1
|
Ren Z, Shao F, Chen S, Sun Y, Ding Z, Dong L, Zhang J, Zang Y. Contribution of alterations in peritubular capillary density and microcirculation to the progression of tubular injury and kidney fibrosis. J Pathol 2025; 266:95-108. [PMID: 40103536 DOI: 10.1002/path.6414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
Peritubular capillary (PTC) rarefaction is a common pathological feature of chronic kidney disease (CKD). The critical function of PTCs in maintaining blood supply for tubular epithelial cells renders PTCs a promising therapeutic target. However, the role of PTC rarefaction in the progression of kidney fibrosis remains elusive. In this study, we first characterized mice with altered PTC density. CD31 staining, together with microvascular network perfusion with FITC-labelled albumin and laser speckle contrast imaging, revealed a significant increase in PTC density in Flt1 heterozygous-deficient mice, whereas homozygous disruption of the plasminogen activator, urokinase receptor gene (Plaur/uPAR), led to a notable decrease in PTC density. Using these genetically distinct mice, we showed that preexisting higher PTC density protected against tubular injury and attenuated the progression of tubulointerstitial fibrosis in two distinct kidney injury models, namely, ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO). By contrast, Plaur-deficient mice with established lower PTC density displayed exacerbated tubular injury and renal fibrosis when subjected to IRI or UUO. The pathophysiological significance of PTC density was associated with protective effects on tubular cell apoptosis and concomitant regeneration. Finally, vasodilation of the renal capillary with minoxidil, a clinically available drug, effectively prevented UUO-induced tubular injury and renal fibrosis. Moreover, minoxidil treatment abolished the detrimental effect of Plaur deficiency on the UUO-treated kidney, thus suggesting a causative role of PTC density in the susceptibility of Plaur knockout mice to tubular injury following fibrosis. Our results provide an overview of the pathologic significance of PTC density alterations in the progression of CKD, and show that improving peritubular microcirculation is effective in preventing tubular injury and the subsequent renal fibrosis. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Shuli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
2
|
Wang L, Li KP, Chen SY, Wan S, Li XR, Yang L. Proteome-wide mendelian randomization identifies therapeutic targets for nephrolithiasis. Urolithiasis 2024; 52:126. [PMID: 39237840 DOI: 10.1007/s00240-024-01627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Kidney Stone Disease (KSD) constitutes a multifaceted disorder, emerging from a confluence of environmental and genetic determinants, and is characterized by a high frequency of occurrence and recurrence. Our objective is to elucidate potential causative proteins and identify prospective pharmacological targets within the context of KSD. This investigation harnessed the unparalleled breadth of plasma protein and KSD pooled genome-wide association study (GWAS) data, sourced from the United Kingdom Biobank Pharma Proteomics Project (UKBPPP) and the FinnGen database version R10. Through Mendelian randomization analysis, proteins exhibiting a causal influence on KSD were pinpointed. Subsequent co-localization analyses affirmed the stability of these findings, while enrichment analyses evaluated their potential for pharmacological intervention. Culminating the study, a phenome-wide association study (PheWAS) was executed, encompassing all phenotypes (2408 phenotypes) catalogued in the FinnGen database version R10. Our MR analysis identified a significant association between elevated plasma levels of proteins FKBPL, ITIH3, and SERPINC1 and increased risk of KSD based on genetic predictors. Conversely, proteins CACYBP, DAG1, ITIH1, and SEMA6C showed a protective effect against KSD, documented with statistical significance (PFDR<0.05). Co-localization analysis confirmed these seven proteins share genetic variants with KSD, signaling a shared genetic basis (PPH3 + PPH4 > 0.8). Enrichment analysis revealed key pathways including hyaluronan metabolism, collagen-rich extracellular matrix, and serine-type endopeptidase inhibition. Additionally, our PheWAS connected the associated proteins with 356 distinct diseases (PFDR<0.05), highlighting intricate disease interrelations. In conclusion, our research elucidated a causal nexus between seven plasma proteins and KSD, enriching our grasp of prospective therapeutic targets.
Collapse
Affiliation(s)
- Li Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Xiao-Ran Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, China.
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, China.
| |
Collapse
|
3
|
Stefania K, Ashok KK, Geena PV, Katarina P, Isak D. TMAO enhances TNF-α mediated fibrosis and release of inflammatory mediators from renal fibroblasts. Sci Rep 2024; 14:9070. [PMID: 38643262 PMCID: PMC11032383 DOI: 10.1038/s41598-024-58084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.
Collapse
Affiliation(s)
- Kapetanaki Stefania
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden.
- Nephrology Department, Karolinska University Hospital, 171 76, Solna, Sweden.
- Nephrology Department, Karolinska University Hospital, 141 86, Huddinge, Stockholm, Sweden.
| | - Kumawat Kumar Ashok
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| | | | - Persson Katarina
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| | - Demirel Isak
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| |
Collapse
|
4
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
5
|
Lam T, Medcalf RL, Cloud GC, Myles PS, Keragala CB. Tranexamic acid for haemostasis and beyond: does dose matter? Thromb J 2023; 21:94. [PMID: 37700271 PMCID: PMC10496216 DOI: 10.1186/s12959-023-00540-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Tranexamic acid (TXA) is a widely used antifibrinolytic agent that has been used since the 1960's to reduce blood loss in various conditions. TXA is a lysine analogue that competes for the lysine binding sites in plasminogen and tissue-type plasminogen activator impairing its interaction with the exposed lysine residues on the fibrin surface. The presence of TXA therefore, impairs the plasminogen and tPA engagement and subsequent plasmin generation on the fibrin surface, protecting fibrin clot from proteolytic degradation. However, critical lysine binding sites for plasmin(ogen) also exist on other proteins and on various cell-surface receptors allowing plasmin to exert potent effects on other targets that are unrelated to classical fibrinolysis, notably in relation to immunity and inflammation. Indeed, TXA was reported to significantly reduce post-surgical infection rates in patients after cardiac surgery unrelated to its haemostatic effects. This has provided an impetus to consider TXA in other indications beyond inhibition of fibrinolysis. While there is extensive literature on the optimal dosage of TXA to reduce bleeding rates and transfusion needs, it remains to be determined if these dosages also apply to blocking the non-canonical effects of plasmin.
