1
|
Rauf A, Khalil AA, Awadallah S, Khan SA, Abu‐Izneid T, Kamran M, Hemeg HA, Mubarak MS, Khalid A, Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review. Food Sci Nutr 2024; 12:675-693. [PMID: 38370049 PMCID: PMC10867483 DOI: 10.1002/fsn3.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024] Open
Abstract
Reactive oxygen species (ROS) are produced under normal physiological conditions and may have beneficial and harmful effects on biological systems. ROS are involved in many physiological processes such as differentiation, proliferation, necrosis, autophagy, and apoptosis by acting as signaling molecules or regulators of transcription factors. In this case, maintaining proper cellular ROS levels is known as redox homeostasis. Oxidative stress occurs because of the imbalance between the production of ROS and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways such as nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. The possible ROS pathways are NF-κB, MAPKs, PI3K-Akt, and the Keap1-Nrf2-ARE signaling pathway. This review covers the literature pertaining to the possible ROS pathways and strategies to inhibit them. Additionally, this review summarizes the literature related to finding ROS inhibitors.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical SciencesZarqa UniversityZarqaJordan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural SciencesNational University of Science and Technology (NUST)IslamabadPakistan
| | - Tareq Abu‐Izneid
- Pharmaceutical Sciences, College of PharmacyAl Ain UniversityAl Ain, Abu DhabiUAE
| | - Muhammad Kamran
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical SciencesTaibah UniversityAl‐Medinah Al‐MonawaraSaudi Arabia
| | | | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
2
|
Sarhan MO, Haffez H, Elsayed NA, El-Haggar RS, Zaghary WA. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and 131I-radiolabeling for in-vivo evaluation. Bioorg Chem 2023; 141:106924. [PMID: 37871390 DOI: 10.1016/j.bioorg.2023.106924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Phenothiazines (PTZs) are a group of compounds characterized by the presence of the 10H-dibenzo-[b,e]-1,4-thiazine system. PTZs used in clinics as antipsychotic drugs with other diverse biological activities. The current aim of the study is to investigate and understand the effect of potent PTZs compounds using a group of In-vitro and In-vivo assays. A total of seventeen novel phenothiazine derivatives have been designed, synthesized, and evaluated primarily in-vitro for their ability to inhibit proliferation activity against NCI-60 cancer cell lines, including several multi-drug resistant (MDR) tumor cell lines. Almost all compounds were active and displayed promising cellular activities with GI50 values in the sub-micromolar range. Four of the most promising derivatives (4b, 4h, 4g and 6e) have been further tested against two selected sensitive cancer cell lines (colon cancer; HCT-116 and breast cancer; MDA-MB231). The apoptosis assay showed that all the selected compounds were able to induce early apoptosis and compound 6e was able to induce additional cellular necrosis. Cell cycle assay showed all selected compounds were able to induce cell cycle arrest at sub-molecular phase of G0-G1 with compound 6e induced cell cycle arrest at G2M in HCT-116 cells. Accordingly, the apoptotic effect of the selected compounds was extensively investigated on genetic level and Casp-3, Casp-9 and Bax gene were up-regulated with down-regulation of Bcl-2 gene suggesting the activation of both intrinsic and extrinsic pathways. In-vivo evaluation of the antitumor activity of compound 4b in solid tumor bearing mice showed promising therapeutic effect with manifestation of dose and time dependent toxic effects at higher doses. For better evaluation of the degree of localization of 4b, its 131I-congener (131I-4b) was injected intravenously in Ehrlich solid tumor bearing mice that showed good localization at tumor site with rapid distribution and clearance from the blood. In-silico study suggested NADPH oxidases (NOXs) as potential molecular target. The compounds introduced in the current study work provided a cutting-edge phenothiazine hybrid scaffold with promising anti-proliferation action that may suggest their anti-cancer activity.
