1
|
Zheng L. Analysis of hepatocellular carcinoma associated with hepatitis B virus. J Cell Mol Med 2023; 27:2271-2277. [PMID: 37517004 PMCID: PMC10424288 DOI: 10.1111/jcmm.17867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The hepatitis B virus (HBV) is considered one of the main driving forces in the development of hepatocellular carcinoma (HCC). Human HBV is a partially double-stranded DNA (dsDNA) virus consisting of approximately 3.2 kbp. HBV predominantly infects hepatocytes via the receptor sodium taurocholate cotransporting polypeptide (NTCP) and coreceptor hepatic proteoglycan. The replication of HBV in hepatocytes leads to apoptosis while simultaneously leading to cirrhosis and cancer. Although the integration of dsDNA into the hepatocyte genome seems to be the main cause of mutation, since the discovery of their function, viral proteins have been shown to regulate the P53 pathway or P13K/AKT pathway to prevent host cell apoptosis, causing uncontrolled proliferation of liver cells leading to the formation of solid tumours. The most common treatments involve nucleo(s)tide analogue (NA) and polyethylene glycol (PEG)ylated interferon-alpha (PegIFN-α). NA treatment has been found to be effective for the majority of patients and induces few side effects. Nevertheless, the rate of seroconversion is relatively low. PegIFN treatment is contraindicated during pregnancy and leads to a higher morbidity rate, but the seroconversion rate is high. Since medicines and vaccines have been developed, the incidence and mortality of HBV related to HCC have profoundly decreased compared to those in 2000. This review investigates what can be the potential mechanism that HBV can cause HBV and the treatment used in chronic and acute infection.
Collapse
|
2
|
Yao Y, Yang B, Chen Y, Huang D, Liu C, Sun H, Hu X, Zhou Y, Wang Y, Chen J, Pei R, Wen Z, Chen X. RNA-Binding motif protein 38 (RBM38) mediates HBV pgRNA packaging into the nucleocapsid. Antiviral Res 2022; 198:105249. [PMID: 35041910 DOI: 10.1016/j.antiviral.2022.105249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/10/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The binding of HBV polymerase (Pol) and the epsilon stem loop (ε) on the 5' terminal region of pgRNA is required for pgRNA packaging and HBV replication. Previous research has demonstrated that RNA binding motif protein 24 (RBM24) is involved in pgRNA packaging by mediating the interaction between HBV polymerase (Pol) and the ε element. Here, we demonstrate that RBM38 interacts with ε, pol, RBM24 and HBV core which mediate pgRNA packaging. RBM38 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs) and interacts with HBV Pol in an RNA-independent manner. RBM38 interacts with RBM24 and forms heterogeneous oligomers, which mediate Pol-ε binding and the formation of the Pol-RBM38/RBM24-ε complex. More important, RBM38 also binds to the HBV core via the C-terminal region (ARD domain), which facilitates the combination of Pol-ε with the HBV core protein. In conclusion, RBM38 facilitates the Pol-ε interaction and mediates Pol-ε in combining with the HBV core, triggering pgRNA packaging for reverse transcription and DNA synthesis. This study provides new insights into pgRNA encapsidation.
Collapse
Affiliation(s)
- Yongxuan Yao
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Yang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhe Wen
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510623, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic, partially double-stranded DNA virus that replicates by reverse transcription and is a major cause of chronic liver disease and hepatocellular carcinoma. Reverse transcription is catalyzed by the four-domain multifunctional HBV polymerase (P) protein that has protein-priming, RNA- and DNA-dependent DNA synthesis (i.e., reverse transcriptase), and ribonuclease H activities. P also likely promotes the three strand transfers that occur during reverse transcription, and it may participate in immune evasion by HBV. Reverse transcription is primed by a tyrosine residue in the amino-terminal domain of P, and P remains covalently attached to the product DNA throughout reverse transcription. The reverse transcriptase activity of P is the target for the nucleos(t)ide analog drugs that dominate HBV treatment, and P is the target of ongoing efforts to develop new drugs against both the reverse transcriptase and ribonuclease H activities. Despite the unusual reverse transcription pathway catalyzed by P and the importance of P to HBV therapy, understanding the enzymology and structure of HBV P severely lags that of the retroviral reverse transcriptases due to substantial technical challenges to studying the enzyme. Obtaining a better understanding of P will broaden our appreciation of the diversity among reverse transcribing elements in nature, and will help improve treatment for people chronically infected with HBV.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Razia Tajwar
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Jianming Hu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
4
|
Fatehi F, Bingham RJ, Dykeman EC, Patel N, Stockley PG, Twarock R. An Intracellular Model of Hepatitis B Viral Infection: An In Silico Platform for Comparing Therapeutic Strategies. Viruses 2020; 13:v13010011. [PMID: 33374798 PMCID: PMC7823939 DOI: 10.3390/v13010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) is a major focus of antiviral research worldwide. The International Coalition to Eliminate HBV, together with the World Health Organisation (WHO), have prioritised the search for a cure, with the goal of eliminating deaths from viral hepatitis by 2030. We present here a comprehensive model of intracellular HBV infection dynamics that includes all molecular processes currently targeted by drugs and agrees well with the observed outcomes of several clinical studies. The model reveals previously unsuspected kinetic behaviour in the formation of sub-viral particles, which could lead to a better understanding of the immune responses to infection. It also enables rapid comparative assessment of the impact of different treatment options and their potential synergies as combination therapies. A comparison of available and currently developed treatment options reveals that combinations of multiple capsid assembly inhibitors perform best.