Collapse
Affiliation(s)
- Tammy Lam
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Geoffrey C Cloud
- Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne VIC, Australia
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne VIC, Australia
| | - Charithani B Keragala
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia.
| |
Collapse
|
6
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
7
|
Renal and Inflammatory Proteins as Biomarkers of Diabetic Kidney Disease and Lupus Nephritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5631099. [PMID: 35355862 PMCID: PMC8958067 DOI: 10.1155/2022/5631099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
Abstract
Current methods for differentiation of kidney disease types are unspecific and may be invasive. Thus, there is a need for development of new biomarkers of kidney disorders that are specific and less invasive. In this study, we analyzed serum samples of diabetic kidney disease (DKD) and lupus nephritis (LN) patients to identify biomarkers of these two disorders. Serum samples were analyzed by Simple Plex assays. We calculated the area under the curve (AUC) as well as receiver operating characteristics (ROC) to obtain the sensitivity and specificity and other biomarker-related variables of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), interleukin- (IL-) 18, Lipocalin-2/NGAL, epidermal growth factor (EGF), u-Plasminogen Activator (uPA), and C-reactive protein (CRP) as potential biomarkers. Protein levels of ASC, IL-18, EGF, and Lipocalin-2/NGAL were higher in DKD and LN patients when compared to controls, whereas only uPA was elevated in DKD patients and CRP in LN patients. As determined by the AUC, of the six analytes studied, EGF (AUC = 0.9935), Lipocalin-2/NGAL (0.9554), ASC (0.7666), and uPA (0.7522) are reliable biomarkers of DKD, whereas EGF (1.000), Lipocalin-2/NGAL (0.9412), uPA (0.7443), and IL-18 (0.7384) are more reliable for LN. The biomarkers analyzed can differentiate between healthy and affected individuals. However, there was no difference between the levels of these biomarkers in DKD vs LN. Thus, although these biomarkers cannot be used to categorize patients between DKD and LN, they are useful as biomarkers of renal pathology.
Collapse
|
8
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
9
|
Majumder S, Amin M, Pushpakumar S, Sen U. Collagen receptor- and metalloproteinase-dependent hypertensive stress response in mesangial and glomerular endothelial cells. Mol Cell Biochem 2020; 466:1-15. [PMID: 31912277 PMCID: PMC10809865 DOI: 10.1007/s11010-019-03680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022]
Abstract
Progressive alteration of the extracellular matrix (ECM) is the characteristic of hypertensive nephropathy (HN). Both mesangial and endothelial cells have the ability to synthesize and degrade ECM components, including collagens through the activation of matrix metalloproteinases (MMPs) in stress conditions, such as in hypertension. On the other hand, hydrogen sulfide (H2S) has been shown to mitigate hypertensive renal matrix remodeling. Surprisingly, whether H2S ameliorates receptor-mediated (urokinase plasminogen activator receptor-associated protein, uPARAP/Endo180) collagen dysregulation in Ang-II hypertension is not clear. The purpose of this study was to determine whether Ang-II alters the expression of Endo180, tissue plasminogen activator (tPA), MMPs, and their tissue inhibitors (TIMPs) leading to the dysregulation of cellular collagen homeostasis and whether H2S mitigates the collagen turnover. Mouse mesangial cells (MCs) and glomerular endothelial cells (MGECs) were treated without or with Ang-II and H2S donor GYY (GYY4137) for 48 h. Cell lysates were analyzed by Western blot and RT-PCR, and cells were analyzed by immunocytochemistry. The results indicated that, while Ang-II differentially expressed MMP-13 and TIMP-1 in MCs and in MGECs, it predominantly decreased tPA, Endo 180, and increased plasminogen activator inhibitor-1 (PAI-1), MMP-14, and collagen IIIA and IV in both the cell types. Interestingly, H2S donor GYY treatment normalized the above changes in both the cell types. We conclude that Ang-II treatment causes ECM remodeling in MCs and MGECs through PAI-1/tPA/Endo180 and MMP/TIMP-dependent collagen remodeling, and H2S treatment mitigates remodeling, in part, by modulating these pathways.
Collapse
Affiliation(s)
- Suravi Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew Amin
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Kaminski TW, Pawlak K, Karbowska M, Mysliwiec M, Grzegorzewski W, Kuna J, Pawlak D. Association between uremic toxin-anthranilic acid and fibrinolytic system activity in predialysis patients at different stages of chronic kidney disease. Int Urol Nephrol 2017; 50:127-135. [PMID: 29058166 PMCID: PMC5758659 DOI: 10.1007/s11255-017-1729-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic kidney disease (CKD) is an estimated risk factor for increased mortality and morbidity due to fibrinolytic system disturbances. Progressive loss of renal function leads to retention of uremic toxins. Anthranilic acid (AA) is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. The goal of this study was to examine the association between AA and the parameters of fibrinolysis at different stages of CKD. METHODS Patients with CKD were divided into two groups: mild-to-moderate (n = 20) and severe-to-end-stage CKD (n = 28). Seventeen healthy volunteers served as an additional control group. Parameters of fibrinolysis, inflammation, and monocytes activation were determined by ELISA immune-enzymatic kits. AA levels were evaluated using high-performance liquid chromatography. RESULTS AA concentration and parameters of fibrinolysis: urokinase-type plasminogen activator (uPA), its soluble receptor (suPAR), tissue plasminogen activator (tPA), tissue plasminogen activator inhibitor-1 (PAI-1) and plasmin-antiplasmin complex (PAP) were significantly elevated in the CKD groups compared with the controls. The markers of inflammation, monocyte activation, and impaired kidney function were also increased in those with CKD. AA was positively correlated with the uPA/suPAR system in the early stages of CKD, whereas during severe-to-end-stage CKD, inverse relationships were observed between AA, tPA and PAI-1. Additionally, AA was an independent variable associated with tPA in patients with CKD overall and with uPA levels in the mild-to-moderate CKD group. CONCLUSIONS Obtained results suggest for the first time the association between AA and the fibrinolytic system in CKD patients. The distinct relationship between AA and individual parameters of fibrinolysis appears to be dependent on CKD stage.
Collapse
Affiliation(s)
- Tomasz W Kaminski
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza Str., 15-089, Białystok, Poland.
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza Str., 15-089, Białystok, Poland
| | - Michal Mysliwiec
- Department of Nephrology and Clinical Transplantation, Medical University of Bialystok, Białystok, Poland
| | - Waldemar Grzegorzewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Jakub Kuna
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 2C Mickiewicza Str., 15-089, Białystok, Poland
| |
Collapse
|
11
|
Narayanaswamy PB, Baral TK, Haller H, Dumler I, Acharya K, Kiyan Y. Transcriptomic pathway analysis of urokinase receptor silenced breast cancer cells: a microarray study. Oncotarget 2017; 8:101572-101590. [PMID: 29254187 PMCID: PMC5731897 DOI: 10.18632/oncotarget.21351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023] Open
Abstract
Urokinase plasminogen activator receptor (PLAUR) has been implicated in a variety of physiological and pathological conditions. The multi-functionality of PLAUR is due to its capacity to interact with many co-receptors to regulate extracellular proteolysis and intracellular signaling. Recent reports are identifying novel functions of PLAUR which were not evident in the past; however, the molecular mechanisms of PLAUR signaling are not completely understood. Here, we have compared the transcriptomes of silencing control (sicon) and PLAUR silenced (PLAURsi) MDA-MB-231 breast cancer cells on treatment with radiation. We isolated RNA from the cells, synthesized cDNA and measured the gene expression changes by microarray. We identified 24 downregulated and 53 upregulated genes, which were significantly (P-value < 0.005) affected by PLAUR silencing. Our analysis revealed 415 canonical pathways and 743 causal disease networks affected on silencing PLAUR. Transcriptomic changes and predicted pathways supported and consolidated some of the earlier understanding in the context of PLAUR signaling; including our recent observations in DNA damage and repair process. In addition, we have identified several novel pathways where PLAUR is implicated.