Collapse
Affiliation(s)
- Mona O Sarhan
- Labelled Compounds Department, Hot Lab Centre, Egyptian Atomic Energy Authority, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt.
| | - Nosaiba A Elsayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Radwan S El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Wafaa A Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt.
| |
Collapse
|
3
|
Stalin J, Coquoz O, Jeitziner Marcone R, Jemelin S, Desboeufs N, Delorenzi M, Blot-Chabaud M, Imhof BA, Ruegg C. Targeting of the NOX1/ADAM17 Enzymatic Complex Regulates Soluble MCAM-Dependent Pro-Tumorigenic Activity in Colorectal Cancer. Biomedicines 2023; 11:3185. [PMID: 38137406 PMCID: PMC10740863 DOI: 10.3390/biomedicines11123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Oriana Coquoz
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Rachel Jeitziner Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Stephane Jemelin
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Nina Desboeufs
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland; (R.J.M.); (M.D.)
| | - Marcel Blot-Chabaud
- C2VN, Inserm 1263, Inra 1260, UFR Pharmacie, Aix-Marseille University, 27 Bd J. Moulin, 13005 Marseille, France;
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva Medical School, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; (S.J.); (B.A.I.)
| | - Curzio Ruegg
- Department of Oncology, Microbiology, and Immunology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, PER17, CH-1700 Fribourg, Switzerland; (O.C.); (N.D.); (C.R.)
| |
Collapse
|
4
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
5
|
Zhu W, Oteiza PI. NADPH oxidase 1: A target in the capacity of dimeric ECG and EGCG procyanidins to inhibit colorectal cancer cell invasion. Redox Biol 2023; 65:102827. [PMID: 37516013 PMCID: PMC10410180 DOI: 10.1016/j.redox.2023.102827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
Colorectal cancer (CRC) is prevalent worldwide. Dietary consumption of procyanidins has been linked to a reduced risk of developing CRC. The epidermal growth factor (EGF) receptor (EGFR) signaling pathway is frequently dysregulated in CRC. Our earlier research showed that the procyanidin dimers of epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), through their interaction with lipid rafts, inhibit the EGFR signaling pathway and decrease CRC cell growth. The process of cancer cell invasion and metastasis involves matrix metalloproteinases (MMPs), which are partially EGFR-regulated. This study investigated whether ECG and EGCG dimers can inhibit EGF-induced CRC cell invasion by suppressing the redox-regulated activation of the EGFR/MMPs pathway. Both dimers mitigated EGF-induced cell invasion and the associated increase of MMP-2/9 expression and activity in different CRC cell lines. In Caco-2 cells, both dimers inhibited the activation of the EGFR and downstream of NF-κB, ERK1/2 and Akt, which was associated with decreased MMP-2/9 transcription. EGF induced a rapid NOX1-dependent oxidant increase, which was diminished by both ECG and EGCG dimers and NOX inhibitors (apocynin, Vas-2870, DPI). Both dimers inhibited NOX1 gene expression, as well as NOX1 activity with evidence of direct binding to NOX1. Both dimers, all NOX chemical inhibitors and NOX1 silencing inhibited EGF-mediated activation of the EGFR signaling pathway and the increased MMP-2/9 mRNA levels and activity. Pointing to the relevance of NOX1 on ECG and EGCG dimer effects on CRC invasiveness, silencing of NOX1 also inhibited EGF-stimulated Caco-2 cell invasion. In summary, ECG and EGCG dimers can act inhibiting CRC cell invasion/metastasis both, by downregulating MMP-2 and MMP-9 expression via a NOX1/EGFR-dependent mechanism, and through a direct inhibitory effect on MMPs enzyme activity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Lee YA, Sim S, Kim KA, Shin MH. Signaling Role of NADPH Oxidases in ROS-Dependent Host Cell Death Induced by Pathogenic Entamoeba histolytica. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:155-161. [PMID: 35772733 PMCID: PMC9256287 DOI: 10.3347/kjp.2022.60.3.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology, Yonsei University, Seoul 03722,
Korea
- Institue of Tropical Medicine, College of Medicine, Yonsei University, Seoul 03722,
Korea
| | - Seobo Sim
- KU Open Innovation Center, Department of Environmental and Tropical Medicine, School of Medicine, Konkuk University, Chungju 27478,
Korea
| | - Kyeong Ah Kim
- Gachon Biomedical & Convergence Institute, Gil Medical Center, Gachon University College of Medicine, Incheon 21565,
Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Yonsei University, Seoul 03722,
Korea
- Institue of Tropical Medicine, College of Medicine, Yonsei University, Seoul 03722,
Korea
- Corresponding author ()
| |
Collapse
|
7
|
Cung T, Wang H, Hartnett ME. The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells 2022; 11:cells11121951. [PMID: 35741081 PMCID: PMC9222209 DOI: 10.3390/cells11121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Collapse
|
8
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
9
|
Oxidative Stress Markers Are Associated with a Poor Prognosis in Patients with Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11040759. [PMID: 35453444 PMCID: PMC9029757 DOI: 10.3390/antiox11040759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is a malignancy of rising prevalence, especially in developed countries where dietary patterns and sedentariness favor its onset. This malady ranks seventh in cancer-related deaths in the world, although it is expected to rank second in the coming years, behind lung cancer. The low survival rate is due to the asymptomatic course of the early stages, which in many cases leads to metastases when becoming evident in advanced stages. In this context, molecular pathology is on the way towards finding new approaches with biomarkers that allow a better prognosis and monitoring of patients. So the present study aims to evaluate a series of molecular biomarkers, PARP1, NOX1, NOX2, eNOS and iNOS, as promising candidates for prognosis and survival by using immunohistochemistry. The analysis performed in 41 patients with pancreatic cancer showed a correlation between a high expression of all these components with a low survival rate, with high statistical power for all. In addition, a 60-month longitudinal surveillance program was managed, accompanied by several clinical parameters. The derivative Kaplan–Meier curves indicated a low cumulative survival rate as well. Ultimately, our research emphasized the value of these molecules as survival-associated biomarkers in pancreatic cancer, offering new gates for clinical management.