Collapse
Affiliation(s)
- Farzad Fatehi
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Richard J. Bingham
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
| | - Eric C. Dykeman
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK;
- Correspondence: (P.G.S.); (R.T.)
| | - Reidun Twarock
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, UK; (F.F.); (R.J.B.); (E.C.D.)
- Department of Mathematics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5NG, UK
- Correspondence: (P.G.S.); (R.T.)
| |
Collapse
|
5
|
Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses 2020; 12:v12070738. [PMID: 32650547 PMCID: PMC7412469 DOI: 10.3390/v12070738] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The morphogenesis of Hepatitis B Virus (HBV) viral particles is nucleated by the oligomerization of HBc protein molecules, resulting in the formation of an icosahedral capsid shell containing the replication-competent nucleoprotein complex made of the viral polymerase and the pre-genomic RNA (pgRNA). HBc is a phospho-protein containing two distinct domains acting together throughout the viral replication cycle. The N-terminal domain, (residues 1–140), shown to self-assemble, is linked by a short flexible domain to the basic C-terminal domain (residues 150–183) that interacts with nucleic acids (NAs). In addition, the C-terminal domain contains a series of phospho-acceptor residues that undergo partial phosphorylation and de-phosphorylation during virus replication. This highly dynamic process governs the homeostatic charge that is essential for capsid stability, pgRNA packaging and to expose the C-terminal domain at the surface of the particles for cell trafficking. In this review, we discuss the roles of the N-terminal and C-terminal domains of HBc protein during HBV morphogenesis, focusing on how the C-terminal domain phosphorylation dynamics regulate its interaction with nucleic acids throughout the assembly and maturation of HBV particles.
Collapse
|
6
|
RNA-Binding Motif Protein 24 (RBM24) Is Involved in Pregenomic RNA Packaging by Mediating Interaction between Hepatitis B Virus Polymerase and the Epsilon Element. J Virol 2019; 93:JVI.02161-18. [PMID: 30626666 DOI: 10.1128/jvi.02161-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Encapsidation of pregenomic RNA (pgRNA) is a crucial step in hepatitis B virus (HBV) replication. Binding by viral polymerase (Pol) to the epsilon stem-loop (ε) on the 5'-terminal region (TR) of pgRNA is required for pgRNA packaging. However, the detailed mechanism is not well understood. RNA-binding motif protein 24 (RBM24) inhibits core translation by binding to the 5'-TR of pgRNA. Here, we demonstrate that RBM24 is also involved in pgRNA packaging. RBM24 directly binds to the lower bulge of ε via RNA recognition submotifs (RNPs). RBM24 also interacts with Pol in an RNA-independent manner. The alanine-rich domain (ARD) of RBM24 and the reverse transcriptase (RT) domain of Pol are essential for binding between RBM24 and Pol. In addition, overexpression of RBM24 increases Pol-ε interaction, whereas RBM24 knockdown decreases the interaction. RBM24 was able to rescue binding between ε and mutant Pol lacking ε-binding activity, further showing that RBM24 mediates the interaction between Pol and ε by forming a Pol-RBM24-ε complex. Finally, RBM24 significantly promotes the packaging efficiency of pgRNA. In conclusion, RBM24 mediates Pol-ε interaction and formation of a Pol-RBM24-ε complex, which inhibits translation of pgRNA and results in pgRNA packing into capsids/virions for reverse transcription and DNA synthesis.IMPORTANCE Hepatitis B virus (HBV) is a ubiquitous human pathogen, and HBV infection is a major global health burden. Chronic HBV infection is associated with the development of liver diseases, including fulminant hepatitis, hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. A currently approved vaccine can prevent HBV infection, and medications are able to reduce viral loads and prevent liver disease progression. However, current treatments rarely achieve a cure for chronic infection. Thus, it is important to gain insight into the mechanisms of HBV replication. In this study, we found that the host factor RBM24 is involved in pregenomic RNA (pgRNA) packaging and regulates HBV replication. These findings highlight a potential target for antiviral therapeutics of HBV infection.
Collapse
|
7
|
Liu K, Hu J. Secretion of empty or complete hepatitis B virions: envelopment of empty capsids versus mature nucleocapsids. Future Virol 2019. [DOI: 10.2217/fvl-2018-0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HBV replicates its DNA genome, a partially double-stranded, relaxed circular DNA, via reverse transcription of an RNA intermediate called pre-genomic RNA by its reverse transcriptase. A major characteristic of HBV replication is the selective envelopment and secretion of relaxed circular DNA-containing mature capsids and empty capsids with no DNA or RNA, but not those containing pre-genomic RNA or the single-stranded DNA replication intermediate. In this review, the potential mechanisms of HBV virion morphogenesis will be discussed, with a focus on key determinants of both the capsid and envelope proteins for the selective secretion of complete and empty virions.
