1
|
Zhang L, Zhang Y, Yu F, Li X, Gao H, Li P. The circRNA-miRNA/RBP regulatory network in myocardial infarction. Front Pharmacol 2022; 13:941123. [PMID: 35924059 PMCID: PMC9340152 DOI: 10.3389/fphar.2022.941123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial infarction (MI) is a serious heart disease that causes high mortality rate worldwide. Noncoding RNAs are widely involved in the pathogenesis of MI. Circular RNAs (circRNAs) are recently validated to be crucial modulators of MI. CircRNAs are circularized RNAs with covalently closed loops, which make them stable under various conditions. CircRNAs can function by different mechanisms, such as serving as sponges of microRNAs (miRNAs) and RNA-binding proteins (RBPs), regulating mRNA transcription, and encoding peptides. Among these mechanisms, sponging miRNAs/RBPs is the main pathway. In this paper, we systematically review the current knowledge on the properties and action modes of circRNAs, elaborate on the roles of the circRNA-miRNA/RBP network in MI, and explore the value of circRNAs in MI diagnosis and clinical therapies. CircRNAs are widely involved in MI. CircRNAs have many advantages, such as stability, specificity, and wide distribution, which imply that circRNAs have a great potential to act as biomarkers for MI diagnosis and prognosis.
Collapse
Affiliation(s)
- Lei Zhang
- *Correspondence: Lei Zhang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Lei Zhang, ; Peifeng Li,
| |
Collapse
|
2
|
Liquid Biopsy as a Source of Nucleic Acid Biomarkers in the Diagnosis and Management of Lynch Syndrome. Int J Mol Sci 2022; 23:ijms23084284. [PMID: 35457101 PMCID: PMC9029375 DOI: 10.3390/ijms23084284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited cancer predisposition disorder, which may manifest as colorectal cancer (CRC), endometrial cancer (EC) or other malignancies of the gastrointestinal and genitourinary tract as well as the skin and brain. Its genetic cause is a defect in one of the four key DNA mismatch repair (MMR) loci. Testing of patients at risk is currently based on the absence of MMR protein staining and detection of mutations in cancer tissue and the germline, microsatellite instability (MSI) and the hypermethylated state of the MLH1 promoter. If LS is shown to have caused CRC, lifetime follow-up with regular screening (most importantly, colonoscopy) is required. In recent years, DNA and RNA markers extracted from liquid biopsies have found some use in the clinical diagnosis of LS. They have the potential to greatly enhance the efficiency of the follow-up process by making it minimally invasive, reproducible, and time effective. Here, we review markers reported in the literature and their current clinical applications, and we comment on possible future directions.
Collapse
|
3
|
Zhang L, Wang Y, Yu F, Li X, Gao H, Li P. CircHIPK3 Plays Vital Roles in Cardiovascular Disease. Front Cardiovasc Med 2021; 8:733248. [PMID: 34660735 PMCID: PMC8511503 DOI: 10.3389/fcvm.2021.733248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that function in various physiological and pathological processes. CircRNAs are widely involved in the development of cardiovascular disease (CVD), one of the leading causes of morbidity and mortality worldwide. CircHIPK3 is generated from the second exon of the HIPK3 gene, a corepressor of homeodomain transcription factors. As an exonic circRNA (ecRNA), circHIPK3 is produced through intron-pairing driven circularization facilitated by Alu elements. In the past 5 years, a growing number of studies have revealed the multifunctional roles of circHIPK3 in different diseases, such as cancer and CVD. CircHIPK3 mainly participates in CVD pathogenesis through interacting with miRNAs. This paper summarizes the current literature on the biogenesis and functions of circHIPK3, elucidates the role of circHIPK3 in different CVD patterns, and explores future perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Huang J, He QM, Wu Q, Zhou WM, Hao C, Wang GX, Tu XH. Long non‑coding RNA 00858 knockdown alleviates bladder cancer via regulation of the miR‑3064‑5p/CTGF axis. Oncol Rep 2021; 46:164. [PMID: 34132366 PMCID: PMC8218298 DOI: 10.3892/or.2021.8115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2021] [Indexed: 01/05/2023] Open
