1
|
Osterrieder K, Dorman DC, Burgess BA, Goehring LS, Gross P, Neinast C, Pusterla N, Hussey GS, Lunn DP. Vaccination for the prevention of equine herpesvirus-1 disease in domesticated horses: A systematic review and meta-analysis. J Vet Intern Med 2024; 38:1858-1871. [PMID: 37930113 PMCID: PMC11099739 DOI: 10.1111/jvim.16895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Equine herpes virus type 1 (EHV-1) infection in horses is associated with respiratory and neurologic disease, abortion, and neonatal death. HYPOTHESIS Vaccines decrease the occurrence of clinical disease in EHV-1-infected horses. METHODS A systematic review was performed searching multiple databases to identify relevant studies. Selection criteria were original peer-reviewed research reports that investigated the in vivo use of vaccines for the prevention of disease caused by EHV-1 in domesticated horses. Main outcomes of interest included pyrexia, abortion, neurologic disease, viremia, and nasal shedding. We evaluated risk of bias, conducted exploratory meta-analyses of incidence data for the main outcomes, and performed a GRADE evaluation of the quality of evidence for each vaccine subtype. RESULTS A total of 1018 unique studies were identified, of which 35 met the inclusion criteria. Experimental studies accounted for 31/35 studies, with the remainder being observational studies. Eight vaccine subclasses were identified including commercial (modified-live, inactivated, mixed) and experimental (modified-live, inactivated, deletion mutant, DNA, recombinant). Risk of bias was generally moderate, often because of underreporting of research methods, and sample sizes were small leading to imprecision in the estimate of the effect size. Several studies reported either no benefit or minimal vaccine efficacy for the primary outcomes of interest. Meta-analyses revealed significant heterogeneity was present, and our confidence in the quality of evidence for most outcomes was low to moderate. CONCLUSIONS AND CLINICAL IMPORTANCE Our review indicates that commercial and experimental vaccines minimally reduce the incidence of clinical disease associated with EHV-1 infection.
Collapse
Affiliation(s)
| | - David C. Dorman
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Lutz S. Goehring
- College of Agriculture, Food and EnvironmentUniversity of Kentucky, Maxwell H. Gluck Equine Research CenterLexingtonKentuckyUSA
| | - Peggy Gross
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Claire Neinast
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nicola Pusterla
- School of Veterinary Medicine, University of CaliforniaDavisCaliforniaUSA
| | - Gisela Soboll Hussey
- College of Veterinary Medicine, Michigan State University, Veterinary Medical CenterEast LansingMichiganUSA
| | - David P. Lunn
- School of Veterinary Science, University of LiverpoolLiverpoolUK
| |
Collapse
|
2
|
Lunn DP, Burgess BA, Dorman DC, Goehring LS, Gross P, Osterrieder K, Pusterla N, Soboll Hussey G. Updated ACVIM consensus statement on equine herpesvirus-1. J Vet Intern Med 2024; 38:1290-1299. [PMID: 38497217 PMCID: PMC11099706 DOI: 10.1111/jvim.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Equine herpesvirus-1 (EHV-1) is a highly prevalent and frequently pathogenic infection of equids. The most serious clinical consequences of infection are abortion and equine herpesvirus myeloencephalopathy (EHM). The previous consensus statement was published in 2009 and considered pathogenesis, strain variation, epidemiology, diagnostic testing, vaccination, outbreak prevention and control, and treatment. A recent survey of American College of Veterinary Internal Medicine large animal diplomates identified the need for a revision to this original consensus statement. This updated consensus statement is underpinned by 4 systematic reviews that addressed key questions concerning vaccination, pharmaceutical treatment, pathogenesis, and diagnostic testing. Evidence for successful vaccination against, or effective treatment of EHV-1 infection was limited, and improvements in experimental design and reporting of results are needed in future studies of this important disease. This consensus statement also updates the topics considered previously in 2009.
Collapse
Affiliation(s)
- David P. Lunn
- School of Veterinary ScienceUniversity of LiverpoolLiverpoolUnited Kingdom
| | - Brandy A Burgess
- College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - David C. Dorman
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Lutz S. Goehring
- Maxwell H. Gluck Equine Research CenterUniversity of Kentucky, College of Agriculture, Food and EnvironmentLexingtonKentuckyUSA
| | - Peggy Gross
- College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Nicola Pusterla
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Gisela Soboll Hussey
- College of Veterinary MedicineMichigan State University, Veterinary Medical CenterEast LansingMichiganUSA
| |
Collapse
|
3
|
Frequency of Detection and Prevalence Factors Associated with Common Respiratory Pathogens in Equids with Acute Onset of Fever and/or Respiratory Signs (2008–2021). Pathogens 2022; 11:pathogens11070759. [PMID: 35890002 PMCID: PMC9317490 DOI: 10.3390/pathogens11070759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
A voluntary biosurveillance program was established in 2008 in order to determine the shedding frequency and prevalence factors for common respiratory pathogens associated with acute onset of fever and/or respiratory signs in equids from the USA. Over a period of 13 years, a total of 10,296 equids were enrolled in the program and nasal secretions were analyzed for the qPCR detection of equine influenza virus (EIV), equine herpesvirus-1 (EHV-1), EHV-4, equine rhinitis A and B virus (ERVs), and Streptococcus equi subspecies equi (S. equi). Single infections with respiratory pathogens were detected in 21.1% of the submissions with EIV (6.8%) and EHV-4 (6.6%) as the two most prevalent viruses, followed by S. equi (4.7%), ERVs (2.3%), and EHV-1 (0.7%). Multiple pathogens were detected in 274 horses (2.7%) and no respiratory pathogens in 7836 horses (76.2%). Specific prevalence factors were determined for each of the six respiratory pathogen groups; most differences were associated with age, breed, and use of the horses, while the clinical signs were fairly consistent between viral and bacterial respiratory infections. Monitoring the frequency of detection of common respiratory pathogens is important in order to gain a better understanding of their epidemiology and to implement management practices aimed at controlling disease spread.