Collapse
|
10
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|
11
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Reduced Endothelial Leptin Signaling Increases Vascular Adrenergic Reactivity in a Mouse Model of Congenital Generalized Lipodystrophy. Int J Mol Sci 2021; 22:ijms221910596. [PMID: 34638939 PMCID: PMC8508873 DOI: 10.3390/ijms221910596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.
Collapse
|
13
|
The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH Oxidases. Biomedicines 2021; 9:biomedicines9060687. [PMID: 34204571 PMCID: PMC8235710 DOI: 10.3390/biomedicines9060687] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.
Collapse
|
14
|
Sassetti E, Clausen MH, Laraia L. Small-Molecule Inhibitors of Reactive Oxygen Species Production. J Med Chem 2021; 64:5252-5275. [PMID: 33856791 DOI: 10.1021/acs.jmedchem.0c01914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are involved in physiological cellular processes including differentiation, proliferation, and apoptosis by acting as signaling molecules or regulators of transcription factors. The maintenance of appropriate cellular ROS levels is termed redox homeostasis, a balance between their production and neutralization. High concentrations of ROS may contribute to severe pathological events including cancer, neurodegenerative, and cardiovascular diseases. In recent years, approaches to target the sources of ROS production directly in order to develop tool compounds or potential therapeutics have been explored. Herein, we briefly outline the major sources of cellular ROS production and comprehensively review the targeting of these by small-molecule inhibitors. We critically assess the value of ROS inhibitors with different mechanisms-of-action, including their potency, mode-of-action, known off-target effects, and clinical or preclinical status, while suggesting future avenues of research in the field.
Collapse
Affiliation(s)
- Elisa Sassetti
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Luca Laraia
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Zhang Z, He T, Huang L, Li J, Wang P. Immune gene prognostic signature for disease free survival of gastric cancer: Translational research of an artificial intelligence survival predictive system. Comput Struct Biotechnol J 2021; 19:2329-2346. [PMID: 34025929 PMCID: PMC8111455 DOI: 10.1016/j.csbj.2021.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The progress of artificial intelligence algorithms and massive data provide new ideas and choices for individual mortality risk prediction for cancer patients. The current research focused on depict immune gene related regulatory network and develop an artificial intelligence survival predictive system for disease free survival of gastric cancer. Multi-task logistic regression algorithm, Cox survival regression algorithm, and Random survival forest algorithm were used to develop the artificial intelligence survival predictive system. Nineteen transcription factors and seventy immune genes were identified to construct a transcription factor regulatory network of immune genes. Multivariate Cox regression identified fourteen immune genes as prognostic markers. These immune genes were used to construct a prognostic signature for gastric cancer. Concordance indexes were 0.800, 0.809, and 0.856 for 1-, 3- and 5- year survival. An interesting artificial intelligence survival predictive system was developed based on three artificial intelligence algorithms for gastric cancer. Gastric cancer patients with high risk score have poor survival than patients with low risk score. The current study constructed a transcription factor regulatory network and developed two artificial intelligence survival prediction tools for disease free survival of gastric cancer patients. These artificial intelligence survival prediction tools are helpful for individualized treatment decision.
