1
|
Chen YY, Huang SM, Cheng YW, Hsu YL, Lan CCE. High-glucose impact on UVB responses in human epidermal keratinocytes: Insights on diabetic skin's resistance to photocarcinogenesis. Life Sci 2024; 357:123083. [PMID: 39343088 DOI: 10.1016/j.lfs.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Ultraviolet (UV) B-induced damage in human epidermal keratinocytes (HEKs) initiates photocarcinogenesis. However, how diabetes influences photocarcinogenesis is not well understood. To investigate the impact of high-glucose environments on responses to UVB, we cultured HEKs in normal-glucose (NG) or high-glucose (HG) conditions (G6 and G26), followed by UVB irradiation at 25 mJ/cm2 (G6UVB and G26UVB). We performed next-generation sequencing and analyzed HEKs' expression profiles bioinformatically to identify candidate genes and cellular responses involved. We found UVB induced consistent responses in both NG- and HG-cultivated HEKs, but it also triggered certain distinct processes and pathways specifically in the HG groups. The 459 differentially expressed (DE) genes in the HG groups revealed their roles in chromatin remodeling, nucleosome assembly, and interferon signaling activation. Moreover, the 29 DE genes identified in G26UVB/G6UVB comparison, including the potent tumor suppressor gene TFPI2, were considered key genes contributing to HEKs' altered response to UVB in HG environments. UVB irradiation induced significantly higher TFPI2 expression in HG-cultivated HEKs than their NG-cultivated counterpart. Finally, HG-cultivation significantly increased oxidative stress, cyclobutane pyrimidine dimer formation, and apoptosis, while reducing HEKs' viability after UVB irradiation. These changes under HG conditions probably mediate cell fate toward death and tumor regression. Overall, our findings provide evidence and associated molecular basis on how HG conditions reduce keratinocytes' photocarcinogenic potential following UVB exposure.
Collapse
Affiliation(s)
- Yang-Yi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Mei Huang
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wen Cheng
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Varghese SS, Hernandez-De La Peña AG, Dhawan S. Safeguarding genomic integrity in beta-cells: implications for beta-cell differentiation, growth, and dysfunction. Biochem Soc Trans 2024; 52:2133-2144. [PMID: 39364746 DOI: 10.1042/bst20231519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The maintenance of optimal glucose levels in the body requires a healthy reserve of the insulin producing pancreatic beta-cells. Depletion of this reserve due to beta-cell dysfunction and death results in development of diabetes. Recent findings highlight unresolved DNA damage as a key contributor to beta-cell defects in diabetes. Beta-cells face various stressors and metabolic challenges throughout life, rendering them susceptible to DNA breaks. The post-mitotic, long-lived phenotype of mature beta-cells further warrants robust maintenance of genomic integrity. Failure to resolve DNA damage during beta-cell development, therefore, can result in an unhealthy reserve of beta-cells and predispose to diabetes. Yet, the molecular mechanisms safeguarding beta-cell genomic integrity remain poorly understood. Here, we focus on the significance of DNA damage in beta-cell homeostasis and postulate how cellular expansion, epigenetic programming, and metabolic shifts during development may impact beta-cell genomic integrity and health. We discuss recent findings demonstrating a physiological role for DNA breaks in modulating transcriptional control in neurons, which share many developmental programs with beta-cells. Finally, we highlight key gaps in our understanding of beta-cell genomic integrity and discuss emerging areas of interest.
Collapse
Affiliation(s)
- Sneha S Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| | | | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| |
Collapse
|
3
|
Cosmin Stan M, Paul D. Diabetes and Cancer: A Twisted Bond. Oncol Rev 2024; 18:1354549. [PMID: 38835644 PMCID: PMC11148650 DOI: 10.3389/or.2024.1354549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
This paper presents an overview of the interconnection between various factors related to both cancer and type 2 diabetes mellitus (T2DM). Hyperglycemia, hyperinsulinemia, chronic inflammation, and obesity are involved in the development and progression of both diseases but, strong evidence for a direct causal relationship between diabetes and cancer, is lacking. Several studies described a relationship between hyperglycemia and cancer at the cellular, tissular and organismic levels but at the same time recent Mendelian randomization studies proved a significant causal relationship only between hyperglycemia and breast cancer. On the other hand, the association between both hyperinsulinemia and obesity and several cancer types appears to be robust as demonstrated by Mendelian randomized studies. Metabolic alterations, including the Warburg effect and excessive glucose consumption by tumors, are discussed, highlighting the potential impact of dietary restrictions, such as fasting and low-carb diets, on tumor growth and inflammation. Recent data indicates that circulating branched-chain amino acids levels, may represent novel biomarkers that may contribute to both better diabetes control and early pancreatic cancer detection. Understanding the underlying mechanisms and shared risk factors between cancer and T2DM can provide valuable insights for cancer prevention, early detection, and management strategies.