Collapse
|
4
|
Biondi V, Landi A, Pugliese M, Merola G, Passantino A. Inflammatory Response and Electrocardiographic Examination in Horses Vaccinated against Equine Herpesvirus (Ehv-1). Animals (Basel) 2022; 12:ani12060778. [PMID: 35327175 PMCID: PMC8944655 DOI: 10.3390/ani12060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Equine herpesvirus 1 (EHV-1) is an alphaherpesvirus that infects horses, causing respiratory, neurologic, and abortion syndromes in pregnant mares. Vaccination induces an immune response that reduces the risk of infection, the severity of clinical signs, and viral excretion. This study aimed to evaluate and describe the clinical and electrocardiographic findings, and changes in cardiac troponin I (cTnI) and inflammatory biomarkers (serum amyloid A (SAA) and C-reactive protein (CRP)) occurring after vaccination against herpesvirus in healthy horses. Abstract This study aimed to evaluate possible abnormalities in electrocardiographic findings, and changes in cardiac troponin I (cTnI) and inflammatory biomarkers (serum amyloid A (SAA) and C-reactive protein (CRP)) after inactivated herpesvirus vaccine administration. Eighteen healthy horses were included. All animals were vaccinated with Pneumoequine® (Merial, France) according to the protocol provided by the manufacturer. They were evaluated 1 day before the first dose of vaccination (D0), and 7 days (D1) and 14 days (D2) afterwards. At D0, D1, and D2, a blood sample was taken for the evaluation of SAA, cTnI, and CRP. An electrocardiographic examination was also performed. The data obtained suggested the possible involvement of the myocardium following vaccination against herpesvirus 1, mostly related to an inflammatory response.
Collapse
Affiliation(s)
- Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (G.M.); (A.P.)
| | | | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (G.M.); (A.P.)
- Correspondence: ; Tel.: +39-90-6766743
| | - Giordana Merola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (G.M.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (G.M.); (A.P.)
| |
Collapse
|
5
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Roberts HC, Padalino B, Pasquali P, Spoolder H, Ståhl K, Calvo AV, Viltrop A, Winckler C, Carvelli A, Paillot R, Broglia A, Kohnle L, Baldinelli F, Van der Stede Y. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infection with Equine Herpesvirus-1. EFSA J 2022; 20:e07036. [PMID: 35035581 PMCID: PMC8753587 DOI: 10.2903/j.efsa.2022.7036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equine Herpesvirus-1 infection has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of: Article 7 on disease profile and impacts, Article 5 on the eligibility of the disease to be listed, Article 9 for the categorisation of the disease according to disease prevention and control measures as in Annex IV and Article 8 on the list of animal species related to Equine Herpesvirus-1 infection. The assessment has been performed following a methodology composed of information collection and compilation, and expert judgement on each criterion at individual and collective level. The outcome is the median of the probability ranges provided by the experts, which indicates whether the criterion is fulfilled (66-100%) or not (0-33%), or whether there is uncertainty about fulfilment (33-66%). For the questions where no consensus was reached, the different supporting views are reported. According to the assessment performed, Equine Herpesvirus-1 infection can be considered eligible to be listed for Union intervention according to Article 5 of the Animal Health Law with 33-90% certainty. According to the criteria as in Annex IV of the AHL related to Article 9 of the AHL for the categorisation of diseases according to the level of prevention and control, it was assessed with less than 1% certainty that EHV-1 fulfils the criteria as in Section 1 (category A), 1-5% for the criteria as in Section 2 (category B), 10-66% for the criteria as in Section 3 (category C), 66-90% for the criteria as in Section 4 (category D) and 33-90% for the criteria as in Section 5 (category E). The animal species to be listed for EHV-1 infection according to Article 8(3) criteria are the species belonging to the families of Equidae, Bovidae, Camelidae, Caviidae, Cervidae, Cricetidae, Felidae, Giraffidae, Leporidae, Muridae, Rhinocerontidae, Tapiridae and Ursidae.
