 protein networks significantly related to FE. The main pathways associated with FE were: microbial metabolism; biosynthesis of fatty acids, amino acids and vitamins; glycolysis/gluconeogenesis; xenobiotic metabolism and; antigen processing and presentation. Serum endotoxins were significantly higher in LFE animals supporting the results. Therefore, the findings presented here confirmed the altered hepatic metabolism and pronounced hepatic inflammation in LFE animals supporting that the increased bacterial load is at least in part responsible for the hepatic lesions and inflammation in LFE animals.
Collapse
Affiliation(s)
- Leydiana D Fonseca
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Mikaele A Pereira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Alessandra F Rosa
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Pâmela A Alexandre
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Cristina T Moncau
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Fernanda Salvato
- Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, 05508-900, Brazil
| | - José B S Ferraz
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
34
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
35
|
Piles M, Fernandez-Lozano C, Velasco-Galilea M, González-Rodríguez O, Sánchez JP, Torrallardona D, Ballester M, Quintanilla R. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Genet Sel Evol 2019; 51:10. [PMID: 30866799 PMCID: PMC6417084 DOI: 10.1186/s12711-019-0453-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To date, the molecular mechanisms that underlie residual feed intake (RFI) in pigs are unknown. Results from different genome-wide association studies and gene expression analyses are not always consistent. The aim of this research was to use machine learning to identify genes associated with feed efficiency (FE) using transcriptomic (RNA-Seq) data from pigs that are phenotypically extreme for RFI. METHODS RFI was computed by considering within-sex regression on mean metabolic body weight, average daily gain, and average backfat gain. RNA-Seq analyses were performed on liver and duodenum tissue from 32 high and 33 low RFI pigs collected at 153 d of age. Machine-learning algorithms were used to predict RFI class based on gene expression levels in liver and duodenum after adjusting for batch effects. Genes were ranked according to their contribution to the classification using the permutation accuracy importance score in an unbiased random forest (RF) algorithm based on conditional inference. Support vector machine, RF, elastic net (ENET) and nearest shrunken centroid algorithms were tested using different subsets of the top rank genes. Nested resampling for hyperparameter tuning was implemented with tenfold cross-validation in the outer and inner loops. RESULTS The best classification was obtained with ENET using the expression of 200 genes in liver [area under the receiver operating characteristic curve (AUROC): 0.85; accuracy: 0.78] and 100 genes in duodenum (AUROC: 0.76; accuracy: 0.69). Canonical pathways and candidate genes that were previously reported as associated with FE in several species were identified. The most remarkable pathways and genes identified were NRF2-mediated oxidative stress response and aldosterone signalling in epithelial cells, the DNAJC6, DNAJC1, MAPK8, PRKD3 genes in duodenum, and melatonin degradation II, PPARα/RXRα activation, and GPCR-mediated nutrient sensing in enteroendocrine cells and SMOX, IL4I1, PRKAR2B, CLOCK and CCK genes in liver. CONCLUSIONS ML algorithms and RNA-Seq expression data were found to provide good performance for classifying pigs into high or low RFI groups. Classification was better with gene expression data from liver than from duodenum. Genes associated with FE in liver and duodenum tissue that can be used as predictive biomarkers for this trait were identified.
