1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
Bashor L, Rawlinson JE, Kozakiewicz CP, Behzadi E, Miller C, Kim J, Conry M, Nehring M, Carver S, Abdo Z, VandeWoude S. Impacts of Antiretroviral Therapy on the Oral Microbiome and Periodontal Health of Feline Immunodeficiency Virus Positive Cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602918. [PMID: 39026780 PMCID: PMC11257590 DOI: 10.1101/2024.07.10.602918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Feline immunodeficiency virus (FIV) is the domestic cat analogue of HIV infection in humans. Both viruses induce oral disease in untreated individuals, with clinical signs that include gingivitis and periodontal lesions. Oral disease manifestations in HIV patients are abated by highly effective combination antiretroviral therapy (cART), though certain oral manifestations persist despite therapy. Microorganisms associated with oral cavity opportunistic infections in patients with HIV cause similar pathologies in cats. To further develop this model, we evaluated characteristics of feline oral health and oral microbiome during experimental FIV infection over an 8-month period following cART. Using 16S metagenomics sequencing, we evaluated gingival bacterial communities at four timepoints in uninfected and FIV-infected cats treated with cART or placebo. Comprehensive oral examinations were also conducted by a veterinary dental specialist over the experimental period. Gingival inflammation was higher in FIV-infected cats treated with placebo compared to cART-treated cats and controls at study endpoint. Oral microbiome alpha diversity increased in all groups, while beta diversity differed among treatment groups, documenting a significant effect of cART therapy on microbiome community composition. This finding has not previously been reported and indicates cART ameliorates immunodeficiency virus-associated oral disease via preservation of oral mucosal microbiota. Further, this study illustrates the value of the FIV animal model for investigations of mechanistic associations and therapeutic interventions for HIV oral manifestations.
Collapse
Affiliation(s)
- Laura Bashor
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer E Rawlinson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Elisa Behzadi
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Jeffrey Kim
- Comparative Medicine Research Unit, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Megan Conry
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- Odum School of Ecology, University of Georgia, Athens, GA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Azadian A, Gunn-Moore DA. Age-related cognitive impairments in domestic cats naturally infected with feline immunodeficiency virus. Vet Rec 2022; 191:e1683. [PMID: 35512238 DOI: 10.1002/vetr.1683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Age-related dementia has been documented in domestic cats; however, its interaction with naturally occurring feline immunodeficiency virus (FIV) infection has been investigated minimally. METHODS Visuospatial working memory (VSWM) and problem-solving (PS) ability were evaluated in FIV-infected (n = 37) and control cats (n = 39) using two cognitive tasks tested serially, which assessed the ability of cats to remember the location of a baited container after a set delay, then evaluated the capability of the cats to manipulate the container to obtain the food within a time limit. Cats were categorized using 7 years of age as a cut-off to determine age-related differences. The relationship between cognitive performance and FIV viral load was investigated using real-time PCR cycle threshold (Ct ) values. RESULTS Age significantly affected VSWM and PS ability. Younger cats had better VSWM performance and PS ability compared to older cats with the same FIV status. There was no difference between younger FIV-positive and negative cats in either part of the task. While older FIV-positive cats had significantly worse VSWM than older FIV-negative cats, no differences were found in PS ability. Additionally, Ct values predicted VSWM but not PS ability. CONCLUSION Age-related cognitive impairments and FIV infection appear synergetic, causing greater cognitive deficits in older FIV-infected cats.
Collapse
Affiliation(s)
- Amin Azadian
- Animal Welfare Program, Faculty of Land and Food System, The University of British Columbia, Vancouver, Canada.,Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Danièlle A Gunn-Moore
- Division of Companion Animals, Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
4
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration. J Neurosci 2017; 36:10683-10695. [PMID: 27733618 DOI: 10.1523/jneurosci.1287-16.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
HIV-1 infection of the brain causes the neurodegenerative syndrome HIV-associated neurocognitive disorders (HAND), for which there is no specific treatment. Herein, we investigated the actions of insulin using ex vivo and in vivo models of HAND. Increased neuroinflammatory gene expression was observed in brains from patients with HIV/AIDS. The insulin receptor was detected on both neurons and glia, but its expression was unaffected by HIV-1 infection. Insulin treatment of HIV-infected primary human microglia suppressed supernatant HIV-1 p24 levels, reduced CXCL10 and IL-6 transcript levels, and induced peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. Insulin treatment of primary human neurons prevented HIV-1 Vpr-mediated cell process retraction and death. In feline immunodeficiency virus (FIV) infected cats, daily intranasal insulin treatment (20.0 IU/200 μl for 6 weeks) reduced CXCL10, IL-6, and FIV RNA detection in brain, although PPAR-γ in glia was increased compared with PBS-treated FIV+ control animals. These molecular changes were accompanied by diminished glial activation in cerebral cortex and white matter of insulin-treated FIV+ animals, with associated preservation of cortical neurons. Neuronal counts in parietal cortex, striatum, and hippocampus were higher in the FIV+/insulin-treated group compared with the FIV+/PBS-treated group. Moreover, intranasal insulin treatment improved neurobehavioral performance, including both memory and motor functions, in FIV+ animals. Therefore, insulin exerted ex vivo and in vivo antiviral, anti-inflammatory, and neuroprotective effects in models of HAND, representing a new therapeutic option for patients with inflammatory or infectious neurodegenerative disorders including HAND. SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HAND) represent a spectrum disorder of neurocognitive dysfunctions resulting from HIV-1 infection. Although the exact mechanisms causing HAND are unknown, productive HIV-1 infection in the brain with associated neuroinflammation is a potential pathogenic mechanism resulting in neuronal damage and death. We report that, in HIV-infected microglia cultures, insulin treatment led to reduced viral replication and inflammatory gene expression. In addition, intranasal insulin treatment of experimentally feline immunodeficiency virus-infected animals resulted in improved motor and memory performances. We show that insulin restored expression of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which is suppressed by HIV-1 replication. Our findings indicate a unique function for insulin in improving neurological outcomes in lentiviral infections, implicating insulin as a therapeutic intervention for HAND.