Collapse
Affiliation(s)
| | - Tapan K Baral
- Shodhaka Life Sciences Private Limited, Bengaluru, India
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bengaluru, India.,Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Ranches G, Lukasser M, Schramek H, Ploner A, Stasyk T, Mayer G, Mayer G, Hüttenhofer A. In Vitro Selection of Cell-Internalizing DNA Aptamers in a Model System of Inflammatory Kidney Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:198-210. [PMID: 28918021 PMCID: PMC5504087 DOI: 10.1016/j.omtn.2017.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD) is a progressive pathological condition marked by a gradual loss of kidney function. Treatment of CKD is most effective when diagnosed at an early stage and patients are still asymptomatic. However, current diagnostic biomarkers (e.g., serum creatinine and urine albumin) are insufficient for prediction of the pathogenesis of the disease. To address this need, we applied a cell-SELEX (systematic evolution of ligands by exponential enrichment) approach and identified a series of DNA aptamers, which exhibit high affinity and selectivity for cytokine-stimulated cells, resembling some aspects of a CKD phenotype. The cell-SELEX approach was driven toward the enrichment of aptamers that internalize via the endosomal pathway by isolating the endosomal fractions in each selection cycle. Indeed, we demonstrated co-localization of selected aptamers with lysosomal-associated membrane protein 1 (LAMP-1), a late endosomal and lysosomal marker protein, by fluorescence in situ hybridization. These findings are consistent with binding and subsequent internalization of the aptamers into cytokine-stimulated cells. Thus, our study sets the stage for applying selected DNA aptamers as theragnostic reagents for the development of targeted therapies to combat CKD.
Collapse
Affiliation(s)
- Glory Ranches
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Division of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Melanie Lukasser
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Herbert Schramek
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Andreas Ploner
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria; Sandoz GmbH, Biochemiestrasse 10, Kundl 6250, Austria
| | - Taras Stasyk
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Gert Mayer
- Division of Nephrology and Hypertension, Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Mayer
- Life and Medical Sciences Institute, Chemical Biology and Chemical Genetics, University of Bonn, Bonn 53115, Germany; Centre of Aptamer Research and Development, University of Bonn, Bonn 53115, Germany
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
13
|
Carlsson AC, Sundström J, Carrero JJ, Gustafsson S, Stenemo M, Larsson A, Lind L, Ärnlöv J. Use of a proximity extension assay proteomics chip to discover new biomarkers associated with albuminuria. Eur J Prev Cardiol 2016; 24:340-348. [PMID: 27794105 DOI: 10.1177/2047487316676134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background The underlying mechanisms for the development of albuminuria and the increased cardiovascular risk in patients with elevated albuminuria levels are incompletely understood. We therefore investigated the associations between 80 cardiovascular proteins and the urinary albumin to creatinine ratio (ACR). Methods We used a discovery/replication approach in two independent community-based cohorts of elderly patients: the Uppsala Longitudinal Study of Adult Men ( n = 662; mean age 78 years) and the Prospective Investigation of the Vasculature in Uppsala Seniors ( n = 757; mean age 75 years; 51% women). A proteomic chip with a panel of 80 plasma proteins associated with different aspects of cardiovascular disease was analysed. In the discovery cohort, we used a false discovery rate of 5% to take into account the multiple statistical testing. Nominal p values were used in the replication. Results Higher levels of T-cell immunoglobulin mucin-1, placenta growth factor, growth/differentiation factor-15, urokinase plasminogen activator surface receptor and kallikrein-11 were robustly associated with a higher ACR in both cohorts in multivariable linear regression models adjusted for sex, established cardiovascular risk factors, antihypertensive treatment, prevalent cardiovascular disease and glomerular filtration rate ( p < 0.02 for all). All associations were also significant in separate analyses of patients without diabetes. Conclusions We discovered and replicated associations between ACR and five cardiovascular proteins involved in tubular injury, atherosclerosis, endothelial function, heart failure, inflammation, glomerulosclerosis and podocyte injury. Our findings put forward multiplex proteomics as a promising approach to explore novel aspects of the complex detrimental interplay between kidney function and the cardiovascular system.
Collapse
Affiliation(s)
- Axel C Carlsson
- 1 Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Sweden.,2 Department of Medical Sciences, Uppsala University, Sweden
| | - Johan Sundström
- 2 Department of Medical Sciences, Uppsala University, Sweden.,3 Uppsala Clinical Research Center, Uppsala University, Sweden
| | - Juan Jesus Carrero
- 4 Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Sweden
| | | | - Markus Stenemo
- 2 Department of Medical Sciences, Uppsala University, Sweden
| | - Anders Larsson
- 2 Department of Medical Sciences, Uppsala University, Sweden
| | - Lars Lind
- 2 Department of Medical Sciences, Uppsala University, Sweden
| | - Johan Ärnlöv
- 2 Department of Medical Sciences, Uppsala University, Sweden.,5 School of Health and Social Sciences, Dalarna University, Sweden
| |
Collapse
|
14
|
Sex-specific effects of LiCl treatment on preservation of renal function and extended life-span in murine models of SLE: perspective on insights into the potential basis for survivorship in NZB/W female mice. Biol Sex Differ 2016; 7:31. [PMID: 27354902 PMCID: PMC4924261 DOI: 10.1186/s13293-016-0085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Considerable research effort has been invested in attempting to understand immune dysregulation leading to autoimmunity and target organ damage. In systemic lupus erythematosus (SLE), patients can develop a systemic disease with a number of organs involved. One of the major target organs is the kidney, but patients vary in the progression of the end-organ targeting of this organ. Some patients develop glomerulonephritis only, while others develop rapidly progressive end organ failure. In murine models of SLE, renal involvement can also occur. Studies performed over the past several years have indicated that treatment with LiCl of females, but not males of the NZB/W model, at an early age during the onset of disease, can prevent development of end-stage renal disease in a significant percentage of the animals. While on Li treatment, up to 80 % of the females can exhibit long-term survival with evidence of mild glomerulonephritis which does not progress to renal failure in spite of on-going autoimmunity. Stopping the treatment led to a reactivation of the disease and renal failure. Li treatment of other murine models of SLE was less effective and decreased survivorship in male BxSB mice, exhibited little effect on male MRL-lpr mice, and only modestly improved survivorship in female MRL-lpr mice. This perspective piece discusses the findings of several related studies which support the concept that protecting target organs such as the kidney, even in the face of continued immune insults and some inflammation, can lead to prolonged survival with retention of organ function. Some possible mechanisms for the effectiveness of Li treatment in this context are also discussed. However, the detailed mechanistic basis for the sex-specific effects of LiCl treatment particularly in the NZB/W model remains to be elucidated. Elucidating such details may provide important clues for development of effective treatment for patients with SLE, ~90 % of which are females.
