1
|
Bellido D, Gumina ER, Rodríguez Senes GJ, Chiariotti FM, Audrito M, Sueldo PM, Sueldo GM, Wigdorovitz A. First evaluation of the impact of a targeted subunit vaccine against bovine viral diarrhea virus in feedlot cattle. Transl Anim Sci 2024; 8:txae046. [PMID: 38665216 PMCID: PMC11044702 DOI: 10.1093/tas/txae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (N = 1,491) and treatment group (N = 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, P = 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, P = 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.
Collapse
Affiliation(s)
- Demian Bellido
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Bioinnovo SA, Dr Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| | - Emanuel R Gumina
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | | | | | | | - Pedro M Sueldo
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | - Gustavo M Sueldo
- Agro sin Fronteras, JJ Paso 452, Marcos Juarez, Córdoba, ArgentinaX2580DML
| | - Andrés Wigdorovitz
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Incuinta, IVIT INTA, Dr N. Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| |
Collapse
|
2
|
Johnson B, White B, Lancaster P, Larson R. An Evaluation of Temporal Distributions of High, Low, and Zero Cohort Morbidity of Cumulative First Treatment Bovine Respiratory Disease and Their Associations with Demographic, Health, and Performance Outcomes in US Feedlot Cattle. Vet Sci 2023; 10:vetsci10020089. [PMID: 36851393 PMCID: PMC9964310 DOI: 10.3390/vetsci10020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Timing and magnitude of bovine respiratory disease (BRD) can impact intervention and overall economics of cattle on feed. Furthermore, there is a need to better describe when cattle are being treated for BRD. The first objective was to perform a cluster analysis on the temporal distributions of cumulative first treatment BRD from HIGH (≥15% of cattle received treated for BRD) and LOW cohorts (>0 and <15% of cattle received treated for BRD) to assess cohort-level timing (days on feed) of BRD first treatments. The second objective was to determine associations among cluster groups (temporal patterns) and demographic risk factors, health outcomes, and performance. Cluster analysis determined that optimal number of clustering groups for the HIGH morbidity cohort was six clusters and LOW morbidity cohort was seven clusters. Cohorts with zero BRD treatment records were added for statistical comparisons. Total death loss, BRD morbidity, average daily gain (ADG), railing rate, days to 50% BRD, cattle received, shrink, arrival weight, and sex were associated with temporal groups (p < 0.05). These data could be used as a tool for earlier identification and potential interventions for cohorts based on the BRD temporal pattern.
Collapse
Affiliation(s)
- Blaine Johnson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66505, USA
| | - Brad White
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
- Correspondence: ; Tel.: +1-785-564-7459
| | - Phillip Lancaster
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
| | - Robert Larson
- Department of Clinical Sciences, College of Veterinary Medicine, Beef Cattle Institute, Kansas State University, Manhattan, KS 66505, USA
| |
Collapse
|
3
|
Baruch J, Cernicchiaro N, Cull CA, Lechtenberg KF, Nickell JS, Renter DG. Assessment of bovine respiratory disease progression in calves challenged with bovine herpesvirus 1 and Mannheimia haemolytica using point-of-care and laboratory-based blood leukocyte differential assays. Transl Anim Sci 2021; 5:txab200. [PMID: 34738076 PMCID: PMC8562731 DOI: 10.1093/tas/txab200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Blood leukocyte differentials can be useful for understanding changes associated with bovine respiratory disease (BRD) progression. By improving turnaround time, point-of-care leukocyte differential assays (PCLD) may provide logistical advantages to laboratory-based assays. Our objective was to assess BRD progression in steers challenged with bovine herpesvirus 1 and Mannheimia haemolytica using point-of-care and laboratory-based blood leukocyte differentials. Thirty Holstein steers (average body weight of 211 kg + 2.4 kg) were inoculated intranasally on day 0 with bovine herpesvirus 1 and intrabronchially on day 6 with Mannheimia haemolytica. Blood leukocytes differentials were measured using both assays from study days 0 to 13. Linear mixed models were fitted to evaluate the associations between: (1) the type of assay (laboratory-based or PCLD) with respect to leukocyte, lymphocyte, and neutrophil concentrations; (2) study day with cell concentrations; and (3) cell concentrations with lung consolidation measured at necropsy. Point-of-care leukocyte, lymphocyte, and neutrophil concentrations were significantly associated (P < 0.05) with the respective cell concentrations obtained from the laboratory-based leukocyte differential. Cell concentrations reported by both assays differed significantly (P < 0.05) over time, indicating shifts from healthy to viral and bacterial disease states. Lymphocyte concentrations, lymphocyte/neutrophil ratios obtained from both assays, and band neutrophil concentrations from the laboratory-based assay were significantly associated (P < 0.05) with lung consolidation, enhancing assessments of disease severity. The PCLD may be a useful alternative to assess BRD progression when laboratory-based leukocyte differentials are impractical.
