1
|
Huang H, Ramon-Cueto A, El Masri W, Moviglia GA, Saberi H, Sharma HS, Otom A, Chen L, Siniscalco D, Sarnowska A. Advances in Neurorestoratology-Current status and future developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:207-239. [PMID: 37783556 DOI: 10.1016/bs.irn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurorestoratology constitutes a novel discipline aimed at the restoration of damaged neural structures and impaired neurological functions. This area of knowledge integrates and compiles all concepts and strategies dealing with the neurorestoration. Although currently, this discipline has already been well recognized by physicians and scientists throughout the world, this article aimed at broadening its knowledge to the academic circle and the public society. Here we shortly introduced why and how Neurorestoratology was born since the fact that the central nervous system (CNS) can be repaired and the subsequent scientific evidence of the neurorestorative mechanisms behind, such as neurostimulation or neuromodulation, neuroprotection, neuroplasticity, neurogenesis, neuroregeneration or axonal regeneration or sprouting, neuroreplacement, loop reconstruction, remyelination, immunoregulation, angiogenesis or revascularization, and others. The scope of this discipline is the improvement of therapeutic approaches for neurological diseases and the development of neurorestorative strategies through the comprehensive efforts of experts in the different areas and all articulated by the associations of Neurorestoratology and its journals. Strikingly, this article additionally explores the "state of art" of the Neurorestoratology field. This includes the development process of the discipline, the achievements and advances of novel neurorestorative treatments, the most efficient procedures exploring and evaluating outcome after the application of pioneer therapies, all the joining of a multidisciplinary expert associations and the specialized journals being more and more impact. We believe that in a near future, this discipline will evolve fast, leading to a general application of cell-based comprehensive neurorestorative treatments to fulfill functional recovery demands for patients with neurological deficits or dysfunctions.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| | - Almudena Ramon-Cueto
- Health Center Colmenar Norte, Plaza de Los Ríos 1, Colmenar Viejo, Madrid, Spain
| | - Wagih El Masri
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Spinal Injuries Keele University, Oswestry, United Kingdom
| | - Gustavo A Moviglia
- Wake Forest Institute for Regenerative Medicine. Winston Salem, NC, United States
| | - Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ali Otom
- Royal Specialty Center for Spine & M-Skeletal Disorders, Amman, Jordan
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Sarnowska
- Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Huang H, Chen L, Moviglia G, Sharma A, Al Zoubi ZM, He X, Chen D. Advances and prospects of cell therapy for spinal cord injury patients. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.26599/jnr.2022.9040007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
3
|
Huang H, Chen L, Chopp M, Young W, Robert Bach J, He X, Sarnowaska A, Xue M, Chunhua Zhao R, Shetty A, Siniscalco D, Guo X, Khoshnevisan A, Hawamdeh Z. The 2020 Yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2021; 9:1-12. [PMID: 37387779 PMCID: PMC10289216 DOI: 10.26599/jnr.2021.9040002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 09/23/2023] Open
Abstract
COVID-19 has been an emerging and rapidly evolving risk to people of the world in 2020. Facing this dangerous situation, many colleagues in Neurorestoratology did their best to avoid infection if themselves and their patients, and continued their work in the research areas described in the 2020 Yearbook of Neurorestoratology. Neurorestorative achievements and progress during 2020 includes recent findings on the pathogenesis of neurological diseases, neurorestorative mechanisms and clinical therapeutic achievements. Therapeutic progress during this year included advances in cell therapies, neurostimulation/neuromodulation, brain-computer interface (BCI), and pharmaceutical neurorestorative therapies, which improved neurological functions and quality of life for patients. Four clinical guidelines or standards of Neurorestoratology were published in 2020. Milestone examples include: 1) a multicenter randomized, double-blind, placebo-controlled study of olfactory ensheathing cell treatment of chronic stroke showed functional improvements; 2) patients after transhumeral amputation experienced increased sensory acuity and had improved effectiveness in work and other activities of daily life using a prosthesis; 3) a patient with amyotrophic lateral sclerosis used a steady-state visual evoked potential (SSVEP)-based BCI to achieve accurate and speedy computer input; 4) a patient with complete chronic spinal cord injury recovered both motor function and touch sensation with a BCI and restored ability to detect objects by touch and several sensorimotor functions. We hope these achievements motivate and encourage other scientists and physicians to increase neurorestorative research and its therapeutic applications.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, 100143, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine Beijing, Beijing, 100007, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Wise Young
- Department of Cell Biochemistry and Neuroscience, Rutgers University, New Jersey, USA
| | - John Robert Bach
- Center for Ventilator Management Alternatives, University Hospital, Newark, New Jersey, USA
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Anna Sarnowaska
- Translational Platform for Regenerative Medicine & Cell Therapy Team of The Central Nervous System Diseases, Polish Academy of Sciences, Warsaw, Poland
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Henan Joint International Laboratory of Intracerebral Hemorrhagic Brain Injury, Zhengzhou, 450001, Henan, China
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Ashok Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, USA
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli" via S. Maria di Costantinopoli, 16 80138, Naples, Italy
| | - Xiaoling Guo
- Neurological Center, The 981 Hospital of PLA, Chengde, 067000, Hebei, China
| | | | - Ziad Hawamdeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kuang N, Wang X, Chen Y, Liu G, Kong F, Wang N, Feng R, Wang Y, Du X, Zheng Z. Olfactory ensheathing cell transplantation for chronic spinal cord injury: A long-term follow-up study. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spinal cord injury is a serious disabling condition. Transplantation of olfactory ensheathing cells (OECs) is one of the most promising treatments for spinal cord injury (SCI). Thirty-nine patients with chronic SCI received OEC transplantation and completed long-term follow-up, with a minimum follow-up of 7 years. We assessed sensorimotor function with the American Spinal Injury Association (ASIA) Impairment Scale (AIS) and autonomic nervous function by the International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI), and sympathetic skin responses (SSR). The scores of each group were significantly higher after OECs transplantation than before treatment. SSR latencies were shorter and response amplitudes increased after treatment. Long-term follow-up showed further improvement only in motor function and autonomic function compared with 3 months postoperatively. No complications occurred in any patient during long-term follow-up. The results indicate that the transplantation of OECs in spinal cord restored function without serious side effects.