Collapse
|
15
|
Chen JS, Chang LC, Wu CZ, Tseng TL, Lin JA, Lin YF, Cheng CW. Significance of the urokinase-type plasminogen activator and its receptor in the progression of focal segmental glomerulosclerosis in clinical and mouse models. J Biomed Sci 2016; 23:24. [PMID: 26846181 PMCID: PMC4743092 DOI: 10.1186/s12929-016-0242-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 11/14/2022] Open
Abstract
Background suPAR biomarker generally considered a pathogenic factor in FSGS. However, studies have been published that dispute this conclusion. The current study was designed to investigate the roles of uPA and suPAR in FSGS in clinical and mouse models. Methods Clinical subjects including those with biopsy-proven FSGS and MCD were enrolled. To verify the role of uPA in FSGS, Adriamycin was used to induce FSGS in uPA knockout (uPA−/−) and BALB/c (WT) mice. Proteinuria and suPAR, the cleaved/intact forms of the circulating suPAR, and possible proteases involving cleavage of the suPAR were also studied. Results FSGS clinical cases presented significantly higher serum levels of suPAR and Cr and lower serum levels of uPA. In the mice model, the uPA−/− group exhibited faster disease progression and worsening proteinuria than the WT group. In addition, the uPA−/− group had higher plasma suPAR levels, glomerular cell apoptosis, and dysregulation of the Th1/Th2 balance. In an analysis of suPAR variants in FSGS, both the intact and cleaved forms of the suPAR were higher in clinical subjects and the mouse model. However, the process of suPAR cleavage was not mediated by enzymatic activities of the uPA, elastase, or cathepsin G. Conclusions A deficiency of uPA accelerated the progression of Adriamycin-induced mouse FSGS model. Decrease of serum uPA levels may be an indicator of the progression of FSGS in clinical subjects and animal models.
Collapse
Affiliation(s)
- Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei, 114, Taiwan
| | - Li-Chien Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Ze Wu
- Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tzu-Ling Tseng
- Biomedical Technology & Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jui-An Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xing Street, Taipei, 110, Taiwan
| | - Yuh-Feng Lin
- Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xing Street, Taipei, 110, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xing Street, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease. Sci Rep 2016; 6:20101. [PMID: 26831567 PMCID: PMC4735715 DOI: 10.1038/srep20101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022] Open
Abstract
During chronic kidney disease (CKD) there is a dysregulation of extracellular matrix (ECM) homeostasis leading to renal fibrosis. Lysosomal proteases such as cathepsins (Cts) regulate this process in other organs, however, their role in CKD is still unknown. Here we describe a novel role for cathepsins in CKD. CtsD and B were located in distal and proximal tubular cells respectively in human disease. Administration of CtsD (Pepstatin A) but not B inhibitor (Ca074-Me), in two mouse CKD models, UUO and chronic ischemia reperfusion injury, led to a reduction in fibrosis. No changes in collagen transcription or myofibroblasts numbers were observed. Pepstatin A administration resulted in increased extracellular urokinase and collagen degradation. In vitro and in vivo administration of chloroquine, an endo/lysosomal inhibitor, mimicked Pepstatin A effect on renal fibrosis. Therefore, we propose a mechanism by which CtsD inhibition leads to increased collagenolytic activity due to an impairment in lysosomal recycling. This results in increased extracellular activity of enzymes such as urokinase, triggering a proteolytic cascade, which culminates in more ECM degradation. Taken together these results suggest that inhibition of lysosomal proteases, such as CtsD, could be a new therapeutic approach to reduce renal fibrosis and slow progression of CKD.
Collapse
|
17
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|
18
|
Uchida T, Oda T, Takechi H, Matsubara H, Watanabe A, Yamamoto K, Oshima N, Sakurai Y, Kono T, Shimazaki H, Tamai S, Kumagai H. Role of tubulointerstitial plasmin in the progression of IgA nephropathy. J Nephrol 2015; 29:53-62. [PMID: 25971850 DOI: 10.1007/s40620-015-0205-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/30/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Plasmin has recently been reported to be associated with renal fibrosis in experimental models, but its role in human renal diseases is unclear. METHODS Fifty-seven patients with IgA nephropathy (IgAN) were evaluated retrospectively. Plasmin in their renal biopsy tissues was assessed by in situ zymography using a plasmin-sensitive synthetic peptide, and the relationships between patients' histologic or clinical parameters and their renal plasmin activity [assessed semiquantitatively by calculating the positively stained percentage of the total tubulointerstitial (TI) area] were evaluated. RESULTS Plasmin activity was observed almost exclusively in the TI space (mainly in the interstitium and partly in the tubular epithelial cells) and was significantly stronger in patients with TI lesion (tubular atrophy/interstitial fibrosis and tubulointerstitial inflammation) than in those without TI lesion. It was significantly and positively correlated with the global glomerulosclerosis rate and significantly and negatively correlated with estimated glomerular filtration rate not only at the time of renal biopsy but also at the end of the follow-up period. Double stainings for plasmin activity and inflammatory cells, cytokeratin, or α-smooth muscle actin (α-SMA) in selected patients revealed TI infiltration of inflammatory cells, attenuated tubular epithelial expression of cytokeratin, and augmented interstitial expression of α-SMA close to upregulated plasmin activity in the TI space. CONCLUSIONS These data suggest that TI plasmin is associated with TI inflammation leading to renal fibrosis, and can cause the decline in renal function seen in patients with IgAN. Reducing plasmin in situ may therefore be a promising therapeutic approach slowing renal fibrogenesis and improving renal function.