Collapse
Affiliation(s)
- Miriam Piles
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Carlos Fernandez-Lozano
- Computer Science Department, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain
| | - María Velasco-Galilea
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Juan Pablo Sánchez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - David Torrallardona
- Animal Nutrition Program, Institute of Agriculture and Food Research and Technology (IRTA), Mas de Bover, 43120 Constantí, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
36
|
Santos A, Giráldez F, Frutos J, Andrés S. Liver transcriptomic and proteomic profiles of preweaning lambs are modified by milk replacer restriction. J Dairy Sci 2019; 102:1194-1204. [DOI: 10.3168/jds.2018-15110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023]
|
37
|
Horodyska J, Reyer H, Wimmers K, Trakooljul N, Lawlor PG, Hamill RM. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. Mol Genet Genomics 2018; 294:395-408. [PMID: 30483895 DOI: 10.1007/s00438-018-1515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that were differentially expressed at a p < 0.01 revealed establishment of a dense extracellular matrix and inhibition of capillary formation as one underlying mechanism to achieve suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular matrix formation, lipid metabolism and inflammatory and immune response are key biological events underpinning the differences in FE. Further investigations focusing on elucidating these processes would assist the animal production industry in optimizing strategies related to nutrient utilization and product quality.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
38
|
Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen AM, Lawlor PG, Hamill RM. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 2018; 19:791. [PMID: 30384851 PMCID: PMC6211475 DOI: 10.1186/s12864-018-5175-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed into a tissue that is of major environmental and economic significance. The molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) muscle transcriptome, examine the product quality from pigs divergent in FE and investigate the functional networks underpinning the potential relationship between product quality and FE. RESULTS RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL of pigs differing in FE status. A total of 272 annotated genes were differentially expressed with a P < 0.01. Functional annotation revealed a number of biological events related to immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating that these might be the key mechanisms governing differences in FE. Five most significant bio-functions altered in FE groups were 'haematological system development & function', 'lymphoid tissue structure & development', 'tissue morphology', 'cellular movement' and 'immune cell trafficking'. Top significant canonical pathways represented among the differentially expressed genes included 'IL-8 signalling', 'leukocyte extravasation signalling, 'sphingosine-1-phosphate signalling', 'PKCθ signalling in T lymphocytes' and 'fMLP signalling in neutrophils'. A minor impairment in the quality of meat, in relation to texture and water-holding capacity, produced by high-FE pigs was observed. High-FE pigs also had reduced intramuscular fat content and improved nutritional profile in terms of fatty acid composition. CONCLUSIONS Ontology analysis revealed enhanced activity of adaptive immunity and phagocytes in high-FE pigs suggesting more efficient conserving of resources, which can be utilised for other important biological processes. Shifts in carbohydrate conversion into glucose in FE-divergent muscle may underpin the divergent evolution of pH profile in meat from the FE-groups. Moreover, altered amino acid metabolism and increased mobilisation & flux of calcium may influence growth in FE-divergent muscle. Furthermore, decreased degradation of fibroblasts in FE-divergent muscle could impact on collagen turnover and alter tenderness of meat, whilst enhanced lipid degradation in high-FE pigs may potentially underlie a more efficient fat metabolism in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| |
Collapse
|
39
|
Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models. SCIENCE CHINA-LIFE SCIENCES 2018; 62:959-970. [DOI: 10.1007/s11427-018-9372-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
|
40
|
Santos A, Giráldez FJ, Trevisi E, Lucini L, Frutos J, Andrés S. Liver transcriptomic and plasma metabolomic profiles of fattening lambs are modified by feed restriction during the suckling period. J Anim Sci 2018; 96:1495-1507. [PMID: 29471523 DOI: 10.1093/jas/sky029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/15/2018] [Indexed: 12/30/2022] Open
Abstract
The increasing world population is driving demand for improved efficiency of feed resources of livestock. However, the molecular mechanisms behind various feed efficiency traits and their regulation by nutrition remain poorly understood. Here, we aimed to identify differentially expressed (DE) genes in the liver tissues of fattening Merino lambs and differences in metabolites accumulated in plasma to identify modified metabolic pathways as a consequence of milk restriction during the suckling period. Twenty-four male Merino lambs (4.81 ± 0.256 kg) were divided into 2 groups (n = 12 per dietary treatment). The first group (ad libitum, ADL) was kept permanently with the dams, whereas the other group (restricted, RES) was milk restricted. When they reached 15 kg of live body weight (LBW), all the animals were offered the same complete pelleted diet at the same level (35 g DM/kg LBW per day) to ensure no differences in dry matter intake. All the lambs were harvested when they reached 27 kg of LBW. For transcriptomic analysis, 4 liver samples from each group (8 samples in total) were selected for RNA sequencing (RNA-seq), and plasma samples from all animals (24 samples in total) were used to perform a nontargeted metabolomic analysis on a hybrid quadrupole-time-of-flight mass spectrometer coupled to an ultra-high performance liquid chromatographic system (UHPLC/QTOF-MS). Thirty-eight DE annotated genes were identified by RNA-seq, with 23 DE genes being down-regulated and 15 up-regulated in the liver of RES lambs relative to the ADL group (P < 0.10). Also, the metabolomic assay identified 38 differentially accumulated compounds (P < 0.10). In general, those genes and pathways involved in protein synthesis or protease inhibitors were down-regulated in the RES group, whereas those related to proteolytic degradation were up-regulated, thus suggesting a higher catabolism of proteins in these lambs. RES lambs showed over-expression of xenobiotic metabolism pathways, whereas those genes related to β-oxidation of fatty acids were down-regulated. According to the data obtained, early feed restriction during the suckling period of Merino lambs promoted long-term effects on both the hepatic transcriptomic profile and plasma metabolic profile, which might have modified fatty acids metabolism, catabolism of proteins, and detoxification of xenobiotics, thus reducing feed efficiency during the fattening period.