Collapse
|
5
|
Wang Y, Guo X, Liu Y, Li Y, Liu Y, Chen D, Xiao J, Gao W, Liu Y, Zhou B, Liu R, Liu F, Chen W, Guo D, Mao G, Huang H. A pilot study of clinical cell therapy for patients with vascular dementia. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Vascular dementia (VD) is a series of clinical and neurophysiological manifestations caused by cerebrovascular disease. As the human lifespan increases, the number of people affected by age-related dementia is growing at an alarming pace, but no proved therapeutic methods can stop it from getting worse. Objective: To investigate the neurorestorative effects of injecting olfactory ensheathing cells (OECs), Schwann cells (SCs), and olfactory receptor neurons (ORNs) into olfactory sub-mucosa in VD patients. Methods: A pilot study of double-blind randomized controlled cell therapies was conducted in VD patients (n = 5). Cells were injected into the patients’ olfactory sub-mucosa. Two patients received OEC treatment, one received SC treatment, one ORN treatment, and one OEC combined with ORN. Mental state and cognitive function were observed before treatment and 1, 3, 6, and 12 months after treatment. magnetic resonance imaging (MRI) or computed tomography (CT) was performed before treatment and 12 months after treatment. Results: The directional function score on the Mini-Mental Status Examination (MMSE) in the patient who received SC treatment had increased slightly 1 and 3 months after treatment. The scores for orientation, attention, delayed verbal recall, and repetition increased in the ORN group patient 1 month after treatment. The orientation and repetition scores of the ORN group patient continued to increase 3 months after treatment. The scores for attention, delayed verbal recall, and phase 3 command decreased in the OEC and the OEC + ORN group patients after treatment assessment Scores on the Montreal Cognitive Assessment (MoCA) and Clinical Dementia Rating (CDR) scale also improved in the ORN group patient. Clinical and MRI or CT examinations did not find any side effects from the cell therapy or transplanting procedure. Conclusion: All of the cell transplantations were found to be safe. ORN was shown to be a promising therapy for VD patients. Phase II clinical trials of ORN, SC, and OEC therapy are required to verify their effects on VD symptoms, especially ORNs.
Collapse
|
6
|
Guo X, Wang Y, Li Y, Liu Y, Liu Y, Chen D, Xiao J, Gao W, Zhou B, Liu Y, Liu R, Chen W, Liu F, Guo D, Mao G, Huang H. A pilot study of clinical cell therapies in Alzheimer’s disease. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease dominated by progressive cognitive dysfunction causing significant social, economic, and medical crises. Cell therapy has demonstrated favorable effects for AD. This pilot study examined the safety and neurorestorative effects of the olfactory ensheathing cell (OEC), olfactory neuron (ON), and Schwann cell (SC) on patients with AD. Seven patients with AD were enrolled in this two-center, randomized, double-blind, and placebo- controlled cell therapy study with a subsequent 12-month follow-up. We randomly assigned one or two participants in OEC, ON, and SC therapy or OEC combined with ON and placebo control. All enrolled patients were injected cells or medium into the olfactory sub-mucosa. They got an assessment of Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating before treatment and 1, 3, 6, 12 months after treatment. We performed MRI or CT scans before treatment and 12 months after treatment. After integrating the results from the three evaluation methods, all cell types showed better results than a placebo control. ON and SC seem to exhibit more vital potential neurorestorative ability to enhance or convert the neurological functions of patients with AD, and OEC may help AD patients keep neurological functions stable. In this pilot study, there was no adverse or side-effect event. The results of this study strongly suggest conducting a phase II clinical trial of ON, SC, and OEC therapy to prove their neurorestorative effect on patients with AD.
Collapse
|
7
|
Li Y, He J, Yang B, Zhang H, Yang Z, Fu J, Huang L, Chen H, Yang X, Bao Y. Clinical diagnosis guidelines and neurorestorative treatment for chronic disorders of consciousness (2021 China version). JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chronic disorders of consciousness (DOC) include the vegetative state and the minimally consciousness state. The DOC diagnosis mainly relies on the evaluation of clinical behavioral scales, electrophysiological testing, and neuroimaging examinations. No specifically effective neurorestorative methods for chronic DOC currently exist. Any valuable exploration therapies of being able to repair functions and/or structures in the consciousness loop (e.g., drugs, hyperbaric medicines, noninvasive neurostimulation, sensory and environmental stimulation, invasive neuromodulation therapy, and cell transplantation) may become effective neurorestorative strategies for chronic DOC. In the viewpoint of Neurorestoratology, this guideline proposes the diagnostic and neurorestorative therapeutic suggestions and future exploration direction for this disease following the review of the existing treatment exploration achievements for chronic DOC.
Collapse
|