Collapse
Affiliation(s)
- Takahiro Uchida
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Takashi Oda
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Hanako Takechi
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hidehito Matsubara
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Atsushi Watanabe
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kojiro Yamamoto
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takako Kono
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiichi Tamai
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
19
|
Theilade S, Lyngbaek S, Hansen TW, Eugen-Olsen J, Fenger M, Rossing P, Jeppesen JL. Soluble urokinase plasminogen activator receptor levels are elevated and associated with complications in patients with type 1 diabetes. J Intern Med 2015; 277:362-371. [PMID: 24830873 DOI: 10.1111/joim.12269] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Soluble urokinase plasminogen activator receptor (suPAR) is a marker of inflammation and endothelial dysfunction. We investigated the associations between suPAR and diabetes, including diabetes duration and complications, in patients with type 1 diabetes. DESIGN, SETTING AND SUBJECTS From 2009 to 2011, 667 patients with type 1 diabetes and 51 nondiabetic control subjects were included in a cross-sectional study at Steno Diabetes Center, Gentofte, Denmark. suPAR levels were measured with an enzyme-linked immunosorbent assay. MAIN OUTCOME MEASURES The investigated diabetic complications were cardiovascular disease (CVD: previous myocardial infarction, revascularisation, peripheral arterial disease and stroke), autonomic dysfunction (heart rate variability during deep breathing <11 beats min(-1) ), albuminuria [urinary albumin excretion rate (UAER) ≥30 mg/24 h] or a high degree of arterial stiffness (pulse wave velocity ≥10 m s(-1) ). Analyses were adjusted for gender, age, systolic blood pressure, estimated glomerular filtration rate, UAER, glycated haemoglobin (HbA1c ), total cholesterol, body mass index, C-reactive protein, antihypertensive treatment and smoking. RESULTS Soluble urokinase plasminogen activator receptor levels were lower in control subjects versus all patients, in control subjects versus normoalbuminuric patients (UAER <30 mg/24 h), in normoalbuminuric patients with short (<10 years) versus long diabetes duration and were increased with degree of albuminuria (adjusted P < 0.001 for all). Furthermore, suPAR levels were higher in patients with versus without CVD (n = 144; 21.3%), autonomic dysfunction (n = 369; 59.2%), albuminuria (n = 357; 53.1%) and a high degree of arterial stiffness (n = 298; 47.2%) (adjusted P ≤ 0.024). The adjusted odds ratio (95% confidence interval) values per 1 ln unit increase in suPAR were as follows: 2.5 (1.1-5.7) for CVD: 2.7 (1.2-6.2) for autonomic dysfunction; 3.8 (1.3-10.9) for albuminuria and 2.5 (1.1-6.1) for a high degree of arterial stiffness (P ≤ 0.039). CONCLUSION The suPAR level is higher in patients with type 1 diabetes and is associated with diabetes duration and complications independent of other risk factors. suPAR is a potential novel risk marker for the management of diabetes.
Collapse
Affiliation(s)
- S Theilade
- Steno Diabetes Center, Gentofte, Denmark
| | - S Lyngbaek
- Department of Medicine, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
| | - T W Hansen
- Steno Diabetes Center, Gentofte, Denmark
| | - J Eugen-Olsen
- Clinical Research Centre, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - M Fenger
- Department of Biochemistry, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - P Rossing
- Steno Diabetes Center, Gentofte, Denmark.,Faculty of Health, Aarhus University, Aarhus, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J L Jeppesen
- Department of Medicine, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Chang MC, Chang HH, Chan CP, Yeung SY, Hsien HC, Lin BR, Yeh CY, Tseng WY, Tseng SK, Jeng JH. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One 2014; 9:e114446. [PMID: 25517907 PMCID: PMC4269396 DOI: 10.1371/journal.pone.0114446] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/09/2014] [Indexed: 02/07/2023] Open
Abstract
Aims Cresols are present in antiseptics, coal tar, some resins, pesticides, and industrial solvents. Cresol intoxication leads to hepatic injury due to coagulopathy as well as disturbance of hepatic circulation in fatal cases. Patients with uremia suffer from cardiovascular complications, such as atherosclerosis, thrombosis, hemolysis, and bleeding, which may be partly due to p-cresol toxicity and its effects on vascular endothelial and mononuclear cells. Given the role of reactive oxygen species (ROS) and inflammation in vascular thrombosis, the objective of this study was to evaluate the effect of p-cresol on endothelial and mononuclear cells. Methods EA.hy926 (EAHY) endothelial cells and U937 cells were exposed to different concentrations of p-cresol. Cytotoxicity was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5 -diphenyltetrazolium bromide (MTT) assay and trypan blue dye exclusion technique, respectively. Cell cycle distribution was analyzed by propidium iodide flow cytometry. Endothelial cell migration was studied by wound closure assay. ROS level was measured by 2′,7′-dichlorofluorescein diacetate (DCF) fluorescence flow cytometry. Prostaglandin F2α (PGF2α), plasminogen activator inhibitor-1 (PAI-1), soluble urokinase plasminogen activator receptor (suPAR), and uPA production were determined by Enzyme-linked immunosorbant assay (ELISA). Results Exposure to 100–500 µM p-cresol decreased EAHY cell number by 30–61%. P-cresol also decreased the viability of U937 mononuclear cells. The inhibition of EAHY and U937 cell growth by p-cresol was related to induction of S-phase cell cycle arrest. Closure of endothelial wounds was inhibited by p-cresol (>100 µM). P-cresol (>50 µM) also stimulated ROS production in U937 cells and EAHY cells but to a lesser extent. Moreover, p-cresol markedly stimulated PAI-1 and suPAR, but not PGF2α, and uPA production in EAHY cells. Conclusions p-Cresol may contribute to atherosclerosis and thrombosis in patients with uremia and cresol intoxication possibly due to induction of ROS, endothelial/mononuclear cell damage and production of inflammation/atherosclerosis-related molecules.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
| | - Hsiao-Hua Chang
- Department of Dentistry, National Taiwan University Hospital and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
- * E-mail: (CPC); (JHJ)
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Chi Hsien
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Bor-Ru Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- Department of Dentistry, National Taiwan University Hospital and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Wan-Yu Tseng
- Department of Dentistry, National Taiwan University Hospital and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Shui-Kuan Tseng
- Department of Dentistry, National Taiwan University Hospital and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- * E-mail: (CPC); (JHJ)
| |
Collapse
|
21
|
Cheng H, Chen C, Wang S. Effects of uPA on mesangial matrix changes in the kidney of diabetic rats. Ren Fail 2014; 36:1322-7. [PMID: 25010090 DOI: 10.3109/0886022x.2014.934694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effect of urokinase-type plasminogen activator (uPA) on mesangial matrix in the kidney of diabetic rats and its related mechanisms. METHODS Diabetic Sprague-Dawley (SD) rats induced by intraperitoneal injection of streptozotocin (STZ) were randomly and evenly divided into two groups: DM + vehicle, and DM + uPA (2500 U kg(-1) uPA via tail vein once a day for four weeks). The normal SD rats without diabetes were considered as control group. Rats in the three groups were executed and the heart blood was sampled for determination of blood glucose and serum creatinine. Meanwhile, kidney tissues of rats were also harvest for measurement of glomerular area, volume, and mesangial area by periodic acid silver methenamine (PASA) staining. The expression of urokinase-type plasminogen activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues was tested with immunohistochemistry. RESULTS Compared with control, the DM rats had obvious albuminuria, significantly (p < 0.01) increased glomerular volume and mesangial matrix area, and significantly (p < 0.05) higher expression of uPAR, PAI-1 and collagen IV in mesangial matrix, significantly up-regulated (p < 0.05) glomerular uPAR, PAI-1, and collagen IV expression. After treated with uPA, the diabetic rats had significantly (p < 0.05) reduced albuminuria, significantly (p < 0.01) improved glomerular volume and mesangial matrix, significantly (p < 0.05) down-regulated PAI-1 and collagen IV expression in mesangial matrix. However, the uPAR expression in renal tissues were unchangeable (p > 0.05) and PAI-1 and collagen IV expression were significantly (p < 0.05) reduced when diabetic rats were treated with uPA. CONCLUSION uPA can down-regulate glomerular PAI-1 expression in the DM rats but not significantly influence uPAR expression, suggesting that uPA might regulate the mesangial cell (MC) and its matrix expression and improve diseased diabetic mesangial matrix via its combination with uPAR to uptake PAI-1 and accelerate its degradation.