Collapse
Affiliation(s)
- Kuancheng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Jianming Hu
- Department of Microbiology & Immunology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Liu K, Hu J. Host-regulated Hepatitis B Virus Capsid Assembly in a Mammalian Cell-free System. Bio Protoc 2018; 8:e2813. [PMID: 29770355 DOI: 10.21769/bioprotoc.2813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hepatitis B virus (HBV) is an important global human pathogen and represents a major cause of hepatitis, liver cirrhosis and liver cancer. The HBV capsid is composed of multiple copies of a single viral protein, the capsid or core protein (HBc), plays multiple roles in the viral life cycle, and has emerged recently as a major target for developing antiviral therapies against HBV infection. Although several systems have been developed to study HBV capsid assembly, including heterologous overexpression systems like bacteria and insect cells, in vitro assembly using purified protein, and mammalian cell culture systems, the requirement for non-physiological concentrations of HBc and salts and the difficulty in manipulating host regulators of assembly presents major limitations for detailed studies on capsid assembly under physiologically relevant conditions. We have recently developed a mammalian cell-free system based on the rabbit reticulocyte lysate (RRL), in which HBc is expressed at physiological concentrations and assembles into capsids under near-physiological conditions. This system has already revealed HBc assembly requirements that are not anticipated based on previous assembly systems. Furthermore, capsid assembly in this system is regulated by endogenous host factors that can be readily manipulated. Here we present a detailed protocol for this cell-free capsid assembly system, including an illustration on how to manipulate host factors that regulate assembly.
Collapse
Affiliation(s)
- Kuancheng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 2017; 13:e1006296. [PMID: 28399146 PMCID: PMC5388505 DOI: 10.1371/journal.ppat.1006296] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general. HBV is a DNA virus but replicates its DNA via retrotranscription of a viral RNA pregenome. ISG20, an antiviral RNase induced by interferons, inhibits the replication of many RNA viruses but the underlying molecular antiviral mechanism remains elusive. Since all the known viruses, except for prions, have RNA products in their life cycles, ISG20 can be a broad spectrum antiviral protein; but in order to distinguish viral RNA from host RNA, ISG20 may have evolved to recognize virus-specific signals as its antiviral target. We demonstrated herein that ISG20 selectively binds to a unique stem-loop structure called epsilon (ε) in all HBV RNA species and degrades viral RNA to inhibit HBV replication. Because ε is the HBV pregenomic RNA packaging signal and reverse transcription priming site, the binding of ISG20 to ε, even in the absence of ribonuclease activity, results in antiviral effect to prevent DNA replication due to preventing viral polymerase binding to pgRNA. We also determined the structure and sequence requirements of ε RNA and ISG20 protein for ISG20-ε binding and antiviral activity. Such information will aid the function study of ISG20 against viral pathogens in host innate defense, and ISG20 has potentials to be developed into a therapeutic agent for viral diseases including hepatitis B.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hui Nie
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Nadir Mechti
- CNRS, UMR5235, DIMNP, University of Montpellier 2, Montpellier, France
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation. J Virol 2016; 90:5830-5844. [PMID: 27076641 DOI: 10.1128/jvi.00394-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Multiple subunits of the hepatitis B virus (HBV) core protein (HBc) assemble into an icosahedral capsid that packages the viral pregenomic RNA (pgRNA). The N-terminal domain (NTD) of HBc is sufficient for capsid assembly, in the absence of pgRNA or any other viral or host factors, under conditions of high HBc and/or salt concentrations. The C-terminal domain (CTD) is deemed dispensable for capsid assembly although it is essential for pgRNA packaging. We report here that HBc expressed in a mammalian cell lysate, rabbit reticulocyte lysate (RRL), was able to assemble into capsids when (low-nanomolar) HBc concentrations mimicked those achieved under conditions of viral replication in vivo and were far below those used previously for capsid assembly in vitro Furthermore, at physiologically low HBc concentrations in RRL, the NTD was insufficient for capsid assembly and the CTD was also required. The CTD likely facilitated assembly under these conditions via RNA binding and protein-protein interactions. Moreover, the CTD underwent phosphorylation and dephosphorylation events in RRL similar to those seen in vivo which regulated capsid assembly. Importantly, the NTD alone also failed to accumulate in mammalian cells, likely resulting from its failure to assemble efficiently. Coexpression of the full-length HBc rescued NTD assembly in RRL as well as NTD expression and assembly in mammalian cells, resulting in the formation of mosaic capsids containing both full-length HBc and the NTD. These results have important implications for HBV assembly during replication and provide a facile cell-free system to study capsid assembly under physiologically relevant conditions, including its modulation by host factors. IMPORTANCE Hepatitis B virus (HBV) is an important global human pathogen and the main cause of liver cancer worldwide. An essential component of HBV is the spherical capsid composed of multiple copies of a single protein, the core protein (HBc). We have developed a mammalian cell-free system in which HBc is expressed at physiological (low) concentrations and assembles into capsids under near-physiological conditions. In this cell-free system, as in mammalian cells, capsid assembly depends on the C-terminal domain (CTD) of HBc, in contrast to other assembly systems in which HBc assembles into capsids independently of the CTD under conditions of nonphysiological protein and salt concentrations. Furthermore, the phosphorylation state of the CTD regulates capsid assembly and RNA encapsidation in the cell-free system in a manner similar to that seen in mammalian cells. This system will facilitate detailed studies on capsid assembly and RNA encapsidation under physiological conditions and identification of antiviral agents that target HBc.
