1
|
Zhang ZR, Wu Y, Wang WJ, Wang FY. The Effect of GABAergic Cells Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review With Meta-Analysis. Front Neurol 2022; 13:900436. [PMID: 35860495 PMCID: PMC9289294 DOI: 10.3389/fneur.2022.900436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
The role of GABAergic cell transplantation in improving neuropathic pain is controversial. We comprehensively searched the relevant literature to identify animal studies of GABAergic cell transplantation that recorded pain behaviors as an outcome according to the Cochrane Handbook 5.0.2. Controlled studies assessing the administration of GABAergic neurons or GABAergic neuronal progenitor cells to rat or mouse neuropathic pain animal models were included. Basic design information and mechanical allodynia thresholds and heat hyperalgesia thresholds data were collected. The risk of bias for the animal experiments was assessed according to the SYRCLE's tool. This study included 10 full-text articles. GABAergic cells transplantation leads to a statistically significant improvement of allodynia (SMD = 5.26; 95% confidence interval: 3.02-7.51; P < 0.001) and hyperalgesia (SMD: 4.10; 95% confidence interval: 1.84-6.35; P < 0.001). Differentiated GABAergic cells and without antibiotics using may have a better effect for improving neuropathic pain. GABAergic cell transplantation is a promising treatment for improving neuropathic pain. This systematic review and meta-analysis evaluated the effects of GABAergic cell transplantation on neuropathic pain, which can guide future clinical trials and possible clinical treatments, and better attenuate neuropathic pain caused by abnormal circuit hyperexcitability.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Yao Wu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wen-Jing Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Fang-Yong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
2
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
3
|
CRISPR-Cas9-Mediated Gene Therapy in Neurological Disorders. Mol Neurobiol 2021; 59:968-982. [PMID: 34813019 DOI: 10.1007/s12035-021-02638-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Neurological disorders are primarily diseases with sophisticated etiology that are always refractory and recrudescent. The major obstruction to effective therapies for neurological disorders is the poor understanding of their pathogenic mechanisms. CRISPR-Cas9 technology, which allows precise and effective gene editing in almost any cell type and organism, is accelerating the pace of basic biological research. An increasing number of groups are focusing on uncovering the molecular mechanisms of neurological disorders and developing novel therapies using the CRISPR-Cas9 system. This review highlights the application of CRISPR-Cas9 technology in the treatment of neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis and/or frontotemporal dementia, Duchenne muscular dystrophy, Dravet syndrome, epilepsy, Huntington's disease, and Parkinson's disease. Hopefully, it will improve our understanding of neurological disorders and give insights into future treatments for neurological disorders.
Collapse
|
4
|
Huang H, Mao G, Chen L, Sharma HS. Clinical neurorestorative cell therapies for stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:231-247. [PMID: 34560922 DOI: 10.1016/bs.pbr.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clinical neurorestorative cell therapies for stroke have been explored for over 20 years. Majority cell therapies have shown neurorestorative effects for stroke on non-double-blind studies. In this review, we summarize types of cell transplantation, transplanted routes, therapeutic time windows, dosage, results of exploring trials or clinical studies, results of multicenter, double-blind or observing-blind, randomized, placebo-controlled clinical trials. The clinical application prospects of majority cell therapies for stroke need to prove their neurorestorative effects through trials with higher-level evidence-based medical evidence. Currently olfactory ensheathing cell is only one kind of cell to show neurorestorative effects through multicenter, double-blind, randomized, placebo-controlled clinical trials, which should be explored to optimize themselves effects and combination with others.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China; Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, People Republic of China.
| | - Gengsheng Mao
- Beijing Hongtianji Neuroscience Academy, Beijing, People Republic of China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Zhang S, Zhang S, Wang H, Huang X, Wang J, Li J, Cheng D, Wang H, Lu D, Wang Y. Silencing myelin protein zero-like 1 expression suppresses cell proliferation and invasiveness of human glioma cells by inhibiting multiple cancer-associated signal pathways. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.
Collapse
|
6
|
Guo X, Wang Y, Li Y, Liu Y, Liu Y, Chen D, Xiao J, Gao W, Zhou B, Liu Y, Liu R, Chen W, Liu F, Guo D, Mao G, Huang H. A pilot study of clinical cell therapies in Alzheimer’s disease. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease dominated by progressive cognitive dysfunction causing significant social, economic, and medical crises. Cell therapy has demonstrated favorable effects for AD. This pilot study examined the safety and neurorestorative effects of the olfactory ensheathing cell (OEC), olfactory neuron (ON), and Schwann cell (SC) on patients with AD. Seven patients with AD were enrolled in this two-center, randomized, double-blind, and placebo- controlled cell therapy study with a subsequent 12-month follow-up. We randomly assigned one or two participants in OEC, ON, and SC therapy or OEC combined with ON and placebo control. All enrolled patients were injected cells or medium into the olfactory sub-mucosa. They got an assessment of Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating before treatment and 1, 3, 6, 12 months after treatment. We performed MRI or CT scans before treatment and 12 months after treatment. After integrating the results from the three evaluation methods, all cell types showed better results than a placebo control. ON and SC seem to exhibit more vital potential neurorestorative ability to enhance or convert the neurological functions of patients with AD, and OEC may help AD patients keep neurological functions stable. In this pilot study, there was no adverse or side-effect event. The results of this study strongly suggest conducting a phase II clinical trial of ON, SC, and OEC therapy to prove their neurorestorative effect on patients with AD.
