1
|
郭 舒, 曹 福, 郭 永, 李 言, 郝 新, 张 倬, 周 志, 仝 黎, 曹 江. [Activation of astrocytes in the dorsomedial hypothalamus accelerates sevoflurane anesthesia emergence in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:751-759. [PMID: 40294925 PMCID: PMC12037299 DOI: 10.12122/j.issn.1673-4254.2025.04.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To investigate the regulatory role of astrocytes in the dorsomedial hypothalamus (DMH) during sevoflurane anesthesia emergence. METHODS Forty-two male C57BL/6 mice were randomized into 6 groups (n=7) for assessing astrocyte activation in the dorsomedial hypothalamus (DMH) under sevoflurane anesthesia. Two groups of mice received microinjection of agfaABC1D promoter-driven AAV2 vector into the DMH for GCaMP6 overexpression, and the changes in astrocyte activity during sevoflurane or air inhalation were recorded using calcium imaging. For assessing optogenetic activation of astrocytes, another two groups of mice received microinjection of an optogenetic virus or a control vector into the DMH with optic fiber implantation, and sevoflurane anesthesia emergence was compared using behavioral experiments. In the remaining two groups, electroencephalogram (EEG) recording during sevoflurane anesthesia emergence was conducted after injection of the hChR2-expressing and control vectors. Anesthesia induction and recovery were assessed by observing the righting reflex. EEG data were recorded under 2.0% sevoflurane to calculate the burst suppression ratio (BSR) and under 1.5% sevoflurane for power spectrum analysis. Immunofluorescence staining was performed to visualize the colocalization of GFAP-positive astrocytes with viral protein signals. RESULTS Astrocyte activity in the DMH decreased progressively as sevoflurane concentration increased. During 2.0% sevoflurane anesthesia, the mice injected with the ChR2-expressing virus exhibited a significantly shortened wake-up time (P<0.05), and optogenetic activation of the DMH astrocytes led to a marked reduction in BSR (P<0.001). Under 1.5% sevoflurane anesthesia, optogenetic activation resulted in a significant increase in EEG gamma power and a significant decrease in delta power in ChR2 group (P<0.01). CONCLUSIONS Optogenetic activation of DMH astrocytes facilitates sevoflurane anesthesia emergence but does not significantly influence anesthesia induction. These findings offer new insights into the mechanisms underlying anesthesia emergence and may provide a potential target for accelerating postoperative recovery and managing anesthesia-related complications.
Collapse
|
2
|
Dovek L, Tinsley CE, Gutowsky K, McDaniel K, Potter Z, Ruffins M, Milman NEP, Wong C, Soumyanath A, Gray NE, Lim MM. Centella asiatica improves sleep quality and quantity in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636070. [PMID: 39974941 PMCID: PMC11838466 DOI: 10.1101/2025.02.01.636070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Age-related sleep disruption is common in older adults. Not only does the total amount of time spent in sleep decline, but the number of arousals during sleep increases with age. As sleep is important for both memory consolidation and to prevent neurodegenerative pathology, this decline in sleep and/or sleep consolidation may underlie age-related cognitive decline and dementias. Furthermore, treatment of sleep disruption can improve quality of life. However, few interventions have successfully reversed age-related sleep decline. Extracts from the plant Centella asiatica have demonstrated neuroprotective effects in human, rodent, and fly models of aging and neurodegenerative diseases, and is a promising intervention for dementias, yet little is known about how these extracts affect sleep patterns. Here, we administered Centella asiatica water extract ( CAW) dosed or control chow to male and female C57BL6/J mice aged 18 months. Effects on sleep composition were determined using electrodes that recorded EEG and EMG signals. We found that CAW dosed chow (1000 mg/kg/day) increased REM sleep time in aged male mice and decreased the number of arousals during sleep observed in aged females, compared to age- and sex-matched controls. We conclude that CAW administered in food has a moderate, sex-dependent effect on sleep quantity and quality. Statement of Significance Sleep declines with age and may underline age-related cognitive changes. However, few interventions have successfully reversed age-related sleep and cognitive decline. This study found that botanical extract from the plant Centella asiatica increased total REM sleep time in aged male mice, and decreased sleep fragmentation in aged female mice, compared to age- and sex-matched controls. Whether these moderate, sex-dependent effect sizes on sleep in aged mice are impactful enough to affect cognition, quality of life, and/or neurodegenerative pathology could be explored in future studies.
Collapse
|
3
|
Tokizane K, Imai SI. Inter-organ communication is a critical machinery to regulate metabolism and aging. Trends Endocrinol Metab 2024:S1043-2760(24)00320-5. [PMID: 39694728 DOI: 10.1016/j.tem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, 63110, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, 63110, MO, USA.