Collapse
|
11
|
Cai D, Wang X, Yan R, Mao R, Liu Y, Ji C, Cuconati A, Guo H. Establishment of an inducible HBV stable cell line that expresses cccDNA-dependent epitope-tagged HBeAg for screening of cccDNA modulators. Antiviral Res 2016; 132:26-37. [PMID: 27185623 DOI: 10.1016/j.antiviral.2016.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) covalently closed circular (ccc) DNA is essential to the virus life cycle, its elimination during chronic infection is considered critical to a durable therapy but has not been achieved by current antivirals. Despite being essential, cccDNA has not been the major target of high throughput screening (HTS), largely because of the limitations of current HBV tissue culture systems, including the impracticality of detecting cccDNA itself. In response to this need, we have previously developed a proof-of-concept HepDE19 cell line in which the production of wildtype e antigen (HBeAg) is dependent upon cccDNA. However, the existing assay system is not ideal for HTS because the HBeAg ELISA cross reacts with a viral HBeAg homologue, which is the core antigen (HBcAg) expressed largely in a cccDNA-independent fashion in HepDE19 cells. To further improve the assay specificity, we report herein a "second-generation" cccDNA reporter cell line, termed HepBHAe82. In the similar principle of HepDE19 line, an in-frame HA epitope tag was introduced into the precore domain of HBeAg open reading frame in the transgene of HepBHAe82 cells without disrupting any cis-element critical for HBV replication and HBeAg secretion. A chemiluminescence ELISA assay (CLIA) for the detection of HA-tagged HBeAg with HA antibody serving as capture antibody and HBeAb serving as detection antibody has been developed to eliminate the confounding signal from HBcAg. The miniaturized HepBHAe82 cell based assay system exhibits high level of cccDNA-dependent HA-HBeAg production and high specific readout signals with low background. We have also established a HepHA-HBe4 cell line expressing transgene-dependent HA-HBeAg as a counter screen to identify HBeAg inhibitors. The HepBHAe82 system is amenable to antiviral HTS development, and can be used to identify host factors that regulate cccDNA metabolism and transcription.
Collapse
Affiliation(s)
- Dawei Cai
- Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA, 18902, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaohe Wang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, 18902, USA
| | - Ran Yan
- Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA, 18902, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Richeng Mao
- Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA, 18902, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Changhua Ji
- Virology Discovery and Translational Area, Roche Pharma Research and Early Development, Nutley, NJ, 07110, USA.
| | - Andrea Cuconati
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, 18902, USA.
| | - Haitao Guo
- Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA, 18902, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Chen J, Wu M, Liu K, Zhang W, Li Y, Zhou X, Bai L, Yuan Z. New insights into hepatitis B virus biology and implications for novel antiviral strategies. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Hepatitis B virus (HBV), a small DNA virus with a unique replication mode, can cause chronic hepatitis (CHB), which is characterized by the persistence of the viral covalently closed circular DNA that serves as the template for HBV replication and the production of large amounts of secreted HBV surface antigen (HBsAg) that is present in excess of the levels of infectious virus. Despite the success of currently approved antiviral treatments for CHB patients, including interferon and nucleotide analogs, which suppress HBV replication and reduce the risk of CHB-related liver diseases, these therapies fail to eradicate the virus in most of the patients. With the development of the cell and animal models for HBV study, a better understanding of the HBV life cycle has been achieved and a series of novel antiviral strategies that target different stages of HBV replication have been designed to overcome the viral factors that contribute to HBV persistence. Such basic HBV research advancements and therapeutic developments are the subject of this review.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Kuancheng Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohui Zhou
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Abstract
Infection with HBV is common worldwide, with over 350 million chronic carriers. Chronic HBV infection is associated with cirrhosis and hepatocellular carcinoma. All currently available oral antivirals are directed against the HBV polymerase enzyme, a reverse transcriptase. HBV polymerase contains several important domains and motifs which define its functions and reveal ways to further target it. This enzyme executes many functions required for the HBV replication cycle, including viral RNA binding, RNA packaging, protein priming, template switching, DNA synthesis and RNA degradation. In addition, HBV polymerase must interact with host proteins for its functions. Future therapeutics may inhibit not only the DNA synthesis steps which are carried out by the reverse transcriptase domain (as all current antivirals do) but other domains, functions and interactions which are essential to the HBV replication cycle.