Collapse
|
6
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Medeiros SDO, Martins AN, Dias CGA, Tanuri A, Brindeiro RDM. Natural transmission of feline immunodeficiency virus from infected queen to kitten. Virol J 2012; 9:99. [PMID: 22632459 PMCID: PMC3439265 DOI: 10.1186/1743-422x-9-99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 05/25/2012] [Indexed: 01/26/2023] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus that infects cats. The primary mode of transmission occurs through bite wounds, and other routes are difficult to observe in nature. Findings The purpose of this study was to evaluate FIV transmission from queen to kitten in a colony of naturally infected stray cats. With this aim, a queen was monitored over a period of three years. A blood sample was taken to amplify and sequence gag, pol and env regions of the virus from the queen, two kittens and other cats from the colony. Conclusion Phylogenetic analysis showed evidence of queen to kitten transmission.
Collapse
|
8
|
Kuhnt LA, Jennings RN, Brawner WR, Hathcock JT, Carreno AD, Johnson CM. Magnetic resonance imaging of radiation-induced thymic atrophy as a model for pathologic changes in acute feline immunodeficiency virus infection. J Feline Med Surg 2009; 11:977-84. [PMID: 19540785 PMCID: PMC11318762 DOI: 10.1016/j.jfms.2009.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2009] [Indexed: 01/26/2023]
Abstract
The development of a protocol to reproducibly induce thymic atrophy, as occurs in feline immunodeficiency virus (FIV) infection and other immunosuppressive diseases, and to consistently estimate thymic volume, provides a valuable tool in the search of innovative and novel therapeutic strategies. Magnetic resonance imaging (MRI) using the short tau inversion recovery (STIR) technique, with fat suppression properties, was determined to provide an optimized means of locating, defining, and quantitatively estimating thymus volume in young cats. Thymic atrophy was induced in four, 8-10-week-old kittens with a single, directed 500 cGy dose of 6 MV X-rays from a clinical linear accelerator, and sequential MR images of the cranial mediastinum were collected at 2, 7, 14, and 21 days post irradiation (PI). Irradiation induced a severe reduction in thymic volume, which was decreased, on average, to 47% that of normal, by 7 days PI. Histopathology confirmed marked, diffuse thymic atrophy, characterized by reduced thymic volume, decreased overall cellularity, increased apoptosis, histiocytosis, and reduced distinction of the corticomedullary junction, comparable to that seen in acute FIV infection. Beginning on day 7 PI, thymic volumes rebounded slightly and continued to increase over the following 14 days, regaining 3-35% of original volume. These findings demonstrate the feasibility and advantages of using this non-invasive, in vivo imaging technique to measure and evaluate changes in thymic volume in physiologic and experimental situations. All experimental protocols in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at Auburn University.
Collapse
Affiliation(s)
- Leah A Kuhnt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Risk of equine infectious anemia virus disease transmission through in vitro embryo production using somatic cell nuclear transfer. Theriogenology 2009; 72:289-99. [DOI: 10.1016/j.theriogenology.2009.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/20/2009] [Accepted: 03/28/2009] [Indexed: 11/23/2022]
|
10
|
Carreño AD, Mergia A, Novak J, Gengozian N, Johnson CM. Loss of naïve (CD45RA+) CD4+ lymphocytes during pediatric infection with feline immunodeficiency virus. Vet Immunol Immunopathol 2008; 121:161-8. [PMID: 17964661 DOI: 10.1016/j.vetimm.2007.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/14/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
Feline immunodeficiency virus (FIV) infection of cats is an animal model for the pathogenesis of CD4+ lymphopenia and thymus dysfunction in HIV-infected humans. Recently, a monoclonal antibody (755) was reported to recognize the feline homologue to CD45RA, allowing the enumeration of naïve T cells in cats. We tested the hypothesis that pediatric FIV infection would be associated with a selective loss of naïve CD4+ lymphocytes by inoculating newborn cats with a pathogenic clone of FIV (JSY3) or a related clone with an inactive ORF-A gene (JSY3-DeltaORFA), and compared the data to age-matched uninfected control cats. Both FIV inocula were associated with a reduction in the CD4-CD8 ratio (p=0.01), which was attributable to a disproportionate loss of naïve CD4+ cells (p=0.01) vs. naïve CD8+ cells. Therefore, the reduced CD4:CD8 ratio in FIV-infected juvenile cats is associated with a selective depletion of naïve CD4+ cells from the blood.
Collapse
Affiliation(s)
- Abigail D Carreño
- Department of Pathobiology, Auburn University, Auburn, AL 36849, United States
| | | | | | | | | |
Collapse
|
11
|
Esteves PJ, Abrantes J, van der Loo W. Extensive gene conversion between CCR2 and CCR5 in domestic cat (Felis catus). Int J Immunogenet 2007; 34:321-4. [PMID: 17845301 DOI: 10.1111/j.1744-313x.2007.00716.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Homogenization of the CC-motif chemokine receptors CCR2 and CCR5 of cat (Felis catus) is documented and shown to be the outcome of gene conversion within the feline lineage. All regions were concerned, except the three extracellular protein domains (N- and C-tails, and ECL2), suggesting that structural differentiation at these domains could be related to pathogen susceptibility.
Collapse
Affiliation(s)
- P J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal.
| | | | | |
Collapse
|