Collapse
Key Words
- AJCC, the American Joint Committee on Cancer
- CI, confidence interval
- DCA, decision curve analysis
- DFS, disease free survival
- Disease free survival
- GC, gastric cancer
- GEO, the Gene Expression Omnibus
- Gastric cancer
- HR, hazard ratio
- Immune gene
- Prognostic signature
- ROC, receiver operating characteristic
- SD, standard deviation
- TCGA, The Cancer Genome Atlas
- Transcription factor
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Tingshan He
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Liwen Huang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Jing Li
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, Guangdong, China
| |
Collapse
|
16
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Jung HY, Oh SH, Ahn JS, Oh EJ, Kim YJ, Kim CD, Park SH, Kim YL, Cho JH. NOX1 Inhibition Attenuates Kidney Ischemia-Reperfusion Injury via Inhibition of ROS-Mediated ERK Signaling. Int J Mol Sci 2020; 21:ijms21186911. [PMID: 32967113 PMCID: PMC7554761 DOI: 10.3390/ijms21186911] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The protective effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 1 inhibition against kidney ischemia-reperfusion injury (IRI) remain uncertain. The bilateral kidney pedicles of C57BL/6 mice were clamped for 30 min to induce IRI. Madin–Darby Canine Kidney (MDCK) cells were incubated with H2O2 (1.4 mM) for 1 h to induce oxidative stress. ML171, a selective NOX1 inhibitor, and siRNA against NOX1 were treated to inhibit NOX1. NOX expression, oxidative stress, apoptosis assay, and mitogen-activated protein kinase (MAPK) pathway were evaluated. The kidney function deteriorated and the production of reactive oxygen species (ROS), including intracellular H2O2 production, increased due to IRI, whereas IRI-mediated kidney dysfunction and ROS generation were significantly attenuated by ML171. H2O2 evoked the changes in oxidative stress enzymes such as SOD2 and GPX in MDCK cells, which was mitigated by ML171. Treatment with ML171 and transfection with siRNA against NOX1 decreased the upregulation of NOX1 and NOX4 induced by H2O2 in MDCK cells. ML171 decreased caspase-3 activity, the Bcl-2/Bax ratio, and TUNEL-positive tubule cells in IRI mice and H2O2-treated MDCK cells. Among the MAPK pathways, ML171 affected ERK signaling by ERK phosphorylation in kidney tissues and tubular cells. NOX1-selective inhibition attenuated kidney IRI via inhibition of ROS-mediated ERK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jang-Hee Cho
- Correspondence: ; Tel.: +82-10-6566-7551; Fax: +82-53-426-2046
| |
Collapse
|
18
|
Friend NL, Hewett DR, Panagopoulos V, Noll JE, Vandyke K, Mrozik KM, Fitter S, Zannettino AC. Characterization of the role of Samsn1 loss in multiple myeloma development. FASEB Bioadv 2020; 2:554-572. [PMID: 32923989 PMCID: PMC7475304 DOI: 10.1096/fba.2020-00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 04/26/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
The protein SAMSN1 was recently identified as a putative tumor suppressor in multiple myeloma, with re-expression of Samsn1 in the 5TGM1/KaLwRij murine model of myeloma leading to a near complete abrogation of intramedullary tumor growth. Here, we sought to clarify the mechanism underlying this finding. Intratibial administration of 5TGM1 myeloma cells into KaLwRij mice revealed that Samsn1 had no effect on primary tumor growth, but that its expression significantly inhibited the metastasis of these primary tumors. Notably, neither in vitro nor in vivo migration was affected by Samsn1 expression. Both knocking-out SAMSN1 in the RPMI-8226 and JJN3 human myeloma cell lines, and retrovirally expressing SAMSN1 in the LP-1 and OPM2 human myeloma cell lines had no effect on either cell proliferation or migration in vitro. Altering SAMSN1 expression in these human myeloma cells did not affect the capacity of the cells to establish either primary or metastatic intramedullary tumors when administered intratibially into immune deficient NSG mice. Unexpectedly, the tumor suppressive and anti-metastatic activity of Samsn1 in 5TGM1 cells were not evidenced following cell administration either intratibially or intravenously to NSG mice. Crucially, the growth of Samsn1-expressing 5TGM1 cells was limited in C57BL/6/Samsn1-/- mice but not in C57BL/6 Samsn1+/+ mice. We conclude that the reported potent in vivo tumor suppressor activity of Samsn1 can be attributed, in large part, to graft-rejection from Samsn1-/- recipient mice. This has broad implications for the design and interpretation of experiments that utilize cancer cells and knockout mice that are mismatched for expression of specific proteins.