Collapse
Affiliation(s)
- Hui Cheng
- Division of Nephrology, Wuhan University, Renmin Hospital , Wuhan , People's Republic of China
| | | | | |
Collapse
|
22
|
Urokinase gene 3'-UTR T/C polymorphism is associated with malignancy and ESRD in idiopathic membranous nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:425095. [PMID: 24822208 PMCID: PMC4009112 DOI: 10.1155/2014/425095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022]
Abstract
Idiopathic membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in adults, and 25% of MN patients proceed to ESRD. Urokinase plasminogen activator (uPA) may play an important role in reducing renal fibrosis. This study was conducted to clarify the relationship between uPA gene polymorphisms and clinical manifestations of MN. We recruited 91 biopsy-diagnosed MN patients and 105 healthy subjects. Genotyping of uPA gene 3'-UTR T/C polymorphism was performed by polymerase chain reaction methods. The genotype distribution had no effect on the development of MN. Thirteen patients (15.9%; P = 0.008) acquired malignancies and seventeen (20.7%; P = 0.006) patients progressed to ESRD with the C/C genotype, but no patients with the T/C genotype did. In conclusion, we demonstrated that the presence of the uPA gene 3'-UTR C/C genotype was associated with ESRD as well as acquired malignancies in MN patients. These findings should prompt specific considerations for the treatment of MN patients to maintain a balance between treating disease entities and protecting the immune system from cancers.
Collapse
|
23
|
Popa NL, Wergedal JE, Lau KHW, Mohan S, Rundle CH. Urokinase plasminogen activator gene deficiency inhibits fracture cartilage remodeling. J Bone Miner Metab 2014; 32:124-35. [PMID: 23700285 DOI: 10.1007/s00774-013-0475-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
Urokinase plasminogen activator (uPA) regulates a proteolytic cascade of extracellular matrix degradation that functions in tissue development and tissue repair. The development and remodeling of the skeletal extracellular matrix during wound healing suggests that uPA might regulate bone development and repair. To determine whether uPA functions regulate bone development and repair, we examined the basal skeletal phenotype and endochondral bone fracture repair in uPA-deficient mice. The skeletal phenotype of uPA knockout mice was compared with that of control mice under basal conditions by dual-energy X-ray absorptiometry and micro-CT analysis, and during femur fracture repair by micro-CT and histological examination of the fracture callus. No effects of uPA gene deficiency were observed in the basal skeletal phenotype of the whole body or the femur. However, uPA gene deficiency resulted in increased fracture callus cartilage abundance during femur fracture repair at 14 days healing. The increase in cartilage corresponded to reduced tartrate-resistant acid phosphatase (TRAP) staining for osteoclasts in the uPA knockout fracture callus at this time, consistent with impaired osteoclast-mediated remodeling of the fracture cartilage. CD31 staining was reduced in the knockout fracture tissues at this time, suggesting that angiogenesis was also reduced. Osteoclasts also colocalized with CD31 expression in the endothelial cells of the fracture tissues during callus remodeling. These results indicate that uPA promotes remodeling of the fracture cartilage by osteoclasts that are associated with angiogenesis and suggest that uPA promotes angiogenesis and remodeling of the fracture cartilage at this time of bone fracture repair.
Collapse
Affiliation(s)
- Nicoleta L Popa
- Musculoskeletal Disease Center, Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, 11201 Benton Street, Loma Linda, CA, 92357, USA
| | | | | | | | | |
Collapse
|
24
|
Ahn SY, Chin HJ. Urokinase-type plasminogen activator receptor in IgA nephropathy. Korean J Intern Med 2014; 29:166-9. [PMID: 24648797 PMCID: PMC3956984 DOI: 10.3904/kjim.2014.29.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Shin-Young Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
25
|
Cheng H, Chen C, Wang S, Ding G, Shi M. The effects of urokinase-type plasminogen activator (uPA) on cell proliferation and phenotypic transformation of rat mesangial cells induced by high glucose. Diabetes Res Clin Pract 2014; 103:489-95. [PMID: 24447806 DOI: 10.1016/j.diabres.2013.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/22/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022]
Abstract
AIMS To investigate the effects of urokinase-type plasminogen activator (uPA) on proliferation and phenotypic transformation of rat mesangial cells (MCs) under high glucose conditions and its possible signal transduction pathway. METHODS Rat MC were divided into 4 groups: the control group, the high glucose group, the high glucose and wortmannin group, and the high glucose and uPA group. MC proliferation in all groups was detected by the 3-(4,5-dimethylthiazol-)-2,5-diphenyltetrazolium bromide (MTT) method. MC cell cycle was analyzed by flow cytometry. Expression of cyclin dependent kinase 2 (CDK2), and activity of the signaling protein Akt in MC were detected by Western blot. Expression pattern and quantity of α-smooth muscle actin (α-SMA) in MC were examined using laser confocal microscopy. The expression of plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues in rats was tested with immunohistochemistry and Western blotting methods. RESULTS Activation of Akt induced by high glucose can be reduced significantly by wortmannin and uPA. There was no obvious change in CDK2 protein expression in different groups (P>0.05). Expression of α-SMA in MC cytoplasm increased dramatically (P<0.01). Expression of α-SMA decreased significantly in the high glucose and wortmannin group and the high glucose and uPA group compared with that of the high glucose group (P<0.01). In diabetic rats, uPA down-regulated PAI-1 and collagen IV expression in mesangial matrix (P<0.05). CONCLUSION uPA antagonizes cell proliferation and phenotypic transformation of MCs induced by high glucose through inhibiting Akt signaling pathway.