Abstract
The long non-coding RNA 00858 (LINC00858) has been reported to be an oncogene for various cancer diseases, including osteosarcoma and colorectal cancer. However, the expression pattern and function of LINC00858 in bladder cancer remain largely unknown. The expression level of LINC00858 was measured in tumor tissues and cell lines by RT-qPCR. The role of LINC00858 in bladder cancer cells were studied by gain- and loss-of-function strategies in vitro. Cell proliferation, migration and invasion were assessed by CCK-8, colony formation, wound healing and Transwell chamber assays. At the molecular level, dual luciferase reporter and RNA RIP assays were performed to identify the interaction among LINC00858, microRNA (miR)-3064-5p and cellular communication network factor 2 (CTGF). The results revealed that the expression level of LINC00858 was upregulated in bladder cancer tissues and cell lines including T24, J82 and 5637. Moreover, knockdown of LINC00858 suppressed cell proliferation, migration and invasion in vitro. Mechanistically, LINC00858 functioned as a competitive RNA to increase the expression level of oncogene CTGF by sequestering miR-3064-5p. In conclusion, LINC00858 knockdown inhibited the proliferation, migration and invasion of bladder cancer cells via regulation of the miR-3064-5p/CTGF axis.
Collapse
Affiliation(s)
- Ji Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Ming He
- Department of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Qi Wu
- Department of Abdominal Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Wei-Min Zhou
- Department of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Chao Hao
- Department of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Gong-Xian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin-Hua Tu
- Department of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
5
|
Wang J, Gao Z, Gao P. MiR-133b Modulates the Osteoblast Differentiation to Prevent Osteoporosis Via Targeting GNB4. Biochem Genet 2021; 59:1146-1157. [PMID: 33687637 DOI: 10.1007/s10528-021-10048-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
MiR-133b is considered to be lowly expressed in osteoporosis patients. This study aimed to probe the role and in-depth mechanism of miR-133b in modulating osteoblast biological behavior and differentiation. The differential expressions of miR-133b and GNB4 in patients with osteoporosis and healthy control were analyzed based on the GEO database. Osteoblastic differentiation of hFOB 1.19 cells was induced in the culture medium containing 10 mM β-glycerophosphate, 50 nm dexamethasone, and 100 μg/ml ascorbic acid. The level of GNB4 was detected using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Western blot was also utilized to measure the levels of osteoblast-related proteins, including ALP, Runx2, Osterix, and OPN. GNB4 was identified and confirmed as a downstream target gene of miR-133b. The expression of miR-133b was declined while the expression of GNB4 was increased in osteoporosis patients. Importantly, up-regulation of miR-133b caused the increase of cell viability and the decrease of apoptosis, which could be blocked by overexpression of GNB4. Also, up-regulation of miR-133b promoted osteoblasts differentiation, as shown by the increase in the expression of ALP, Runx2, Osterix, and OPN. Similarly, this promoting impact resulted from miR-133b overexpression can be reversed via up-regulation of GNB4. These findings revealed that miR-133b can promote the viability and differentiation of osteoblasts by targeting GNB4, hoping to lay a feasible theoretical foundation for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China.