Collapse
Affiliation(s)
- Mihai Cosmin Stan
- Emergency County Hospital Rm. Vâlcea, Râmnicu Vâlcea, Romania
- Medical Oncology Department, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
6
|
Hussain Y, Abdullah, Khan F, Alam W, Sardar H, Khan MA, Shen X, Khan H. Role of Quercetin in DNA Repair: Possible Target to Combat Drug Resistance in Diabetes. Curr Drug Targets 2024; 25:670-682. [PMID: 38752634 DOI: 10.2174/0113894501302098240430164446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 10/03/2024]
Abstract
Diabetes Mellitus (DM) is referred to as hyperglycemia in either fasting or postprandial phases. Oxidative stress, which is defined by an excessive amount of reactive oxygen species (ROS) production, increased exposure to external stress, and an excessive amount of the cellular defense system against them, results in cellular damage. Increased DNA damage is one of the main causes of genomic instability, and genetic changes are an underlying factor in the emergence of cancer. Through covalent connections with DNA and proteins, quercetin has been demonstrated to offer protection against the creation of oxidative DNA damage. It has been found that quercetin shields DNA from possible oxidative stress-related harm by reducing the production of ROS. Therefore, Quercetin helps to lessen DNA damage and improve the ability of DNA repair mechanisms. This review mainly focuses on the role of quercetin in repairing DNA damage and compensating for drug resistance in diabetic patients. Data on the target topic was obtained from major scientific databases, including SpringerLink, Web of Science, Google Scholar, Medline Plus, PubMed, Science Direct, and Elsevier. In preclinical studies, quercetin guards against DNA deterioration by regulating the degree of lipid peroxidation and enhancing the antioxidant defense system. By reactivating antioxidant enzymes, decreasing ROS levels, and decreasing the levels of 8-hydroxydeoxyguanosine, Quercetin protects DNA from oxidative damage. In clinical studies, it was found that quercetin supplementation was related to increased antioxidant capacity and decreased risk of type 2 diabetes mellitus in the experimental group as compared to the placebo group. It is concluded that quercetin has a significant role in DNA repair in order to overcome drug resistance in diabetes.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, China
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Fazlullah Khan
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad 44000, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Haseeba Sardar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
7
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
8
|
Yousefzadeh MJ, Huerta Guevara AP, Postmus AC, Flores RR, Sano T, Jurdzinski A, Angelini L, McGowan SJ, O’Kelly RD, Wade EA, Gonzalez-Espada LV, Henessy-Wack D, Howard S, Rozgaja TA, Trussoni CE, LaRusso NF, Eggen BJ, Jonker JW, Robbins PD, Niedernhofer LJ, Kruit JK. Failure to repair endogenous DNA damage in β-cells causes adult-onset diabetes in mice. AGING BIOLOGY 2023; 1:20230015. [PMID: 38124711 PMCID: PMC10732477 DOI: 10.59368/agingbio.20230015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in β-cells can drive β-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in β-cells. Mice harboring Ercc1-deficient β-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in β-cells and a significant loss of β-cell mass. Using electron microscopy, we identified β-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some β-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in β-cells also resulted in loss of β-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient β-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive β-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ana P. Huerta Guevara
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea C. Postmus
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rafael R. Flores
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Tokio Sano
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Angelika Jurdzinski
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luise Angelini
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Sara J. McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ryan D. O’Kelly
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Erin A. Wade
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Lisa V. Gonzalez-Espada
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Danielle Henessy-Wack
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Shannon Howard
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Tania A. Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Christy E. Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul D. Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Janine K. Kruit
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Bragagna L, Polak C, Schütz L, Maqboul L, Klammer C, Feldbauer R, Draxler A, Clodi M, Wagner KH. Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers. Int J Mol Sci 2023; 24:13608. [PMID: 37686414 PMCID: PMC10487933 DOI: 10.3390/ijms241713608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Glucose variability (GV), which describes fluctuations in blood glucose levels within the day, is a phenomenon that is increasingly becoming the target of scientific attention when it comes to increased risk of coronary heart disease. Effects of GV may contribute to the development of metabolic syndrome and type 2 diabetes. Hyperglycemia can lead to oxidative stress resulting in molecular damage due to accumulation of reactive oxygen species (ROS). To discover more about the immediate effects of GV, continuous vs. bolus intravenous glucose administration was applied to 10 healthy men aged 21-30 years over a time frame of 48 h. Whole blood and plasma were analyzed for DNA damage using a comet assay with 3 different treatments (lysis buffer, H2O2, and the lesion-specific enzyme formamidopyrimidine DNA glycosylase (FPG)) as well as for the oxidative stress markers protein carbonyls (PC), unconjugated bilirubin (UCB), and ferric reducing antioxidant power (FRAP). A significant time effect was found in the three DNA damage treatments as well as in PC and UCB possibly due to circadian changes on oxidative stress, but no intervention group effect was observed for any of the markers. In conclusion, bolus vs. continuous glucose administration had no significant acute effect on DNA damage and markers of oxidative stress in healthy men.