Collapse
Affiliation(s)
- Daniel N Clark
- The Pennsylvania State University College of Medicine, Milton S Hershey Medical Center, PA 17033, USA
| | - Jianming Hu
- The Pennsylvania State University College of Medicine, Milton S Hershey Medical Center, PA 17033, USA
| |
Collapse
|
14
|
Comparative analysis of hepatitis B virus polymerase sequences required for viral RNA binding, RNA packaging, and protein priming. J Virol 2013; 88:1564-72. [PMID: 24227865 DOI: 10.1128/jvi.02852-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatitis B virus replicates a DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific association with a viral RNA signal, termed ε (Hε), located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. HP is made up of four domains, including the terminal protein (TP), the spacer, the reverse transcriptase (RT), and the RNase H domains. A recently developed, Hε-dependent, in vitro protein priming assay was used in this study to demonstrate that almost the entire TP and RT domains and most of the RNase H domain were required for protein priming. Specific residues within TP, RT, and the spacer were identified as being critical for HP-Hε binding and/or protein priming. Comparison of HP sequence requirements for Hε binding, pgRNA packaging, and protein priming allowed the classification of the HP mutants into five groups, each with distinct effects on these complex and related processes. Detailed characterization of HP requirements for these related and essential functions of HP will further elucidate the mechanisms of its multiple functions and aid in the targeting of these functions for antiviral therapy.
Collapse
|
15
|
Jones SA, Hu J. Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerg Microbes Infect 2013; 2:e56. [PMID: 26038488 PMCID: PMC3820986 DOI: 10.1038/emi.2013.56] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/21/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection remains a global health problem with over 350 million chronically infected, causing an increased risk of cirrhosis and hepatocellular carcinoma. Current antiviral chemotherapy for HBV infection include five nucleos(t)ide analog reverse transcriptase inhibitors (NRTIs) that all target one enzymatic activity, DNA strand elongation, of the HBV polymerase (HP), a specialized reverse transcriptase (RT). NRTIs are not curative and long-term treatment is associated with toxicity and the emergence of drug resistant viral mutations, which can also result in vaccine escape. Recent studies on the multiple functions of HP have provided important mechanistic insights into its diverse roles during different stages of viral replication, including interactions with viral pregenomic RNA, RNA packaging into nucleocapsids, protein priming, minus- and plus-strand viral DNA synthesis, RNase H-mediated degradation of viral RNA, as well as critical host interactions that regulate the multiple HP functions. These diverse functions provide ample opportunities to develop novel HP-targeted antiviral treatments that should contribute to curing chronic HBV infection.
Collapse
Affiliation(s)
- Scott A Jones
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey , PA 17033, USA
| | - Jianming Hu
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey , PA 17033, USA
| |
Collapse
|
16
|
Maturation-associated destabilization of hepatitis B virus nucleocapsid. J Virol 2013; 87:11494-503. [PMID: 23966388 DOI: 10.1128/jvi.01912-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mature nucleocapsid (NC) of hepatitis B virus containing the relaxed circular (RC) DNA genome can be secreted extracellularly as virions after envelopment with the viral surface proteins or, alternatively, can be disassembled to release RC DNA (i.e., uncoating) into the host cell nucleus to form the covalently closed circular (CCC) DNA, which sustains viral replication and persistence. In contrast, immature NCs containing the viral single-stranded DNA or the pregenomic RNA are incompetent for either envelopment or uncoating. Little is currently known about how mature NCs, and not the immature ones, are specifically selected for these processes. Here, we have carried out a biochemical analysis of the different NC populations upon their separation through sucrose gradient centrifugation. We have found that the maturation of NCs is associated with their destabilization, manifested as increased protease and nuclease sensitivity, altered sedimentation during sucrose gradient centrifugation, and retarded mobility during native agarose gel electrophoresis. Also, three distinct populations of intracellular mature NCs could be differentiated based on these characteristics. Furthermore, mature NCs generated in vitro under cell-free conditions acquired similar properties. These results have thus revealed significant structural changes associated with NC maturation that likely play a role in the selective uncoating of the mature NC for CCC DNA formation and/or its preferential envelopment for virion secretion.