Collapse
Affiliation(s)
- Natasha L. Friend
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Vasilios Panagopoulos
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Kate Vandyke
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Krzysztof M. Mrozik
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Stephen Fitter
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Andrew C.W. Zannettino
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research InstituteAdelaideAustralia
- Central Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
19
|
Abstract
Significance: The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Recent Advances: Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. Critical Issues: The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. Future Directions: In-depth studies of NOX interactions with the tumor microenvironment (e.g., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
Collapse
Affiliation(s)
- Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Abstract
NADPH oxidases (Noxs) represent an original pharmacological target because they are the only enzymes whose main function is to produce reactive oxygen species. It is also a double target with the need for stimulation in chronic granulomatosis and inhibition reported in other pathologies (vascular, cancerous, neurological, etc.). The complexity of the involvement of Noxs in pathophysiology has not yet made it possible to obtain a drug that effectively inhibits these enzymes at the clinical level. This issue of the Forum aims to take stock of the obstacles and limitations to the development of these inhibitors both in their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Hervé Kovacic
- Aix-Marseille University, CNRS UMR 7051, INP, Institute of NeuroPhysiopathology, Marseille, France
| |
Collapse
|
21
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
22
|
Zimnol A, Spicker N, Balhorn R, Schröder K, Schupp N. The NADPH Oxidase Isoform 1 Contributes to Angiotensin II-Mediated DNA Damage in the Kidney. Antioxidants (Basel) 2020; 9:antiox9070586. [PMID: 32635630 PMCID: PMC7402089 DOI: 10.3390/antiox9070586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
In higher concentrations, the blood pressure regulating hormone angiotensin II leads to vasoconstriction, hypertension, and oxidative stress by activating NADPH oxidases which are a major enzymatic source of reactive oxygen species (ROS). With the help of knockout animals, the impact of the three predominant NADPH oxidases present in the kidney, i.e., Nox1, Nox2 and Nox4 on angiotensin II-induced oxidative damage was studied. Male wildtype (WT) C57BL/6 mice, Nox1-, Nox2- and Nox4-deficient mice were equipped with osmotic minipumps, delivering either vehicle (PBS) or angiotensin II, for 28 days. Angiotensin II increased blood pressure and urinary albumin levels significantly in all treated mouse strains. In Nox1 knockout mice these increases were significantly lower than in WT, or Nox2 knockout mice. In WT mice, angiotensin II also raised systemic oxidative stress, ROS formation and DNA lesions in the kidney. A local significantly increased ROS production was also found in Nox2 and Nox4 knockout mice but not in Nox1 knockout mice who further had significantly lower systemic oxidative stress and DNA damage than WT animals. Nox2 and Nox4 knockout mice had increased basal DNA damage, concealing possible angiotensin II-induced increases. In conclusion, in the kidney, Nox1 seemed to play a role in angiotensin II-induced DNA damage.
Collapse
Affiliation(s)
- Anna Zimnol
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany; (A.Z.); (N.S.); (R.B.)
| | - Nora Spicker
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany; (A.Z.); (N.S.); (R.B.)
| | - Ronja Balhorn
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany; (A.Z.); (N.S.); (R.B.)
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, 60596 Frankfurt, Germany;
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany; (A.Z.); (N.S.); (R.B.)
- Correspondence: ; Tel.: +49-211-8113001
| |
Collapse
|
23
|
Barton M, Meyer MR, Prossnitz ER. Nox1 downregulators: A new class of therapeutics. Steroids 2019; 152:108494. [PMID: 31518594 PMCID: PMC6891104 DOI: 10.1016/j.steroids.2019.108494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Chronic non-communicable diseases share the pathomechanism of increased reactive oxygen species (ROS) production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, known as Nox. The recent discovery that expression of Nox1, a Nox isoform that has been implicated in the pathogenesis of cardiovascular and kidney disease and cancer is regulated by the expression and activity of G protein-coupled estrogen receptor (GPER) led to the identification of orally active small-molecule GPER blockers as selective Nox1 downregulators (NDRs). Preclinical studies using NDRs have demonstrated beneficial effects in vascular disease, hypertension, and glomerular renal injury. These findings suggest the therapeutic potential of NDRs, which reduce Nox1 protein levels, not only for cardiovascular disease conditions including arterial hypertension, pulmonary hypertension, heart failure with preserved ejection fraction (HFpEF), and chronic renal disease, but also for other non-communicable diseases, such as cerebrovascular disease and vascular dementia, Alzheimer's disease, autoimmune diseases and cancer, in which elevated Nox1-derived ROS production plays a causal role.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| | - Matthias R Meyer
- Division of Cardiology, Triemli City Hospital, Zürich, Switzerland; Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|