Collapse
|
7
|
Abstract
Facial nerve injury often results in facial paralysis, which seriously affects the patients both aesthetically and functionally. Facial nerve reinnervation methods, including direct anastomosis, nerve graft, nerve transposition, cross-facial nerve graft, and combined surgeries, have recently become a hot topic with many new procedures being explored. This study summarizes the relevant literatures and discusses the scope of application, advantages, and disadvantages of the different methods. The treatment options or combined surgeries for facial nerve reinnervation should be individualized for specific patients to achieve the best reanimation outcome with good static symmetry, facial tone, and spontaneous, natural, symmetrical, and strong facial movements.
Collapse
|
8
|
Zhang R, Zhang L, Guo Y, Shi L, Gao J, Wang X, Hu Y. Effects of High-Definition Transcranial Direct-Current Stimulation on Resting-State Functional Connectivity in Patients With Disorders of Consciousness. Front Hum Neurosci 2020; 14:560586. [PMID: 33100996 PMCID: PMC7546763 DOI: 10.3389/fnhum.2020.560586] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Recently a positive treatment effect on disorders of consciousness (DOCs) with high-definition transcranial direct-current stimulation (HD-tDCS) has been reported; however, the neural modulation mechanisms of this treatment’s efficacy need further investigation. To better understand the processing of HD-tDCS interventions, a long-lasting HD-tDCS protocol was applied to 15 unresponsive wakefulness syndrome (UWS) patients and 20 minimally conscious states (MCS) patients in this study. Ten minutes of resting-state electroencephalograms (EEGs) were recorded from the patients, and the coma recovery scale-revised scores (CRS-Rs) were assessed for each patient from four time-points (T0, T1, T2, and T3). Brain networks were constructed by calculating the EEG spectral connectivity using the debiased weighted phase lag index (dwPLI) and then quantified the network information transmission efficiency by graph theory. We found that there was an increasing trend in local and global information processing of beta and gamma bands in resting-state functional brain networks during the 14 days of HD-tDCS modulation for MCS patients. Furthermore, the increased functional connectivity not only occurred in the local brain area surrounding the stimulation position but was also present across more global brain areas. Our results suggest that long-lasting HD-tDCS on the precuneus may facilitate information processing among neural populations in MCS patients.
Collapse
Affiliation(s)
- Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Yongkun Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| | - Xinjun Wang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
9
|
Li B, Zhou X, Yi TL, Xu ZW, Peng DW, Guo Y, Guo YM, Cao YL, Zhu L, Zhang S, Cheng SX. Bloodletting Puncture at Hand Twelve Jing-Well Points Improves Neurological Recovery by Ameliorating Acute Traumatic Brain Injury-Induced Coagulopathy in Mice. Front Neurosci 2020; 14:403. [PMID: 32581664 PMCID: PMC7290011 DOI: 10.3389/fnins.2020.00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to hypocoagulopathy associated with prolonged bleeding and hemorrhagic progression. Bloodletting puncture therapy at hand twelve Jing-well points (BL-HTWP) has been applied as a first aid measure in various emergent neurological diseases, but the detailed mechanisms of the modulation between the central nervous system and systemic circulation after acute TBI in rodents remain unclear. To investigate whether BL-HTWP stimulation modulates hypocoagulable state and exerts neuroprotective effect, experimental TBI model of mice was produced by the controlled cortical impactor (CCI), and treatment with BL-HTWP was immediately made after CCI. Then, the effects of BL-HTWP on the neurological function, cerebral perfusion state, coagulable state, and cerebrovascular histopathology post-acute TBI were determined, respectively. Results showed that BL-HTWP treatment attenuated cerebral hypoperfusion and improve neurological recovery post-acute TBI. Furthermore, BL-HTWP stimulation reversed acute TBI-induced hypocoagulable state, reduced vasogenic edema and cytotoxic edema by regulating multiple hallmarks of coagulopathy in TBI. Therefore, we conclude for the first time that hypocoagulopathic state occurs after acute experimental TBI, and the neuroprotective effect of BL-HTWP relies on, at least in part, the modulation of hypocoagulable state. BL-HTWP therapy may be a promising strategy for acute severe TBI in the future.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China.,Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiu Zhou
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Ding-Wei Peng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong-Ming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Lin Cao
- Zhenxigu Medical Research Center, Beijing, China
| | - Lei Zhu
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair of Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin, China
| |
Collapse
|
10
|