Collapse
|
17
|
Mao R, Nie H, Cai D, Zhang J, Liu H, Yan R, Cuconati A, Block TM, Guo JT, Guo H. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 2013; 9:e1003494. [PMID: 23853601 PMCID: PMC3708887 DOI: 10.1371/journal.ppat.1003494] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/20/2013] [Indexed: 02/07/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) is a mammalian host restriction factor that inhibits the replication of a variety of RNA viruses, including retroviruses, alphaviruses and filoviruses, through interaction with the ZAP-responsive elements (ZRE) in viral RNA, and recruiting the exosome to degrade RNA substrate. Hepatitis B virus (HBV) is a pararetrovirus that replicates its genomic DNA via reverse transcription of a viral pregenomic (pg) RNA precursor. Here, we demonstrate that the two isoforms of human ZAP (hZAP-L and -S) inhibit HBV replication in human hepatocyte-derived cells through posttranscriptional down-regulation of viral pgRNA. Mechanistically, the zinc finger motif-containing N-terminus of hZAP is responsible for the reduction of HBV RNA, and the integrity of the four zinc finger motifs is essential for ZAP to bind to HBV RNA and fulfill its antiviral function. The ZRE sequences conferring the susceptibility of viral RNA to ZAP-mediated RNA decay were mapped to the terminal redundant region (nt 1820–1918) of HBV pgRNA. In agreement with its role as a host restriction factor and as an innate immune mediator for HBV infection, ZAP was upregulated in cultured primary human hepatocytes and hepatocyte-derived cells upon IFN-α treatment or IPS-1 activation, and in the livers of hepatitis B patients during immune active phase. Knock down of ZAP expression increased the level of HBV RNA and partially attenuated the antiviral effect elicited by IPS-1 in cell cultures. In summary, we demonstrated that ZAP is an intrinsic host antiviral factor with activity against HBV through down-regulation of viral RNA, and that ZAP plays a role in the innate control of HBV replication. Our findings thus shed light on virus-host interaction, viral pathogenesis, and antiviral approaches. The dynamics of virus and host interaction greatly influence viral pathogenesis, and host cells have evolved multiple mechanisms to inhibit viral replication. Since it was first discovered as a cellular restriction factor for retroviruses, the host-encoded zinc finger antiviral protein (ZAP) has been shown to antagonize a variety of viral species, possibly through a common mechanism by which ZAP targets viral RNA for degradation. Here we report that hepatitis B virus (HBV) is also vulnerable to ZAP-mediated viral RNA reduction. ZAP is able to interact with HBV RNA through its zinc finger motifs, and the ZAP-responsive element which determines ZAP's antiviral specificity and activity is located within the 100-nucleotide-long terminal redundant region in the viral RNA genome. While the replication of HBV is constitutively restricted under the basal expression of intrahepatic ZAP, activation of host innate defenses, and potentially the acquired immune responses as well, could further elevate ZAP expression to suppress HBV replication. Therefore, our study not only expands the antiviral spectrum of ZAP, but also provides cumulative and novel information for a better understanding of ZAP biology and antiviral mechanisms. We also envision that the endogenous or engineered ZAP could be utilized in the future for development of therapeutic means to treat chronic hepatitis B, which currently affects more than 5% of the world's population.
Collapse
Affiliation(s)
- Richeng Mao
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Nie
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Dawei Cai
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Jiming Zhang
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ran Yan
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Andrea Cuconati
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- Institute for Hepatitis and Virus Research, Hepatitis B Foundation, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Haitao Guo
- Institute for Biotechnology and Virology Research, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Protein-primed terminal transferase activity of hepatitis B virus polymerase. J Virol 2012; 87:2563-76. [PMID: 23255788 DOI: 10.1128/jvi.02786-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) replication requires reverse transcription of an RNA pregenome (pgRNA) by a multifunctional polymerase (HP). HP initiates viral DNA synthesis by using itself as a protein primer and an RNA signal on pgRNA, termed epsilon (Hε), as the obligatory template. We discovered a Mn(2+)-dependent transferase activity of HP in vitro that was independent of Hε but also used HP as a protein primer. This protein-primed transferase activity was completely dependent on the HP polymerase active site. The DNA products of the transferase reaction were linked to HP via a phosphotyrosyl bond, and replacement of the Y63 residue of HP, the priming site for templated DNA synthesis, almost completely eliminated DNA synthesis by the transferase activity, suggesting that Y63 also serves as the predominant priming site for the transferase reaction. For this transferase activity, HP could use all four deoxynucleotide substrates, but TTP was clearly favored for extensive polymerization. The transferase activity was highly distributive, leading to the synthesis of DNA homo- and hetero-oligomeric and -polymeric ladders ranging from 1 nucleotide (nt) to >100 nt in length, with single-nt increments. As with Hε-templated DNA synthesis, the protein-primed transferase reaction was characterized by an initial stage that was resistant to the pyrophosphate analog phosphonoformic acid (PFA) followed by PFA-sensitive DNA synthesis, suggestive of an HP conformational change upon the synthesis of a nascent DNA oligomer. These findings have important implications for HBV replication, pathogenesis, and therapy.
Collapse
|
19
|
TP-RT domain interactions of duck hepatitis B virus reverse transcriptase in cis and in trans during protein-primed initiation of DNA synthesis in vitro. J Virol 2012; 86:6522-36. [PMID: 22514346 DOI: 10.1128/jvi.00086-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hepadnavirus reverse transcriptase (RT) has the unique ability to initiate viral DNA synthesis using RT itself as a protein primer. Protein priming requires complex interactions between the N-terminal TP (terminal protein) domain, where the primer (a specific Y residue) resides, and the central RT domain, which harbors the polymerase active site. While it normally utilizes the cis-linked TP to prime DNA synthesis (cis-priming), we found that the duck hepatitis B virus (DHBV) RT domain, in the context of the full-length RT protein or a mini-RT construct containing only truncated TP and RT domains, could additionally use a separate TP or RT domain in trans as a primer (trans-priming). trans interaction could also be demonstrated by the inhibitory effect (trans-inhibition) on cis-priming by TP and RT domain sequences provided in trans. Protein priming was further shown to induce RT conformational changes that resulted in TP-RT domain dissociation, altered priming site selection, and a gain of sensitivity to a pyrophosphate analog inhibitor. trans-priming, trans-inhibition, and trans-complementation, which requires separate TP and RT domains to reconstitute a functional RT protein, were employed to define the sequences in the TP and RT domains that could mediate physical or functional inter- and intradomain interactions. These results provide new insights into TP-RT domain interactions and conformational dynamics during protein priming and suggest novel means to inhibit protein priming by targeting these interactions and the associated conformational transitions.