| | - Zhaoqing Gao
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China
| | - Peng Gao
- Department of Spine Surgery, Weifang Traditional Chinese Medicine Hospital, No. 1055 Weizhou Road, Kuiwen District, Weifang, Shandong, People's Republic of China
| |
Collapse
|
6
|
Xu H, Miao J, Liu S, Liu H, Zhang L, Zhang Q. Long non-coding RNA KCNQ1 overlapping transcript 1 promotes the progression of esophageal squamous cell carcinoma by adsorbing microRNA-133b. Clinics (Sao Paulo) 2021; 76:e2175. [PMID: 33909822 PMCID: PMC8050598 DOI: 10.6061/clinics/2021/e2175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The long non-coding RNA (lncRNA) KCNQ1 overlapping transcript 1 (KCNQ1OT1) exerts vital regulatory functions in diverse tumors. However, the biological function of KCNQ1OT1 in esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS KCNQ1OT1 expression was detected in ESCC tissues using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, apoptosis, migration, and invasion were detected by the CCK-8 assay, EdU assay, flow cytometry analysis, and Transwell experiments, respectively. Bioinformatics analysis, luciferase reporter experiments, and RNA immunoprecipitation assays were used to predict and validate the regulatory relationships between KCNQ1OT1, microRNA-133b (miR-133b) and epidermal growth factor receptor (EGFR). RESULTS KCNQ1OT1 expression was remarkably upregulated in ESCC tissues and cell lines. Overexpression of KCNQ1OT1 markedly promoted ESCC cell proliferation, migration, and invasion and enhanced the expression of N-cadherin, MMP-2, and MMP-9, but inhibited apoptosis and E-cadherin expression in ESCC cell lines; KCNQ1OT1 knockdown exerted the opposite effects. KCNQ1OT1 could directly bind to miR-133b and suppress its expression, and miR-133b reversed the effects of KCNQ1OT1 overexpression in ESCC cells. MiR-133b reduced the expression of epidermal growth factor receptor (EGFR); further, KCNQ1OT1 activated the phosphatidylinositol 3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT) signaling pathway by repressing miR-133b repression and indirectly upregulating EGFR. KCNQ1OT1 expression was positively correlated with EGFR mRNA expression and negatively correlated with miR-133b expression. CONCLUSION KCNQ1OT1 facilitates ESCC progression by sponging miR-133b and activating the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Miao
- Department of Pediatrics, Binzhou People’s Hospital, Binzhou, Shandong 256603, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Hongjian Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
- *Corresponding author. E-mail:
| |
Collapse
|
7
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
8
|
Kadkhoda S, Darbeheshti F, Tavakkoly-Bazzaz J. Identification of dysregulated miRNAs-genes network in ovarian cancer: An integrative approach to uncover the molecular interactions and oncomechanisms. Cancer Rep (Hoboken) 2020; 3:e1286. [PMID: 32886452 PMCID: PMC7941472 DOI: 10.1002/cnr2.1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian (OV) cancer is considered as one of the most deadly malignancies in women, since it is unfortunately diagnosed in advanced stages. Nowadays, the importance of bioinformatics tools and their frequent usage in tracking dysregulated cancer‐related genes and pathways have been highlighted in researches. Aim The aim of this study is to investigate dysregulated miRNAs‐genes network and its function in OV tumors based on the integration of microarray data through a system biology approach. Methods Two microarray data (GSE119056 and GSE4122) were analyzed to explore the differentially expressed miRNAs (DEmiRs) and genes among OV tumors and normal tissues. Then, through the help of TargetScan, miRmap, and miRTarBase databases, the dysregulated miRNA‐gene network in OV tumors was constructed by Cytoscape. In the next step, co‐expression and protein‐protein interaction networks were made using GEPIA and STRING databases. Moreover, the functional analysis of the hub genes was done by DAVID, KEGG, and Enrichr databases. Eventually, the regulatory network of TF‐miRNA‐gene was constructed. Results The potential dysregulated miRNAs‐genes network in OV tumors has been constructed, including 109 differentially expressed genes (DEGs), 25 DEmiRs, and 213 interactions. Two down‐regulated microRNAs, miR‐660‐3p and hsa‐miR‐4510, have the most interactions with up‐expressed oncogenic DEGs. CDK1, PLK1, CCNB1, CCNA2, and EZH2 are involved in protein module, which show significant overexpression in OV tumors according to The Cancer Genome Atlas (TCGA) data. EZH2 shows amplification in OV tumors with remarkable percentage. The transcription factors TFAP2C and GATA4 have the pivotal regulatory functions in oncotranscriptomic profile of OV tumors. Conclusion In current study, we have collected and integrated different data to uncover the complex molecular interactions and oncomechanisms in OV tumors. The DEmiRs‐DEGs and TF‐miRNA‐gene networks reveal the potential interactions that could be a significant piece of the OV onco‐puzzle.