Collapse
Affiliation(s)
- Hui Cheng
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C..
| | - Cheng Chen
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Siyuan Wang
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Guohua Ding
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| | - Ming Shi
- Dept of Nephrology, Renmin Hospital of Wuhan University, P. R. C
| |
Collapse
|
26
|
Eddy AA, López-Guisa JM, Okamura DM, Yamaguchi I. Investigating mechanisms of chronic kidney disease in mouse models. Pediatr Nephrol 2012; 27:1233-47. [PMID: 21695449 PMCID: PMC3199379 DOI: 10.1007/s00467-011-1938-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
Animal models of chronic kidney disease (CKD) are important experimental tools that are used to investigate novel mechanistic pathways and to validate potential new therapeutic interventions prior to pre-clinical testing in humans. Over the past several years, mouse CKD models have been extensively used for these purposes. Despite significant limitations, the model of unilateral ureteral obstruction (UUO) has essentially become the high-throughput in vivo model, as it recapitulates the fundamental pathogenetic mechanisms that typify all forms of CKD in a relatively short time span. In addition, several alternative mouse models are available that can be used to validate new mechanistic paradigms and/or novel therapies. Here, we review several models-both genetic and experimentally induced-that provide investigators with an opportunity to include renal functional study end-points together with quantitative measures of fibrosis severity, something that is not possible with the UUO model.
Collapse
Affiliation(s)
- Allison A Eddy
- Center for Tissue and Cell Sciences, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA 98101-1309, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND The plasminogen-plasmin system affects tissue fibrosis, presumably by interacting with metalloproteinases (MMPs) and macrophage recruitment. This study tests the influence of plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPa) on angiotensin II-mediated hypertensive kidney and heart injury. METHOD Hypertension was induced by continuous angiotensin II (Ang II) infusion via osmotic mini-pumps over 4 weeks. The effects of Ang II infusion were determined in mice lacking PAI-1 (PAI-1), mice lacking tPa (tPa), and wild-type mice. Normotensive mice of the respective genotype served as controls. Blood pressure was recorded by continuous radiotelemetric intra-arterial measurements. RESULTS Ang II infusion significantly enhanced arterial blood pressure in all groups. However, the increase in blood pressure was more pronounced in the tPa group. Albuminuria was highest in hypertensive wild-type compared to the other Ang II-infused groups. Hypertensive PAI-1 mice exhibited less glomerulosclerosis, higher nephrin immunostaining, and lower renal interstitial collagen I deposition. Gelatin zymography revealed higher activity of MMP-2 in hypertensive PAI-1, whereas no differences were observed in macrophage infiltration. tPa deficiency did not alter kidney fibrosis, although hypertensive tPa revealed less renal expression of fibrotic genes, less macrophage infiltration, and reduced MMP-2 activity. On the other hand, hypertension-induced fibrosis as well as macrophage infiltration in the heart was profoundly enhanced in PAI-1 mice. Fibrin staining revealed perivascular exudations in the myocardium of hypertensive PAI-1 suggesting vascular leakage. CONCLUSION These findings underscore the unexpectedly complex role of plasminogen activation for hypertensive target organ damage.
Collapse
|
28
|
López-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA. Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 2011; 23:236-51. [PMID: 22095946 DOI: 10.1681/asn.2011030310] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3(-/-) mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3(-/-) mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
López-Guisa JM, Rassa AC, Cai X, Collins SJ, Eddy AA. Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. Am J Physiol Renal Physiol 2011; 300:F1244-54. [PMID: 21270094 DOI: 10.1152/ajprenal.00701.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitronectin (Vtn) is a glycoprotein found in normal serum and pathological extracellular matrix. Given its known interactions with plasminogen activator inhibitor-1 (PAI-1) and Vtn cellular receptors, especially αvβ3 integrin and the urokinase receptor (uPAR), this study was designed to investigate its role in renal fibrogenesis in the mouse model of unilateral ureteral obstruction (UUO). Kidney Vtn mRNA levels were increased ×1.8-5.1 and Vtn protein levels ×1.9-3 on days 7, 14, and 21 after UUO compared with sham kidney levels. Groups of age-matched C57BL/6 wild-type (Vtn+/+) and Vtn-/- mice (n = 10-11/group) were killed 7, 14, or 21 days after UUO. Absence of Vtn resulted in the following significant differences, but only on day 14: fewer αSMA+ interstitial myofibroblasts (×0.53), lower procollagen III mRNA levels (×0.41), lower PAI-1 protein (×0.23), higher uPA activity (×1.1), and lower αv protein (×0.32). The number of CD68+ macrophages did not differ between the genotypes. Despite these transient differences on day 14, the absence of Vtn had no effect on fibrosis severity based on both picrosirius red-positive interstitial area and total kidney collagen measured by the hydroxyproline assay. These findings suggest that despite significant interstitial Vtn deposition in the UUO model of chronic kidney disease, its fibrogenic role is either nonessential or redundant. These data are remarkable given Vtn's strong affinity for the potent fibrogenic molecule PAI-1.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children’s Research Institute, Department of Pediatrics, University of Washington, USA
| | | | | | | | | |
Collapse
|
30
|
Zhang G, Thomas AL, Marshall AL, Kernan KA, Su Y, Zheng Y, Takano J, Saido TC, Eddy AA. Nicotinic acetylcholine receptor α1 promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy. J Transl Med 2011; 91:106-23. [PMID: 20661225 PMCID: PMC3188436 DOI: 10.1038/labinvest.2010.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nicotinic acetylcholine receptor α1 (nAChRα1) was investigated as a potential proinflammatory molecule in the kidney, given a recent report that it is an alternative urokinase plasminogen activator (uPA) receptor, in addition to the classical receptor uPAR. Two animal models and in vitro monocyte studies were involved: (1) In an ApoE(-/-) mouse model of chronic kidney disease, glomerular-resident cells and monocytes/macrophages were identified as the primary cell types that express nAChRα1 during hypercholesterolemia/uninephrectomy-induced nephropathy. Silencing of the nAChRα1 gene for 4 months (6 months on Western diet) prevented the increases in renal monocyte chemoattractant protein-1 and osteopontin expression levels and F4/80+ macrophage infiltration compared with the nonsilenced mice. These changes were associated with significantly reduced transforming growth factor-β1 mRNA (50% decrease) and α smooth muscle actin-positive (αSMA+) myofibroblasts (90% decrease), better glomerular and tubular basement membranes (GBM/TBM) preservation (threefold less disintegration), and better renal function preservation (serum creatinine 40% lower) in the nAChRα1-silenced mice. The nAChRα1 silencing was also associated with significantly reduced renal tissue calcium deposition (78% decrease) and calpain-1 (but not calpain-2) activation (70% decrease). (2) The nAChRα1 was expressed in vitro by mouse monocyte cell line WEHI-274.1. The silencing of nAChRα1 significantly reduced both calpain-1 and -2 activities, and reduced the degradation of the calpain substrate talin. (3) To further explore the role of calpain-1 activity in hypercholesterolemic nephropathy, disease severities were compared in CAST(-/-)ApoE(-/-) (calpain overactive) mice and ApoE(-/-) mice fed with Western diet for 10 months (n=12). Macrophages were the main cell type of renal calpain-1 production in the model. The number of renal F4/80+ macrophages was 10-fold higher in the CAST(-/-)ApoE(-/-) mice (P<0.05), and was associated with a significantly higher level of αSMA+ cells, increased GBM/TBM destruction, and higher serum creatinine levels. Our studies suggest that the receptor nAChRα1 is an important regulator of calpain-1 activation and inflammation in the chronic hypercholesterolemic nephropathy. This new proinflammatory pathway may also be relevant to other disorders beyond hyperlipidemic nephropathy.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.