Collapse
Affiliation(s)
- Joaquin Baruch
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Charley A Cull
- Midwest Veterinary Services, NE, and Veterinary Biomedical Research Center, Oakland, KS 66502, USA
| | - Kelly F Lechtenberg
- Midwest Veterinary Services, NE, and Veterinary Biomedical Research Center, Oakland, KS 66502, USA
| | - Jason S Nickell
- Allflex Livestock Intelligence, a Subsidiary of Merck Animal Health, Madison, WI 66018, USA
| | - David G Renter
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.,Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Smith P, Carstens G, Runyan C, Ridpath J, Sawyer J, Herring A. Effects of Multivalent BRD Vaccine Treatment and Temperament on Performance and Feeding Behavior Responses to a BVDV1b Challenge in Beef Steers. Animals (Basel) 2021; 11:ani11072133. [PMID: 34359261 PMCID: PMC8300223 DOI: 10.3390/ani11072133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study examined the effects of multivalent respiratory vaccine treatment (VT) and animal temperament classification on feeding behavior traits, feed intake and animal performance in response to a bovine viral diarrhea virus (BVDV) challenge. Nellore-Angus crossbred steers (n = 360; initial body weight (BW) 330 ± 48 kg) were assigned to one of three vaccine treatments: non-vaccinated (NON), modified live (MLV) and killed (KV) regarding respiratory viral pathogens, and inoculated intranasally with the same BVDV1b strain. Cattle temperament categories were based on exit velocity. Overt clinical signs of respiratory disease were not observed, yet the frequency and duration of bunk visit events as well as traditional performance traits decreased (p < 0.01) following BVDV challenge and then rebounded in compensatory fashion. The reduction in dry matter intake (DMI) was less (p < 0.05) for MLV-vaccinated steers, and MLV-vaccinated steers had longer (p < 0.01) durations of bunk visit and meal events and slower (p < 0.01) eating rates compared with KV- and non-vaccinated steers following BVDV challenge. Greater differences in most feeding behavior traits due to VT existed within calm vs. excitable steers. Respiratory vaccination can reduce the sub-clinical feeding behavior and performance effects of BVDV in cattle, and the same impacts may not occur across all temperament categories.
Collapse
Affiliation(s)
- Paul Smith
- Philbro Animal Health Corporation, Teaneck, NJ 07666, USA;
| | - Gordon Carstens
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Correspondence: ; Tel.: +979-845-5081
| | - Chase Runyan
- Department of Agriculture, Angelo State University, San Angelo, TX 76904, USA;
| | | | - Jason Sawyer
- King Ranch Institute for Ranch Management, Texas A&M University, Kingsville, TX 78363, USA;
| | - Andy Herring
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
5
|
Al-Kubati AAG, Hussen J, Kandeel M, Al-Mubarak AIA, Hemida MG. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front Vet Sci 2021; 8:665128. [PMID: 34055953 PMCID: PMC8160231 DOI: 10.3389/fvets.2021.665128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV) consists of two species and various subspecies of closely related viruses of varying antigenicity, cytopathology, and virulence-induced pathogenesis. Despite the great ongoing efforts to control and prevent BVDV outbreaks and the emergence of new variants, outbreaks still reported throughout the world. In this review, we are focusing on the molecular biology of BVDV, its molecular pathogenesis, and the immune response of the host against the viral infection. Special attention was paid to discuss some immune evasion strategies adopted by the BVDV to hijack the host immune system to ensure the success of virus replication. Vaccination is one of the main strategies for prophylaxis and contributes to the control and eradication of many viral diseases including BVDV. We discussed the recent advances of various types of currently available classical and modern BVDV vaccines. However, with the emergence of new strains and variants of the virus, it is urgent to find some other novel targets for BVDV vaccines that may overcome the drawbacks of some of the currently used vaccines. Effective vaccination strategy mainly based on the preparation of vaccines from the homologous circulating strains. The BVDV-E2 protein plays important role in viral infection and pathogenesis. We mapped some important potential neutralizing epitopes among some BVDV genomes especially the E2 protein. These novel epitopes could be promising targets against the currently circulating strains of BVDV. More research is needed to further explore the actual roles of these epitopes as novel targets for the development of novel vaccines against BVDV. These potential vaccines may contribute to the global eradication campaign of the BVDV.
Collapse
Affiliation(s)
- Anwar A G Al-Kubati
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah I A Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
6
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
7
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|