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Liu CH, Jing XN, Liu XL, Qin SY, Liu MW, Hou CH. Tumor-suppressor miRNA-27b-5p regulates the growth and metastatic behaviors of ovarian carcinoma cells by targeting CXCL1. J Ovarian Res 2020; 13:92. [PMID: 32782028 PMCID: PMC7418439 DOI: 10.1186/s13048-020-00697-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs (miRNAs) play crucial functions in the progression of ovarian cancer. MicroRNA-27b-5p (miR-27b-5p) has been identified as a cancer-associated miRNA. Nevertheless, the expression profile of miR-27b-5p and its functions in ovarian cancer are unexplored. Methods qRT-PCR and western blot analysis were used to detect the levels of miR-27b-5p and C-X-C motif chemokine ligand 1 (CXCL1). The impact of miR-27b-5p on ovarian cancer cells proliferation, migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The expression of matrix metalloprotein-2/9 (MMP-2/9) were measured using immunofluorescence staining. Bioinformatics and luciferase reporter analysis were used to predict the target of miR-27b-5p. The growth of ovarian cancer cells in vivo was evaluated using transplanted tumor model. Results Here, we demonstrated that miR-27b-5p was downregulated in ovarian carcinoma cells and clinical specimens. Higher expression of miR-27b-5p was associated with an unfavorable overall survival in patients with ovarian cancer. Upregulation of miR-27b-5p decreased the viability, migration ability and invasion capacity of SKOV3 and OVCAR3 cell. MiR-27b-5p also inhibited the growth of SKOV3 cell in nude mice. Additionally, we verified that CXCL1 was a target of miR-27b-5p in ovarian carcinoma cells. Restoring the expression of CXCL1 abolished the inhibitory impacts of miR-27b-5p in ovarian cancer carcinoma cells. Conclusion This research revealed that miR-27b-5p restrained the progression of ovarian carcinoma possibly via targeting CXCL1.
Collapse
Affiliation(s)
- Chun Hua Liu
- Obstetrics Department, Jiaozhou Central Hospital of Qingdao, Jiaozhou, Shandong, China
| | - Xue Ning Jing
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiao Lan Liu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Shan Yong Qin
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Min Wei Liu
- School Hospital, Shandong Women's University, Jinan, Shandong, China
| | - Chun Hong Hou
- Gynecology Ward, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, Shandong, China.
| |
Collapse
|
10
|
Wang D, Na Q, Song GY, Wang L. Human umbilical cord mesenchymal stem cell-derived exosome-mediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1. Cell Cycle 2020; 19:1869-1883. [PMID: 32597300 DOI: 10.1080/15384101.2020.1769394] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Exosomes have been documented to function in human diseases, yet their transfer of microRNA (miRNA) in preeclampsia (PE) has seldom been reported. This study intends to discuss the role of miR-133b derived from exosomes in human umbilical cord mesenchymal stem cells (hUC-MSCs) in trophoblast cell development in PE. METHODS Placentas from PE patients and normal pregnant women were collected. The hUC-MSCs and their exosomes were obtained and identified. Trophoblast cell HPT-8 and HTR8-S/Vneo were obtained and co-cultured with hUC-MSCs-derived exosomes that had been transfected with different miR-133b plasmids. MiR-133b and glucocorticoid-regulated kinase 1 (SGK1) expression in placental tissues and HPT-8 and HTR8-S/Vneo cells was determined. HTR8-S/Vneo and HPT-8 cell proliferation, cell cycle distribution, apoptosis rate, migration and invasion were detected. RESULTS MiR-133b was down-regulated and SGK1 was up-regulated in placental tissues of PE patients. MiR-133b expression was inversely related to SGK1 expression in HTR8-S/Vneo and HPT-8 cells co-cultured with hUC-MSC-derived exosomes. Exosomes promoted HTR8-S/Vneo and HPT-8 cell proliferation, migration and invasion abilities, cell cycle entry and inhibited apoptosis. Elevated exosome-derived miR-133b from hUC-MSCs boosted HTR8-S/Vneo and HPT-8 cell proliferation, cell cycle progression, migration and invasion and limited cell apoptosis. MiR-133b targeted SGK1. CONCLUSION Collectively, we demonstrate that miR-133b is down-regulated and SGK1 is up-regulated in PE, and miR-133b derived from exosomes in hUM-MSCs facilitates trophoblast cell proliferation, migration and invasion in PE via constraining SGK1.