Collapse
|
20
|
In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J Virol 2012; 86:5134-50. [PMID: 22379076 DOI: 10.1128/jvi.07137-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a pregenomic RNA (pgRNA) by using a multifunctional polymerase (HP). A critical function of HP is its specific recognition of a viral RNA signal termed ε (Hε) located on pgRNA, which is required for specific packaging of pgRNA into viral nucleocapsids and initiation of viral reverse transcription. HP initiates reverse transcription by using itself as a protein primer (protein priming) and Hε as the obligatory template. We have purified HP from human cells that retained Hε binding activity in vitro. Furthermore, HP purified as a complex with Hε, but not HP alone, displayed in vitro protein priming activity. While the HP-Hε interaction in vitro and in vivo required the Hε internal bulge, but not its apical loop, and was not significantly affected by the cap-Hε distance, protein priming required both the Hε apical loop and internal bulge, as well as a short distance between the cap and Hε, mirroring the requirements for RNA packaging. These studies have thus established new HBV protein priming and RNA binding assays that should greatly facilitate the dissection of the requirements and molecular mechanisms of HP-Hε interactions, RNA packaging, and protein priming.
Collapse
|
21
|
Characterization of the pleiotropic effects of the genotype G-specific 36-nucleotide insertion in the context of other hepatitis B virus genotypes. J Virol 2011; 85:13278-89. [PMID: 21994450 DOI: 10.1128/jvi.05583-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves as the messenger for both core and P proteins, with the downstream P gene translated by ribosomal leaky scanning. HBV replication begins with packaging of the pgRNA and P protein into core protein particles, followed by conversion of RNA into DNA. Genotype G has a low replication capacity due to a low pgRNA level. It has a 36-nucleotide (nt) insertion in the 5' end of the core gene, adding 12 residues to the core protein. The insertion is needed to maintain efficient core protein expression and genome replication but causes inefficient virion secretion yet high maturity of virion DNA. In the present study, we confirmed that the 36-nt insertion had similar effects on core protein expression and virion secretion when it was introduced into genotype A and D clones but no impact on virion genome maturity. Surprisingly, the insertion impaired genome replication in both genotypes. Transcomplementation assays suggest that increased efficiency of core protein translation diminishes ribosomal scanning toward the downstream P gene. Indeed, mutating the core gene Kozak sequence restored core protein to lower levels but increased replication of the insertion mutant. Similar mutations impaired replication in genotype G. On the other hand, replacement of the core promoter sequence of genotype G with genotype A sequence increased pgRNA transcription and genome replication, implicating this region in the low replication capacity of genotype G. Why the 36-nt insertion is present in genotype G but absent in other genotypes is discussed.
Collapse
|
22
|
Ning X, Nguyen D, Mentzer L, Adams C, Lee H, Ashley R, Hafenstein S, Hu J. Secretion of genome-free hepatitis B virus--single strand blocking model for virion morphogenesis of para-retrovirus. PLoS Pathog 2011; 7:e1002255. [PMID: 21966269 PMCID: PMC3178560 DOI: 10.1371/journal.ppat.1002255] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/21/2011] [Indexed: 12/18/2022] Open
Abstract
As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an “immature” nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a “maturation signal” that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, “Single Strand Blocking” model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis. Hepatitis B virus (HBV), an important global human pathogen and the main cause of liver cancer worldwide, is classified as a para-retrovirus, as it replicates by reverse transcription, i.e., copying of RNA to DNA, like retroviruses. However, different from retroviruses that are RNA viruses replicating via a DNA intermediate, HBV is a DNA virus that replicates through an RNA intermediate. Like retroviruses, HBV initially packages an RNA copy of its genome into intracellular subviral particles. However, complete HBV virions contain only a double-stranded (DS) DNA. The long-standing model to explain this selective presence of DS DNA in HBV virions postulates that DS DNA synthesis is required to trigger virion secretion. We have found, however, that virion secretion does not require any DNA synthesis. Rather, the presence of the single-stranded RNA (or the single-stranded DNA intermediate of reverse transcription) negatively regulates virion formation. These results thus change the prevailing paradigm in understanding HBV morphogenesis and also have important implications for virus assembly in general. Furthermore, they raise the important question regarding the role of empty HBV virions identified here in viral replication and pathogenesis.