Wang Y, Zeng L, Yao S, Zhu F, Liu C, Di Laura A, Henckel J, Shao Z, Hirschmann MT, Hart A, Guo X. Recommendations of protective measures for orthopedic surgeons during COVID-19 pandemic. Knee Surg Sports Traumatol Arthrosc 2020; 28:2027-2035. [PMID: 32524164 PMCID: PMC7283425 DOI: 10.1007/s00167-020-06092-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE It was the primary purpose of the present systematic review to identify the optimal protection measures during COVID-19 pandemic and provide guidance of protective measures for orthopedic surgeons. The secondary purpose was to report the protection experience of an orthopedic trauma center in Wuhan, China during the pandemic. METHODS A systematic search of the PubMed, Cochrane, Web of Science, Google Scholar was performed for studies about COVID-19, fracture, trauma, orthopedic, healthcare workers, protection, telemedicine. The appropriate protective measures for orthopedic surgeons and patients were reviewed (on-site first aid, emergency room, operating room, isolation wards, general ward, etc.) during the entire diagnosis and treatment process of traumatic patients. RESULTS Eighteen studies were included, and most studies (13/18) emphasized that orthopedic surgeons should pay attention to prevent cross-infection. Only four studies have reported in detail how orthopedic surgeons should be protected during surgery in the operating room. No detailed studies on multidisciplinary cooperation, strict protection, protection training, indications of emergency surgery, first aid on-site and protection in orthopedic wards were found. CONCLUSION Strict protection at every step in the patient pathway is important to reduce the risk of cross-infection. Lessons learnt from our experience provide some recommendations of protective measures during the entire diagnosis and treatment process of traumatic patients and help others to manage orthopedic patients with COVID-19, to reduce the risk of cross-infection between patients and to protect healthcare workers during work. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022 People’s Republic of China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022 People’s Republic of China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022 People’s Republic of China
| | - Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022 People’s Republic of China
| | - Chaozong Liu
- Royal National Orthopedic Hospital (RNOH) NHS Trust, University College London (UCL) Stanmore Campus, Brockley Hill, Stanmore, Middx, London, HA7 4LP UK
| | - Anna Di Laura
- Royal National Orthopedic Hospital (RNOH) NHS Trust, University College London (UCL) Stanmore Campus, Brockley Hill, Stanmore, Middx, London, HA7 4LP UK
| | - Johann Henckel
- Royal National Orthopedic Hospital (RNOH) NHS Trust, University College London (UCL) Stanmore Campus, Brockley Hill, Stanmore, Middx, London, HA7 4LP UK
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022 People’s Republic of China
| | - Michael T. Hirschmann
- Department of Orthopedic Surgery and Traumatology, Kantonsspital Baselland (Bruderholz, Liestal, Laufen), Bruderholz, Switzerland
| | - Alister Hart
- Royal National Orthopedic Hospital (RNOH) NHS Trust, University College London (UCL) Stanmore Campus, Brockley Hill, Stanmore, Middx, London, HA7 4LP UK
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment. Cells 2019; 8:cells8070712. [PMID: 31336937 PMCID: PMC6678174 DOI: 10.3390/cells8070712] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The pathogenesis of PD is complicated and remains obscure, but growing evidence suggests the involvement of mitochondrial and lysosomal dysfunction. Mitophagy, the process of removing damaged mitochondria, is compromised in PD patients and models, and was found to be associated with accelerated neurodegeneration. Several PD-related proteins are known to participate in the regulation of mitophagy, including PINK1 and Parkin. In addition, mutations in several PD-related genes are known to cause mitochondrial defects and neurotoxicity by disturbing mitophagy, indicating that mitophagy is a critical component of PD pathogenesis. Therefore, it is crucial to understand how these genes are involved in mitochondrial quality control or mitophagy regulation in the study of PD pathogenesis and the development of novel treatment strategies. In this review, we will discuss the critical roles of mitophagy in PD pathogenesis, highlighting the potential therapeutic implications of mitophagy regulation.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Weijin Liu
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruolin Li
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- Center of Parkinson's Disease Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing 100069, China.
| |
Collapse
|
12
|
Zhang Z, Wang F, Song M. The cell repair research of spinal cord injury: a review of cell transplantation to treat spinal cord injury. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through retrospective analysis of the literature on the cell repair of spinal cord injury worldwide, it is found that the mechanism of cell transplantation repairing spinal cord injury is mainly to replace damaged neurons, protect host neurons, prevent apoptosis, promote axonal regeneration and synapse formation, promote myelination, and secrete trophic factors or growth factors to improve microenvironment. A variety of cells are used to repair spinal cord injury. Stem cells include multipotent stem cells, embryonic stem cells, and induced pluripotent stem cells. The multipotent stem cells are mainly various types of mesenchymal stem cells and neural stem cells. Non-stem cells include olfactory ensheathing cells and Schwann cells. Transplantation of inhibitory interneurons to alleviate neuropathic pain in patients is receiving widespread attention. Different types of cell transplantation have their own advantages and disadvantages, and multiple cell transplantation may be more helpful to the patient’s functional recovery. These cells have certain effects on the recovery of neurological function and the improvement of complications, but further exploration is needed in clinical application. The application of a variety of cell transplantation, gene technology, bioengineering and other technologies has made the prospect of cell transplantation more extensive. There is a need to find a safe and effective comprehensive treatment to maximize and restore the patient’s performance.
Collapse
|