Collapse
Affiliation(s)
- Dan Wang
- Department of Obstetric and Gynecology, Shengjing Hospital of China Medical University , Shengyang, Liaoning, China
| | - Quan Na
- Department of Obstetric and Gynecology, Shengjing Hospital of China Medical University , Shengyang, Liaoning, China
| | - Gui Yu Song
- Department of Obstetric and Gynecology, Shengjing Hospital of China Medical University , Shengyang, Liaoning, China
| | - Leilei Wang
- Department of Obstetric and Gynecology, Shengjing Hospital of China Medical University , Shengyang, Liaoning, China
| |
Collapse
|
11
|
circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:636-655. [PMID: 32736292 PMCID: PMC7393325 DOI: 10.1016/j.omtn.2020.06.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
The synergism between cardiomyogenesis and angiogenesis is essential for cardiac regeneration. Circular RNAs (circRNAs) play pivotal roles in cell growth and angiogenesis, but their functions in cardiac regeneration are not yet known. In this study, we investigated the role and underlying mechanisms of circRNA Hipk3 (circHipk3) in both cardiomyogenesis and angiogenesis during cardiac regeneration. We found that circHipk3 was overexpressed in the fetal or neonatal heart of mice. The transcription factor Gata4 bound to the circHipk3 promoter and increased circHipk3 expression. Cardiomyocyte (CM) proliferation in vitro and in vivo was inhibited by circHipk3 knockdown and increased by circHipk3 overexpression. Moreover, circHipk3 overexpression promoted coronary vessel endothelial cell proliferation, migration, and tube-forming capacity and subsequent angiogenesis. More importantly, circHipk3 overexpression attenuated cardiac dysfunction and decreased fibrotic area after myocardial infarction (MI). Mechanistically, circHipk3 promoted CM proliferation by increasing Notch1 intracellular domain (N1ICD) acetylation, thereby increasing N1ICD stability and preventing its degradation. In addition, circHipk3 acted as a sponge for microRNA (miR)-133a to promote connective tissue growth factor (CTGF) expression, which activated endothelial cells. Our findings suggested that circHipk3 might be a novel therapeutic target for preventing heart failure post-MI.
Collapse
|
12
|
Lv L, He L, Chen S, Yu Y, Che G, Tao X, Wang S, Jian Z, Zhang X. Long Non-coding RNA LINC00114 Facilitates Colorectal Cancer Development Through EZH2/DNMT1-Induced miR-133b Suppression. Front Oncol 2019; 9:1383. [PMID: 31921641 PMCID: PMC6928983 DOI: 10.3389/fonc.2019.01383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify the roles of the long non-coding RNA LINC00114 in colorectal cancer (CRC) development. The expression levels of LINC00114 and miR-133b in CRC were determined by reverse transcription (RT)-polymerase chain reaction (PCR) and the functions of LINC00114 in CRC were evaluated in vitro and in vivo. Methylation-specific PCR assay was performed to detect the miR-133b promoter methylation in CRC cells. Bioinformatics analysis, RNA immunoprecipitation, dual luciferase assay, RNA pull-down, co-immunoprecipitation (IP), and chromatin IP (ChIP) assays were used to elucidate whether LINC00114 could recruit EZH2/DNMT1 and bind to the miR-133b promoter region, leading to dysregulated methylation and the depression of miR-133b. The expression levels of DNA methyltransferases (DNMTs), EZH2, and nucleoporin 214(NUP214) were analyzed by western blotting. Data showed that LINC00114 was highly expressed, whereas miR-133b was downregulated in the CRC tissues and cells. In vitro, silencing LINC00114 inhibited cell proliferation and impeded cell cycle at the G1/S phase by upregulating miR-133b. In vivo, LINC00114 knockdown reduced tumor growth. Further analysis showed that the methylation in miR-133b promoter region was increased in the CRC and silencing LINC00114 increased miR-133b expression through depressing methylation of its promoter region. ChIP-PCR experiments demonstrated that EZH2 and DNMT1 could bind to the miR-133b promoter region and it was abolished by LINC00114 knockdown. sh-EZH2 reversed the overexpression of DNMTs and CRC cell cycle progression induced by the LINC00114 upregulation. LINC00114 could regulate the NUP214 protein expression by sponging miR-133b. These results demonstrated that LINC00114 suppressed miR-133b expression via EZH2/DNMT1-mediated methylation of its promoter region, indicating that LINC00114 might be a potential novel target for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Lv Lv
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Liang He
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guosong Che