Collapse
Affiliation(s)
- Alba Santos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, León, Spain
| | - Francisco Javier Giráldez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, León, Spain
| | - Erminio Trevisi
- Institute of Zootechnics, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza, Italy
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza, Italy
| | - Javier Frutos
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, León, Spain
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, León, Spain
| |
Collapse
|
41
|
Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018; 12:s321-s335. [PMID: 30139392 DOI: 10.1017/s1751731118001489] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Animal's feed efficiency in growing cattle (i.e. the animal ability to reach a market or adult BW with the least amount of feed intake), is a key factor in the beef cattle industry. Feeding systems have made huge progress to understand dietary factors influencing the average animal feed efficiency. However, there exists a considerable amount of animal-to-animal variation around the average feed efficiency observed in beef cattle reared in similar conditions, which is still far from being understood. This review aims to identify biological determinants and molecular pathways involved in the between-animal variation in feed efficiency with particular reference to growing beef cattle phenotyped for residual feed intake (RFI). Moreover, the review attempts to distinguish true potential determinants from those revealed through simple associations or indirectly linked to RFI through their association with feed intake. Most representative and studied biological processes which seem to be connected to feed efficiency were reviewed, such as feeding behaviour, digestion and methane production, rumen microbiome structure and functioning, energy metabolism at the whole body and cellular levels, protein turnover, hormone regulation and body composition. In addition, an overall molecular network analysis was conducted for unravelling networks and their linked functions involved in between-animal variation in feed efficiency. The results from this review suggest that feeding and digestive-related mechanisms could be associated with RFI mainly because they co-vary with feed intake. Although much more research is warranted, especially with high-forage diets, the role of feeding and digestive related mechanisms as true determinants of animal variability in feed efficiency could be minor. Concerning the metabolic-related mechanisms, despite the scarcity of studies using reference methods it seems that feed efficient animals have a significantly lower energy metabolic rate independent of the associated intake reduction. This lower heat production in feed efficient animals may result from a decreased protein turnover and a higher efficiency of ATP production in mitochondria, both mechanisms also identified in the molecular network analysis. In contrast, hormones and body composition could not be conclusively related to animal-to-animal variation in feed efficiency. The analysis of potential biological networks underlying RFI variations highlighted other significant pathways such as lipid metabolism and immunity and stress response. Finally, emerging knowledge suggests that metabolic functions underlying genetic variation in feed efficiency could be associated with other important traits in animal production. This emphasizes the relevance of understanding the biological basis of relevant animal traits to better define future balanced breeding programmes.
Collapse
|
42
|
Voillet V, San Cristobal M, Père MC, Billon Y, Canario L, Liaubet L, Lefaucheur L. Integrated Analysis of Proteomic and Transcriptomic Data Highlights Late Fetal Muscle Maturation Process. Mol Cell Proteomics 2018; 17:672-693. [PMID: 29311229 PMCID: PMC5880113 DOI: 10.1074/mcp.m116.066357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
In pigs, the perinatal period is the most critical time for survival. Piglet maturation, which occurs at the end of gestation, is an important determinant of early survival. Skeletal muscle plays a key role in adaptation to extra-uterine life, e.g. motor function and thermoregulation. Progeny from two breeds with extreme neonatal mortality rates were analyzed at 90 and 110 days of gestation (dg). The Large White breed is a highly selected breed for lean growth and exhibits a high rate of neonatal mortality, whereas the Meishan breed is fatter and more robust and has a low neonatal mortality. Our aim was to identify molecular signatures underlying late fetal longissimus muscle development. First, integrated analysis was used to explore relationships between co-expression network models built from a proteomic data set (bi-dimensional electrophoresis) and biological phenotypes. Second, correlations with a transcriptomic data set (microarrays) were investigated to combine different layers of expression with a focus on transcriptional regulation. Muscle glycogen content and myosin heavy chain polymorphism were good descriptors of muscle maturity and were used for further data integration analysis. Using 89 identified unique proteins, network inference, correlation with biological phenotypes and functional enrichment revealed that mitochondrial oxidative metabolism was a key determinant of neonatal muscle maturity. Some proteins, including ATP5A1 and CKMT2, were important nodes in the network related to muscle metabolism. Transcriptomic data suggest that overexpression of mitochondrial PCK2 was involved in the greater glycogen content of Meishan fetuses at 110 dg. GPD1, an enzyme involved in the mitochondrial oxidation of cytosolic NADH, was overexpressed in Meishan. Thirty-one proteins exhibited a positive correlation between mRNA and protein levels in both extreme fetal genotypes, suggesting transcriptional regulation. Gene ontology enrichment and Ingenuity analyses identified PPARGC1A and ESR1 as possible transcriptional factors positively involved in late fetal muscle maturation.