| | - Alison L Thomas
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Amanda L Marshall
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kelly A Kernan
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Yanyuan Su
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Yi Zheng
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Allison A Eddy
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Abstract
Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
Collapse
Affiliation(s)
- Harvey W Smith
- Goodman Cancer Centre, McGill University, West Montreal, Quebec, H3A 1A3, Canada.
| | | |
Collapse
|
32
|
Abstract
Chronic kidney disease may be stimulated by many different etiologies, but its progression involves a common, yet complex, series of events that lead to the replacement of normal tissue with scar. These events include altered physiology within the kidney leading to abnormal hemodynamics, chronic hypoxia, inflammation, cellular dysfunction, and activation of fibrogenic biochemical pathways. The end result is the replacement of normal structures with extracellular matrix. Treatments presently are focused on delaying or preventing such progression, and are largely nonspecific. In pediatrics, such therapy is complicated further by pathophysiological issues that render children a unique population.
Collapse
|
33
|
Zhang G, Kernan KA, Thomas A, Collins S, Song Y, Li L, Zhu W, Leboeuf RC, Eddy AA. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem 2009; 284:29050-64. [PMID: 19690163 DOI: 10.1074/jbc.m109.010249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinic acetylcholine receptor alpha1 (nAChRalpha1) was investigated as a potential fibrogenic molecule in the kidney, given reports that it may be an alternative urokinase (urokinase plasminogen activator; uPA) receptor in addition to the classical receptor uPAR. In a mouse obstructive uropathy model of chronic kidney disease, interstitial fibroblasts were identified as the primary cell type that bears nAChRalpha1 during fibrogenesis. Silencing of the nAChRalpha1 gene led to significantly fewer interstitial alphaSMA(+) myofibroblasts (2.8 times decreased), reduced interstitial cell proliferation (2.6 times decreased), better tubular cell preservation (E-cadherin 14 times increased), and reduced fibrosis severity (24% decrease in total collagen). The myofibroblast-inhibiting effect of nAChRalpha1 silencing in uPA-sufficient mice disappeared in uPA-null mice, suggesting that a uPA-dependent fibroblastic nAChRalpha1 pathway promotes renal fibrosis. To further establish this possible ligand-receptor relationship and to identify downstream signaling pathways, in vitro studies were performed using primary cultures of renal fibroblasts. (35)S-Labeled uPA bound to nAChRalpha1 with a K(d) of 1.6 x 10(-8) m, which was displaced by the specific nAChRalpha1 inhibitor d-tubocurarine in a dose-dependent manner. Pre-exposure of uPA to the fibroblasts inhibited [(3)H]nicotine binding. The uPA binding induced a cellular calcium influx and an inward membrane current that was entirely prevented by d-tubocurarine preincubation or nAChRalpha1 silencing. By mass spectrometry phosphoproteome analyses, uPA stimulation phosphorylated nAChRalpha1 and a complex of signaling proteins, including calcium-binding proteins, cytoskeletal proteins, and a nucleoprotein. This signaling pathway appears to regulate the expression of a group of genes that transform renal fibroblasts into more active myofibroblasts characterized by enhanced proliferation and contractility. This new fibrosis-promoting pathway may also be relevant to disorders that extend beyond chronic kidney disease.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington 98101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eddy AA. Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost 2009; 101:656-664. [PMID: 19350108 PMCID: PMC3136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chronic kidney disease (CKD) is estimated to affect one in eight adults. Their kidney function progressively deteriorates as inflammatory and fibrotic processes damage nephrons. New therapies to prevent renal functional decline must build on basic research studies that identify critical cellular and molecular mediators. Plasminogen activator inhibitor-1 (PAI-1), a potent fibrosis-promoting glycoprotein, is one promising candidate. Absent from normal kidneys, PAI-1 is frequently expressed in injured kidneys. Studies in genetically engineered mice have demonstrated its potency as a pro-fibrotic molecule. Somewhat surprising, its ability to inhibit serine protease activity does not appear to be its primary pro-fibrotic effect in CKD. Both tissue-type plasminogen activator and plasminogen deficiency significantly reduced renal fibrosis severity after ureteral obstruction, while genetic urokinase (uPA) deficiency had no effect. PAI-1 expression is associated with enhanced recruitment of key cellular effectors of renal fibrosis - interstitial macrophages and myofibroblasts. The ability of PAI-1 to promote cell migration involves interactions with the low-density lipoprotein receptor-associate protein-1 and also complex interactions with uPA bound to its receptor (uPAR) and several leukocyte and matrix integrins that associate with uPAR as co-receptors. uPAR is expressed by several cell types in damaged kidneys, and studies in uPAR-deficient mice have shown that its serves a protective role. uPAR mediates additional anti-fibrotic effects - it interacts with specific co-receptors to degrade PAI-1 and extracellular collagens, and soluble uPAR has leukocyte chemoattractant properties. Molecular pathways activated by serine proteases and their inhibitor, PAI-1, are promising targets for future anti-fibrotic therapeutic agents.
Collapse
Affiliation(s)
- Allison A Eddy
- University of Washington, Head, Division of Pediatric Nephrology, Seattle Children's Hospital and Research Institute, USA.
| |
Collapse
|