Collapse
Affiliation(s)
- Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Christina Polak
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Lisa Schütz
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Carmen Klammer
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler University Linz (JKU Linz), 4040 Linz, Austria
| | - Roland Feldbauer
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
| | - Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Martin Clodi
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler University Linz (JKU Linz), 4040 Linz, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| |
Collapse
|
10
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
11
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li J, Liu H, Xing J, Zhang Y, Li N. Triptolide enhances carboplatin-induced apoptosis by inhibiting nucleotide excision repair (NER) activity in melanoma. Front Pharmacol 2023; 14:1157433. [PMID: 37324464 PMCID: PMC10267402 DOI: 10.3389/fphar.2023.1157433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.
Collapse
Affiliation(s)
- Geng Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongmin Guo
- People’s Hospital of Changshou Chongqing, Chongqing, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Claspin-Dependent and -Independent Chk1 Activation by a Panel of Biological Stresses. Biomolecules 2023; 13:biom13010125. [PMID: 36671510 PMCID: PMC9855620 DOI: 10.3390/biom13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Replication stress has been suggested to be an ultimate trigger of carcinogenesis. Oncogenic signal, such as overexpression of CyclinE, has been shown to induce replication stress. Here, we show that various biological stresses, including heat, oxidative stress, osmotic stress, LPS, hypoxia, and arsenate induce activation of Chk1, a key effector kinase for replication checkpoint. Some of these stresses indeed reduce the fork rate, inhibiting DNA replication. Analyses of Chk1 activation in the cell population with Western analyses showed that Chk1 activation by these stresses is largely dependent on Claspin. On the other hand, single cell analyses with Fucci cells indicated that while Chk1 activation during S phase is dependent on Claspin, that in G1 is mostly independent of Claspin. We propose that various biological stresses activate Chk1 either directly by stalling DNA replication fork or by some other mechanism that does not involve replication inhibition. The former pathway predominantly occurs in S phase and depends on Claspin, while the latter pathway, which may occur throughout the cell cycle, is largely independent of Claspin. Our findings provide evidence for novel links between replication stress checkpoint and other biological stresses and point to the presence of replication-independent mechanisms of Chk1 activation in mammalian cells.
Collapse
|
13
|
Rahmoon MA, Elghaish RA, Ibrahim AA, Alaswad Z, Gad MZ, El-Khamisy SF, Elserafy M. High Glucose Increases DNA Damage and Elevates the Expression of Multiple DDR Genes. Genes (Basel) 2023; 14:144. [PMID: 36672885 PMCID: PMC9858638 DOI: 10.3390/genes14010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to induce genome instability, yet the links between DDR and glucose are still not well investigated. In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage induced in cells.