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuan Tao
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shengtao Wang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhiyuan Jian
- Gastrointestinal Surgery Department, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
13
|
Chen GY, Ruan L. Downregulation Of microRNA-133b And Its Clinical Value In Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:9421-9434. [PMID: 31807021 PMCID: PMC6844227 DOI: 10.2147/ott.s231312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023] Open
Abstract
Background Previous studies have investigated the expression of miR-133b in non-small cell lung cancer (NSCLC); however, its underlying mechanism in relation to the pathogenesis of NSCLC remains unclear. Methods The aim of this study was to investigate the correlation between miR-133b expression and clinical parameters based on the Cancer Genome Atlas (TCGA) and real-time quantitative real-time PCR (RT-qPCR) data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the biological function of miR-133b. A protein-protein interaction (PPI) network was constructed to screen for hub genes. The Gene Expression Profiling Interaction Analysis (GEPIA) and the Human Protein Atlas databases (HPAD) were employed to validate the hub genes. The cBioPortal database was used to identify neighboring genes with alteration frequencies greater than 20% gene alterations. Results miR-133b was downregulated in NSCLC tissues, and expression was correlated with lymph node metastasis (P < 0.05). A total of 362 genes were considered as the potential targets of miR-133b in NSCLC. These candidate target genes highly enriched in various key pathways such as the PI3K-Akt pathways, P53 signal pathways, and ECM-receptor interaction. PPI revealed 10 genes as hub genes with node degrees ≥10. Conclusion The study validated that miR-133b is downregulated in NSCLC. In addition, miR-133b might function as a biomarker for the diagnosis and prognosis of NSCLC. Bioinformatics analysis revealed that miR-133b could be involved in NSCLC metastasis.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Departments of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lin Ruan
- Departments of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
14
|
Chen R, Wang M, Fu S, Cao F, Duan P, Lu J. MicroRNA-204 may participate in the pathogenesis of hypoxic-ischemic encephalopathy through targeting KLLN. Exp Ther Med 2019; 18:3299-3306. [PMID: 31602202 PMCID: PMC6777329 DOI: 10.3892/etm.2019.7936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/14/2018] [Indexed: 01/04/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a common neonatal disease that can lead to high neonatal mortality rates. Previous studies have indicated that microRNAs (miRs) may be involved in the pathogenesis of HIE; however, the specific mechanisms underlying their involvement require further investigation. The aim of the present study was to investigate the roles of miR-204 and its target gene killin p53 regulated DNA replication inhibitor (KLLN) in HIE using rat HIE models. Brain injury was induced by surgery and incubation of hypoxic incubator brain using 10-day-old pup rats. On day 3, rats were sacrificed, and the infarct size of the brain was determined using a tetrazolium chloride assay. Terminal deoxynucleotidyl transferase UTP nick-end labeling staining was performed to detect the cell death rate in the brain tissue. Following this, the brain tissues were collected, and reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry assays were performed to examine the expression levels of miR-204 and KLLN. Furthermore, neurons were cultured and transfected with miR-204 inhibitors or mimics, and the effect of miR-204 on the proliferation and apoptosis of neurons was examined using MTT and flow cytometric assays. Finally, a dual-luciferase reporter assay was performed to confirm whether KLLN is a direct target of miR-204. The expression of miR-204 was significantly downregulated and the expression of KLLN was significantly increased in the brain tissue of HIE rats (P<0.001). In addition, the transfection with miR-204 inhibitors significantly decreased the proliferation rates and significantly increased the apoptosis rate of neurons; however, transfection with miR-204 mimics prompted the opposite results. The dual-luciferase reporter assay also confirmed that KLLN is a direct target of miR-204. Taken together, the results of the present study demonstrated that miR-204 was downregulated in HIE and that miR-204 may serve important roles in the pathogenesis of HIE through targeting KLLN.