Collapse
Affiliation(s)
- Valentin Voillet
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Magali San Cristobal
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | | | - Yvon Billon
- ¶INRA, UE1372, GenESI, F-17700 Surgères, France
| | - Laurianne Canario
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurence Liaubet
- From the ‡GenPhyse, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | | |
Collapse
|
43
|
Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci 2018; 137:265-274. [DOI: 10.1016/j.meatsci.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
44
|
Feed efficiency and the liver proteome of fattening lambs are modified by feed restriction during the suckling period. Animal 2018; 12:1838-1846. [DOI: 10.1017/s1751731118000046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
45
|
Cassar-Malek I, Boby C, Picard B, Reverter A, Hudson NJ. Molecular regulation of high muscle mass in developing Blonde d'Aquitaine cattle foetuses. Biol Open 2017; 6:1483-1492. [PMID: 28838967 PMCID: PMC5665461 DOI: 10.1242/bio.024950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Blonde d'Aquitaine (BA) is a French cattle breed with enhanced muscularity, partly attributable to a MSTN mutation. The BA m. Semitendinosus has a faster muscle fibre isoform phenotype comprising a higher proportion of fast type IIX fibres compared to age-matched Charolais (CH). To better understand the molecular network of modifications in BA compared to CH muscle, we assayed the transcriptomes of the m. Semitendinosus at 110, 180, 210 and 260 days postconception (dpc). We used a combination of differential expression (DE) and regulatory impact factors (RIF) to compare and contrast muscle gene expression between the breeds. Prominently developmentally regulated genes in both breeds reflected the replacement of embryonic myosin isoforms (MYL4, MYH3) with adult isoforms (MYH1) and the upregulation of mitochondrial metabolism (CKMT2, AGXT2L1) in preparation for birth. However, the transition to a fast, glycolytic muscle phenotype in the MSTN mutant BA is detectable through downregulation of various slow twitch subunits (TNNC1, MYH7, TPM3, CSRP3) beyond 210 dpc, and a small but consistent genome-wide reduction in mRNA encoding the mitoproteome. Across the breeds, NRIP2 is the regulatory gene possessing a network change most similar to that of MSTN. Summary: We explored the molecular basis of high muscle mass in Blonde d’Aquitaine cattle, and found that mRNA encoding slow fibres and mitochondrial proteins were downregulated in this breed.
Collapse
Affiliation(s)
- Isabelle Cassar-Malek
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, 63122 Saint Genès Champanelle, Clermont-Ferrand F-63122, France
| | - Céline Boby
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, 63122 Saint Genès Champanelle, Clermont-Ferrand F-63122, France
| | - Brigitte Picard
- UMR1213 Herbivores, Institut National de la Recherche Agronomique, VetAgro Sup, 63122 Saint Genès Champanelle, Clermont-Ferrand F-63122, France
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, Queensland Bioscience Precinct, St. Lucia, Brisbane 4075, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4075, Australia
| |
Collapse
|
46
|
Giles TA, Belkhiri A, Barrow PA, Foster N. Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Res Vet Sci 2017; 114:266-272. [PMID: 28535467 PMCID: PMC7118804 DOI: 10.1016/j.rvsc.2017.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/10/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.