Collapse
Affiliation(s)
- Mai A. Rahmoon
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem A. Elghaish
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Aya A. Ibrahim
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Zina Alaswad
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Mohamed Z. Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sherif F. El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, Sheffield S10 2TN, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1 DP, UK
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
14
|
Hyperglycemia Negatively Affects IPSC-Derived Myoblast Proliferation and Skeletal Muscle Regeneration and Function. Cells 2022; 11:cells11223674. [PMID: 36429100 PMCID: PMC9688533 DOI: 10.3390/cells11223674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic myopathy is a co-morbidity diagnosed in most diabetes mellitus patients, yet its pathogenesis is still understudied, which hinders the development of effective therapies. This project aimed to investigate the effect of hyperglycemia on human myoblast physiology, devoid of other complicating factors, by utilizing human myoblasts derived from induced pluripotent stem cells (iPSCs), in a defined in vitro system. IPSC-derived myoblasts were expanded under three glucose conditions: low (5 mM), medium (17.5 mM) or high (25 mM). While hyperglycemic myoblasts demonstrated upregulation of Glut4 relative to the euglycemic control, myoblast proliferation demonstrated a glucose dose-dependent impedance. Further cellular analysis revealed a retarded cell cycle progression trapped at the S phase and G2/M phase and an impaired mitochondrial function in hyperglycemic myoblasts. Terminal differentiation of these hyperglycemic myoblasts resulted in significantly hypertrophic and highly branched myotubes with disturbed myosin heavy chain arrangement. Lastly, functional assessment of these myofibers derived from hyperglycemic myoblasts demonstrated comparatively increased fatigability. Collectively, the hyperglycemic myoblasts demonstrated deficient muscle regeneration capability and functionality, which falls in line with the sarcopenia symptoms observed in diabetic myopathy patients. This human-based iPSC-derived skeletal muscle hyperglycemic model provides a valuable platform for mechanistic investigation of diabetic myopathy and therapeutic development.
Collapse
|
15
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
16
|
Martins Peçanha FL, Jaafar R, Werneck-de-Castro JP, Apostolopolou CC, Bhushan A, Bernal-Mizrachi E. The Transcription Factor YY1 Is Essential for Normal DNA Repair and Cell Cycle in Human and Mouse β-Cells. Diabetes 2022; 71:1694-1705. [PMID: 35594378 PMCID: PMC9490361 DOI: 10.2337/db21-0908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Identifying the mechanisms behind the β-cell adaptation to failure is important to develop strategies to manage type 2 diabetes (T2D). Using db/db mice at early stages of the disease process, we took advantage of unbiased RNA sequencing to identify genes/pathways regulated by insulin resistance in β-cells. We demonstrate herein that islets from 4-week-old nonobese and nondiabetic leptin receptor-deficient db/db mice exhibited downregulation of several genes involved in cell cycle regulation and DNA repair. We identified the transcription factor Yin Yang 1 (YY1) as a common gene between both pathways. The expression of YY1 and its targeted genes was decreased in the db/db islets. We confirmed the reduction in YY1 expression in β-cells from diabetic db/db mice, mice fed a high-fat diet (HFD), and individuals with T2D. Chromatin immunoprecipitation sequencing profiling in EndoC-βH1 cells, a human pancreatic β-cell line, indicated that YY1 binding regions regulate cell cycle control and DNA damage recognition and repair. We then generated mouse models with constitutive and inducible YY1 deficiency in β-cells. YY1-deficient mice developed diabetes early in life due to β-cell loss. β-Cells from these mice exhibited higher DNA damage, cell cycle arrest, and cell death as well as decreased maturation markers. Tamoxifen-induced YY1 deficiency in mature β-cells impaired β-cell function and induced DNA damage. In summary, we identified YY1 as a critical factor for β-cell DNA repair and cell cycle progression.
Collapse
Affiliation(s)
| | - Rami Jaafar
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
| | | | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
- Corresponding author: Ernesto Bernal-Mizrachi,
| |
Collapse
|
17
|
Kciuk M, Gielecińska A, Kołat D, Kałuzińska Ż, Kontek R. Transcription factors in DNA damage response. Biochim Biophys Acta Rev Cancer 2022; 1877:188757. [PMID: 35781034 DOI: 10.1016/j.bbcan.2022.188757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transcription factors (TFs) constitute a wide and highly diverse group of proteins capable of controlling gene expression. Their roles in oncogenesis, tumor progression, and metastasis have been established, but recently their role in the DNA damage response pathway (DDR) has emerged. Many of them can affect elements of canonical DDR pathways, modulating their activity and deciding on the effectiveness of DNA repair. In this review, we focus on the latest reports on the effects of two TFs with dual roles in oncogenesis and metastasis (hypoxia-inducible factor-1 α (HIF1α), proto-oncogene MYC) and three epithelial-mesenchymal transition (EMT) TFs (twist-related protein 1 (TWIST), zinc-finger E-box binding homeobox 1 (ZEB1), and zinc finger protein 281 (ZNF281)) associated with control of canonical DDR pathways.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
18
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|