Collapse
Affiliation(s)
- Ronglin Chen
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Meixia Wang
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Shaopin Fu
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Feng Cao
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Pengkai Duan
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiefu Lu
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
15
|
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology 2019; 71:411-425. [PMID: 30600466 DOI: 10.1007/s10616-018-0291-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are non-coding, which regulate gene expression in the post-transcriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies.
Collapse
Affiliation(s)
- Gizem Ors-Kumoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Biomedical Technologies Graduate Programme, Institute of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Gao G, Tian Z, Zhu HY, Ouyang XY. miRNA-133b targets FGFR1 and presents multiple tumor suppressor activities in osteosarcoma. Cancer Cell Int 2018; 18:210. [PMID: 30574019 PMCID: PMC6299514 DOI: 10.1186/s12935-018-0696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignancy prevalent in children and young adults. MicroRNA-133b (miR-133b), through directly targeting the fibroblast growth factor receptor 1 (FGFR1), is increasingly recognized as a tumor suppressor in different types of cancers. However, little is known on the biological and functional significance of miR-133b/FGFR1 regulation in osteosarcoma. Methods The expressions of miR-133b and FGFR1 were examined by RT-qPCR and compared between 30 paired normal bone tissues and OS tissues, and also between normal osteoblasts and three OS cells lines, MG-63, U2OS, and SAOS-2. Using U2OS and MG-63 as the model system, the functional significance of miR-133b and FGFR1 was assessed on cell viability, proliferation, apoptosis, migration/invasion, and epithelial–mesenchymal transition (EMT) by overexpressing miR-133b and down-regulating FGFR1 expression, respectively. Furthermore, the signaling cascades controlled by miR-133b/FGFR1 were examined. Results miR-133b was significantly down-regulated while FGFR1 robustly up-regulated in OS tissues and OS cell lines, when compared to normal bone tissues and normal osteoblasts, respectively. Low miR-133b expression and high FGFR1 expression were associated with location of the malignant lesion, advanced clinical stage, and distant metastasis. FGFR1 was a direct target of miR-133b. Overexpressing miRNA-133b or knocking down FGFR1 significantly reduced the viability, proliferation, migration/invasion, and EMT, but promoted apoptosis of both MG-63 and U2OS cells. Both the Ras/MAPK and PI3K/Akt intracellular signaling cascades were inhibited in response to overexpressing miRNA-133b or knocking down FGFR1 in OS cells. Conclusion miR-133b, by targeting FGFR1, presents a plethora of tumor suppressor activities in OS cells. Boosting miR-133b expression or reducing FGFR1 expression may benefit OS therapy.