Collapse
Affiliation(s)
- Timothy A Giles
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Aouatif Belkhiri
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Paul A Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| | - Neil Foster
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE125RD, United Kingdom.
| |
Collapse
|
47
|
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussière E, Lebret B, Lefaucheur L, Le Floch N, Louveau I, Merlot E, Meunier-Salaün MC, Montagne L, Mormede P, Renaudeau D, Riquet J, Rogel-Gaillard C, van Milgen J, Vincent A, Noblet J. Review: divergent selection for residual feed intake in the growing pig. Animal 2017; 11:1427-1439. [PMID: 28118862 PMCID: PMC5561440 DOI: 10.1017/s175173111600286x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant (P<0.001) line differences for RFI (-165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (-270 g/day). Low responses were observed on growth rate (-12.8 g/day, P<0.05) and body composition (+0.9 mm backfat thickness, P=0.57; -2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (-0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat (P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (-10% after five generations of selection) and activity (-21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors, via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory.
Collapse
Affiliation(s)
- H. Gilbert
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - Y. Billon
- GenESI, INRA, 17700
Surgères, France
| | - L. Brossard
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Faure
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Gatellier
- QuaPA, INRA, 63122 Saint
Genès-Champanelle, France
| | - F. Gondret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Labussière
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - B. Lebret
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - L. Lefaucheur
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - N. Le Floch
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - I. Louveau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - E. Merlot
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | | | - L. Montagne
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - P. Mormede
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - D. Renaudeau
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Riquet
- GenPhySE, INRA, INP,
ENSAT, Université de Toulouse,
31326 Castanet-Tolosan, France
| | - C. Rogel-Gaillard
- GABI, INRA,
AgroParisTech, Université Paris-Saclay,
78350 Jouy-en-Josas Cedex, France
| | - J. van Milgen
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - A. Vincent
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| | - J. Noblet
- PEGASE, INRA, Agrocampus
Ouest, 35590 Saint-Gilles, France
| |
Collapse
|
48
|
Programming Merino lambs by early feed restriction reduces growth rates and increases fat accretion during the fattening period with no effect on meat quality traits. Meat Sci 2017; 135:20-26. [PMID: 28843940 DOI: 10.1016/j.meatsci.2017.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/23/2022]
Abstract
The objective of the study was to determine the effect of early feed restriction on carcass and meat quality traits in Merino lambs. Twenty-four male Merino lambs (4.81±0.256kg) were assigned to two groups (12 animals in each group). The first group (ad libitum, ADL) was kept permanently with the dams. The second group (restricted, RES) was milk-restricted. After weaning (15kg), daily feed intake of all lambs was identical, but a lower gain: feed ratio was recorded in the RES group (0.320 vs. 0.261; P<0.001). After animals were slaughtered (27kg), lower ultimate pH and reduced yellow colouration of subcutaneous fat was recorded in meat from the RES lambs when compared to ADL group, whereas a trend towards a significant increment of intramuscular fat content and no effect on meat quality traits was observed in the RES lambs. Early feed restriction may be useful to increase intramuscular fat accretion in Merino lambs during the fattening period.
Collapse
|
49
|
Jung U, Kim M, Wang T, Lee J, Jeon S, Jo N, Kim W, Baik M, Lee H. Upregulated heat shock protein beta-1 associated with caloric restriction and high feed efficiency in longissimus dorsi muscle of steer. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Horodyska J, Hamill RM, Varley PF, Reyer H, Wimmers K. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. PLoS One 2017; 12:e0173482. [PMID: 28604785 PMCID: PMC5467825 DOI: 10.1371/journal.pone.0173482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/24/2017] [Indexed: 01/03/2023] Open
Abstract
Feed conversion efficiency is a measure of how well an animal converts feed into live weight and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like growth rate (e.g. days to 110 kg—D110) are of high interest for animal breeders, farmers and society due to implications on animal performance, feeding costs and environmental sustainability. The objective of this study was to identify genomic regions associated with FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with estimated breeding values (EBV) for FCR and D110. For FCR, the largest number of associated SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 (12 SNPs). The most prominent genomic regions for D110 were identified on chromosomes 15 (10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 (chromosome 15), respectively. A list of positional genes, closest to significantly associated SNPs, was used to identify enriched pathways and biological functions related to the QTL for both traits. A number of candidate genes were significantly overrepresented in pathways of immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system function, lipid metabolism, and energy production. After resequencing the coding region of selected positional and functional candidate genes, six SNPs were genotyped in a subset of boars. SNPs in PRKDC, SELL, NR2E1 and AKRIC3 showed significant associations with EBVs for FCR/D110. The study revealed a number of chromosomal regions and candidate genes affecting FCR/D110 and pointed to corresponding biological pathways related to lipid metabolism, olfactory reception, and also immunological status.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, Ireland
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
- * E-mail:
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|