Collapse
Affiliation(s)
- Xiaojun Ning
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - David Nguyen
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Laura Mentzer
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Christina Adams
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Hyunwook Lee
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Infectious Diseases, Department of Medicine, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Robert Ashley
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Infectious Diseases, Department of Medicine, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Susan Hafenstein
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Infectious Diseases, Department of Medicine, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jianming Hu
- Department of Microbiology and Immunology, The Penn State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cryptic protein priming sites in two different domains of duck hepatitis B virus reverse transcriptase for initiating DNA synthesis in vitro. J Virol 2011; 85:7754-65. [PMID: 21593164 DOI: 10.1128/jvi.00483-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Initiation of reverse transcription in hepadnaviruses is accomplished by a unique protein-priming mechanism whereby a specific Y residue in the terminal protein (TP) domain of the viral reverse transcriptase (RT) acts as a primer to initiate DNA synthesis, which is carried out by the RT domain of the same protein. When separate TP and RT domains from the duck hepatitis B virus (DHBV) RT protein were tested in a trans-complementation assay in vitro, the RT domain could also serve, unexpectedly, as a protein primer for DNA synthesis, as could a TP mutant lacking the authentic primer Y (Y96) residue. Priming at these other, so-called cryptic, priming sites in both the RT and TP domains shared the same requirements as those at Y96. A mini RT protein with both the TP and RT domains linked in cis, as well as the full-length RT protein, could also initiate DNA synthesis using cryptic priming sites. The cryptic priming site(s) in TP was found to be S/T, while those in the RT domain were Y and S/T. As with the authentic TP Y96 priming site, the cryptic priming sites in the TP and RT domains could support DNA polymerization subsequent to the initial covalent linkage of the first nucleotide to the priming amino acid residue. These results provide new insights into the complex mechanisms of protein priming in hepadnaviruses, including the selection of the primer residue and the interactions between the TP and RT domains that is essential for protein priming.
Collapse
|
24
|
Feng H, Hu KH. Structural characteristics and molecular mechanism of hepatitis B virus reverse transcriptase. Virol Sin 2009. [DOI: 10.1007/s12250-009-3076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Drastic reduction in the production of subviral particles does not impair hepatitis B virus virion secretion. J Virol 2009; 83:11152-65. [PMID: 19706705 DOI: 10.1128/jvi.00905-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) contains three coterminal envelope proteins on the virion surface: large (L), middle (M), and small (S). The M and S proteins are also secreted as empty "subviral particles," which exceed virions by at least 1,000-fold. The S protein serves as the morphogenic factor for both types of particles, while the L protein is required only for virion formation. We found that cotransfecting replication constructs with a small dose of the expression construct for the missing L, M, and S proteins reconstituted efficient virion secretion but only 5 to 10% of subviral particles. The L protein inhibited secretion of subviral particles in a dose-dependent manner, whereas a too-high or too-low L/S protein ratio inhibited virion secretion. Consistent with the results of cotransfection experiments, a point mutation at the -3 position of the S gene AUG codon reduced HBsAg secretion by 60 to 70% but maintained efficient virion secretion. Surprisingly, ablating M protein expression reduced virion secretion but markedly increased the maturity of virion-associated genomes, which could be reversed by providing in trans both L and M proteins but not just M protein. M protein stability was dependent on the coexpression of S protein. Our findings suggest that efficient HBV virion secretion could be maintained despite drastic reduction in subviral particle production, which supports the recent demonstration of separate secretion pathways adopted by the two types of particles. The M protein appears to facilitate core particle envelopment, thus shortening the window of plus strand DNA elongation.
Collapse
|
26
|
Functional and structural dynamics of hepadnavirus reverse transcriptase during protein-primed initiation of reverse transcription: effects of metal ions. J Virol 2008; 82:5703-14. [PMID: 18400846 DOI: 10.1128/jvi.02760-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reverse transcription in hepadnaviruses is primed by the viral reverse transcriptase (RT) (protein priming) and requires the interaction between the RT and a specific viral RNA template termed epsilon. Protein priming is resistant to a number of RT inhibitors that can block subsequent viral DNA elongation and likely requires a distinct "priming" conformation. Furthermore, protein priming may consist of two distinct stages, i.e., the attachment of the first deoxynucleotide to RT (initiation) and the subsequent addition of 2 or 3 deoxynucleotides (polymerization). In particular, a truncated duck hepatitis B virus RT (MiniRT2) is competent in initiation but defective in polymerization when tested in the presence of Mg(2+). Given the known effects of metal ions on the activities of various DNA and RNA polymerases, we tested if metal ions could affect hepadnavirus RT priming. We report here that Mn(2+), in comparison with Mg(2+), showed dramatic effects on the priming activity of MiniRT2 as well as the full-length RT. First and foremost, MiniRT2 exhibited full polymerization activity in the presence of Mn(2+), indicating that MiniRT2 contains all sequences essential for polymerization but is unable to transition from initiation to polymerization with Mg(2+). Second, the initiation activities of MiniRT2 and the full-length RT were much stronger with Mn(2+). Third, the nucleotide and template specificities during protein priming were decreased in the presence of Mn(2+). Fourth, polymerization was sensitive to inhibition by a pyrophosphate analog in the presence of Mn(2+) but not in the presence of Mg(2+). Finally, limited proteolysis provided direct evidence that the priming active MiniRT2 adopted distinct conformations depending on the presence of Mn(2+) versus that of Mg(2+) and that the transition from initiation to polymerization was accompanied by RT conformational change.
Collapse
|