| |
Collapse
|
4
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
5
|
Urushihata T, Satoh A. Role of the central nervous system in cell non-autonomous signaling mechanisms of aging and longevity in mammals. J Physiol Sci 2024; 74:40. [PMID: 39217308 PMCID: PMC11365208 DOI: 10.1186/s12576-024-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
6
|
Sakai S, Tanaka Y, Tsukamoto Y, Kimura-Ohba S, Hesaka A, Hamase K, Hsieh CL, Kawakami E, Ono H, Yokote K, Yoshino M, Okuzaki D, Matsumura H, Fukushima A, Mita M, Nakane M, Doi M, Isaka Y, Kimura T. d -Alanine Affects the Circadian Clock to Regulate Glucose Metabolism in the Kidney. KIDNEY360 2024; 5:237-251. [PMID: 38098136 PMCID: PMC10914205 DOI: 10.34067/kid.0000000000000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Key Points d -Alanine affects the circadian clock to regulate gluconeogenesis in the kidney. d -Alanine itself has a clear intrinsic circadian rhythm, which is regulated by urinary excretion, and acts on the circadian rhythm. d -Alanine is a signal activator for circadian rhythm and gluconeogenesis through circadian transcriptional network. Background The aberrant glucose circadian rhythm is associated with the pathogenesis of diabetes. Similar to glucose metabolism in the kidney and liver, d -alanine, a rare enantiomer of alanine, shows circadian alteration, although the effect of d- alanine on glucose metabolism has not been explored. Here, we show that d- alanine acts on the circadian clock and affects glucose metabolism in the kidney. Methods The blood and urinary levels of d -alanine in mice were measured using two-dimensional high-performance liquid chromatography system. Metabolic effects of d -alanine were analyzed in mice and in primary culture of kidney proximal tubular cells from mice. Behavioral and gene expression analyses of circadian rhythm were performed using mice bred under constant darkness. Results d- Alanine levels in blood exhibited a clear intrinsic circadian rhythm. Since this rhythm was regulated by the kidney through urinary excretion, we examined the effect of d -alanine on the kidney. In the kidney, d -alanine induced the expressions of genes involved in gluconeogenesis and circadian rhythm. Treatment of d- alanine mediated glucose production in mice. Ex vivo glucose production assay demonstrated that the treatment of d -alanine induced glucose production in primary culture of kidney proximal tubular cells, where d -amino acids are known to be reabsorbed, but not in that of liver cells. Gluconeogenetic effect of d -alanine has an intraday variation, and this effect was in part mediated through circadian transcriptional network. Under constant darkness, treatment of d- alanine normalized the circadian cycle of behavior and kidney gene expressions. Conclusions d- Alanine induces gluconeogenesis in the kidney and adjusts the period of the circadian clock. Normalization of circadian cycle by d -alanine may provide the therapeutic options for life style–related diseases and shift workers.
Collapse
Affiliation(s)
- Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Youichi Tanaka
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Tsukamoto
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Shihoko Kimura-Ohba
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsushi Hesaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kenji Hamase
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chin-Ling Hsieh
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiryo Kawakami
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science (ADSP), RIKEN Information R&D and Strategy Headquarters, Yokohama, Kanagawa, Japan
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Hiraku Ono
- Department of Endocrinology, Hematology and Gerontorogy, Graduate School of Medicine, Chiba University,Chiba, Japan
| | - Kotaro Yokote
- Department of Endocrinology, Hematology and Gerontorogy, Graduate School of Medicine, Chiba University,Chiba, Japan
| | - Mitsuaki Yoshino
- Laboratory of Rare Disease Information and Resource library, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Hiroyo Matsumura
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Atsuko Fukushima
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | | | | | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Reverse Translational Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
7
|
Urushihata T, Goto M, Kabetani K, Kiyozuka M, Maruyama S, Tsuji S, Tada H, Satoh A. Evaluation of cellular activity in response to sleep deprivation by a comprehensive analysis of the whole mouse brain. Front Neurosci 2023; 17:1252689. [PMID: 37928729 PMCID: PMC10620513 DOI: 10.3389/fnins.2023.1252689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
Sleep deprivation (SD) causes several adverse functional outcomes, and understanding the associated processes can improve quality of life. Although the effects of SD on neuronal activity in several brain regions have been identified, a comprehensive evaluation of the whole brain is still lacking. Hence, we performed SD using two different methods, gentle handling and a dedicated chamber, in targeted recombination in active populations 2 (TRAP2) mice crossed with Rosa-ZsGreen reporter mice and visualized cellular activity in the whole brain. Using the semi-automated post-imaging analysis tool Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ), the number of activated cells was quantified. From the analysis of 14 brain regions, cellular activity was significantly increased in the olfactory areas and decreased in the medulla by the two SD methods. From the analysis of the further subdivided 348 regions, cellular activity was significantly increased in the vascular organ of the lamina terminalis, lateral hypothalamic area, parabigeminal nucleus, ventral tegmental area, and magnocellular reticular nucleus, and decreased in the anterior part of the basolateral amygdalar nucleus, nucleus accumbens, septohippocampal nucleus, reticular nucleus of the thalamus, preoptic part of the periventricular hypothalamic nucleus, ventromedial preoptic nucleus, rostral linear nucleus raphe, facial motor nucleus, vestibular nuclei, and some fiber tracts (oculomotor nerve, genu of corpus callosum, and rubrospinal tract) by the two SD methods. Two subdivided regions of the striatum (caudoputamen and other striatum), epithalamus, vascular organ of the lamina terminalis, anteroventral preoptic nucleus, superior colliculus optic layer, medial terminal nucleus of the accessory optic tract, pontine gray, and fiber tracts (medial lemniscus, columns of the fornix, brachium of the inferior colliculus, and mammillary peduncle) were differentially affected by the two SD methods. Most brain regions detected from these analyses have been reported to be involved in regulating sleep/wake regulatory circuits. Moreover, the results from the connectivity analysis indicated that the connectivity of cellular activity among brain regions was altered by SD. Together, such a comprehensive analysis of the whole brain is useful for understanding the mechanisms by which SD and/or sleep disruption affects brain function.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mio Goto
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Keiko Kabetani
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mai Kiyozuka
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shiho Maruyama
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
| | - Shogo Tsuji
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirobumi Tada
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|