Collapse
Affiliation(s)
- Gan Gao
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Zhen Tian
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Huan-Ye Zhu
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Xun-Yan Ouyang
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| |
Collapse
|
17
|
Zhu JF, Liu Y, Huang H, Shan L, Han ZG, Liu JY, Li YL, Dong X, Zeng W. MicroRNA-133b/EGFR axis regulates esophageal squamous cell carcinoma metastases by suppressing anoikis resistance and anchorage-independent growth. Cancer Cell Int 2018; 18:193. [PMID: 30479571 PMCID: PMC6251163 DOI: 10.1186/s12935-018-0684-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background Anoikis resistance has been demonstrated to facilitate distant metastases of cancers. MicroRNA-133b (miR-133b) is found to be down-regulated in various tumors, including esophageal squamous cell carcinoma (ESCC), and closely correlates with the malignant phenotype of ESCC. This study aimed to evaluate the roles of miR-133b in metastases of ESCC via regulating anoikis. Methods The expression of miR-133b and related molecules were detected in ESCC tissues and cells. The target relationship between miR-133b and epidermal growth factor receptor (EGFR) was verified by dual luciferase reporter assay. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Anoikis and anchorage-independent growth were assessed by anoikis assay and soft agar assay. Migration and invasion were evaluated by scratch and transwell assays. The expressions of related molecules were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The in vivo results were determined by tumor xenografts in nude mice. Results MiR-133b level was decreased in ESCC tissues and cells, which negatively correlated with EGFR, integrin β4 (ITGB4), and phosphorylated focal adhesion kinase levels. Moreover, miR-133b down-regulated EGFR expression in ESCC cells. Overexpression of miR-133b inhibited the anoikis resistance, migration, invasion and epithelial-mesenchymal transition of ESCC cells via targeting EGFR. Finally, miR-133b overexpression suppressed tumor growth and lung metastases of ESCC in vivo. ITGB4/FAK/growth factor receptor-bound protein 2 (Grb2), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) pathways were involved in the regulatory mechanisms of miR-133b/EGFR axis in ESCC metastases in vitro and in vivo. Conclusions The results suggested that miR-133b/EGFR axis regulated metastases of ESCC by affecting anoikis resistance via ITGB4/FAK/Grb2, AKT, and ERK pathways.
Collapse
Affiliation(s)
- Jin-Feng Zhu
- 2Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Yi Liu
- 3Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, 518055 People's Republic of China
| | - He Huang
- 4Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013 People's Republic of China.,5Department of Histology and Embryology, Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Li Shan
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Zhi-Gang Han
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Jun-Yuan Liu
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Ying-Long Li
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China
| | - Xiang Dong
- 6Institute of Cancer Prevention and Treatment, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011 People's Republic of China
| | - Wei Zeng
- 1First Department of Lung Cancer Chemotherapy, Affiliated Cancer Hospital of Xinjiang Medical University, No. 789, East Suzhou Street, Urumqi, 830011 Xinjiang People's Republic of China.,7Department of Hematology and Oncology, Shenzhen University General Hospital, No.1098, Xueyuan Avenue, Shenzhen, 518055 Guangdong People's Republic of China
| |
Collapse
|
18
|
Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discov 2018; 4:41. [PMID: 29560280 PMCID: PMC5849881 DOI: 10.1038/s41420-018-0041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/21/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Abstract
Zebrafish could be an interesting translational model to understand and improve the post-infarction trial and possible regeneration in humans. The adult zebrafish is able to regenerate efficiently after resecting nearly 20% of the ventricular apex. This process requires the concert activation of the epicardium and endocardium, as well as trans-differentiation of pre-existing cardiomyocytes that together replace the lost tissue. The molecular mechanisms involved in this activation process are not completely clarified. In this work, in order to investigate if the downregulation of these miRNAs (miRs) are linked with the activation of epicardium, the expressions of miR-133a, b and miR-1 during regeneration were analysed. qPCR analyses in whole-heart, or from distinct dissected epicardial cells comparing to regenerative clot (containing cardiomyocytes, fibroblasts and endocardial cells) by a laser-micro-dissector, have indicated that already at 24 h there is a downregulation of miRs: (1) miR-133a and miR-1 in the epicardium and (2) miR-133b and miR-1 in the regenerative clot. All the miRs remain downregulated until 7 days post-surgery. With the aim to visualize the activations of heart component in combination with miRs, we developed immunohistochemistry using antibodies directed against common markers in mammals as well as zebrafish: Wilms tumour 1 (WT1), a marker of epicardium; heat-shock protein 70 (HSP70), a chaperon activated during regeneration; and the Cardiac Troponin T (cTnT), a marker of differentiated cardiomyocytes. All these markers are directly or indirectly linked to the investigated miRs. WT1 and HSP70 strongly marked the regeneration site just at 2–3 days postventricular resection. In coherence, cTnT intensively marked the regenerative portion from 7 days onwards. miRs-1 and -133 (a,b) have been strongly involved in the activation of epicardium and regenerative clot during the regeneration process in zebrafish. This study can be a useful translational model to understand the early epicardial activation in which miRs-133a and miR-1 seem to play a central role as observed in the human heart.
Collapse
|