Collapse
|
6
|
Association of Equine Herpesvirus 5 with Mild Respiratory Disease in a Survey of EHV1, -2, -4 and -5 in 407 Australian Horses. Animals (Basel) 2021; 11:ani11123418. [PMID: 34944194 PMCID: PMC8697987 DOI: 10.3390/ani11123418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Infectious respiratory diseases in horses represent a major health and welfare problem. Although equine influenza is well reported as a cause of respiratory disease in most continents, Australia is free of EIV despite an outbreak in two states in 2007. Horses in Victoria were tested to demonstrate proof of freedom from EIV, hence samples were able to be subsequently tested for this study with the knowledge that EIV was not present as a potential cause of any disease. The equine alphaherpesviruses, EHV1 and -4 are well known agents of equine respiratory disease. The gammaherpesviruses EHV2 and -5 on the other hand are often isolated from clinically healthy horses despite a known association in some disease processes. The consequences of infection with these enigmatic viruses remains unknown. The investigation of several hundred horses with and without respiratory disease provided valuable information in terms of association. The salient findings of this study determined that a large proportion of normal horses were positive for the gammaherpesviruses EHV2 and -5 using PCR methods. However, horses shedding EHV5 were more likely to have had signs of respiratory disease. Like EHV2, EHV5 is a gammaherpesvirus commonly found in horses: its significance is unclear, though it is closely related to the Epstein–Barr virus, the agent responsible for glandular fever in humans. These viruses are known to interfere with the immune response and have potentially wide-ranging effects on infected hosts. This study has added to our awareness of these equine herpesviruses and should stimulate further studies to determine exact causation and consequences of infection. Abstract Equine herpesviruses (EHVs) are common respiratory pathogens in horses; whilst the alphaherpesviruses are better understood, the clinical importance of the gammaherpesviruses remains undetermined. This study aimed to determine the prevalence of, and any association between, equine respiratory herpesviruses EHV1, -2, -4 and -5 infection in horses with and without clinical signs of respiratory disease. Nasal swabs were collected from 407 horses in Victoria and included clinically normal horses that had been screened for regulatory purposes. Samples were collected from horses during Australia’s equine influenza outbreak in 2007; however, horses in Victoria required testing for proof of freedom from EIV. All horses tested in Victoria were negative for EIV, hence archived swabs were available to screen for other pathogens such as EHVs. Quantitative PCR techniques were used to detect EHVs. Of the 407 horses sampled, 249 (61%) were clinically normal, 120 (29%) presented with clinical signs consistent with mild respiratory disease and 38 (9%) horses had an unknown clinical history. Of the three horses detected shedding EHV1, and the five shedding EHV4, only one was noted to have clinical signs referable to respiratory disease. The proportion of EHV5-infected horses in the diseased group (85/120, 70.8%) was significantly greater than those not showing signs of disease (137/249, 55%). The odds of EHV5-positive horses demonstrating clinical signs of respiratory disease were twice that of EHV5-negative horses (OR 1.98, 95% CI 1.25 to 3.16). No quantitative difference between mean loads of EHV shedding between diseased and non-diseased horses was detected. The clinical significance of respiratory gammaherpesvirus infections in horses remains to be determined; however, this survey adds to the mounting body of evidence associating EHV5 with equine respiratory disease.
Collapse
|
7
|
Zarski LM, Vaala WE, Barnett DC, Bain FT, Soboll Hussey G. A Live-Attenuated Equine Influenza Vaccine Stimulates Innate Immunity in Equine Respiratory Epithelial Cell Cultures That Could Provide Protection From Equine Herpesvirus 1. Front Vet Sci 2021; 8:674850. [PMID: 34179166 PMCID: PMC8224402 DOI: 10.3389/fvets.2021.674850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
Equine herpesvirus 1 (EHV-1) ubiquitously infects horses worldwide and causes respiratory disease, abortion, and equine herpesvirus myeloencephalopathy. Protection against EHV-1 disease is elusive due to establishment of latency and immune-modulatory features of the virus. These include the modulation of interferons, cytokines, chemokines, antigen presentation, and cellular immunity. Because the modulation of immunity likely occurs at the site of first infection—the respiratory epithelium, we hypothesized that the mucosal influenza vaccine Flu Avert® I.N. (Flu Avert), which is known to stimulate strong antiviral responses, will enhance antiviral innate immunity, and that these responses would also provide protection from EHV-1 infection. To test our hypothesis, primary equine respiratory epithelial cells (ERECs) were treated with Flu Avert, and innate immunity was evaluated for 10 days following treatment. The timing of Flu Avert treatment was also evaluated for optimal effectiveness to reduce EHV-1 replication by modulating early immune responses to EHV-1. The induction of interferons, cytokine and chemokine mRNA expression, and protein secretion was evaluated by high-throughput qPCR and multiplex protein analysis. Intracellular and extracellular EHV-1 titers were determined by qPCR. Flu Avert treatment resulted in the modulation of IL-8, CCL2, and CXCL9 starting at days 5 and 6 post-treatment. Coinciding with the timing of optimal chemokine induction, our data also suggested the same timing for reduction of EHV-1 replication. In combination, our results suggest that Flu Avert may be effective at counteracting some of the immune-modulatory properties of EHV-1 at the airway epithelium and the peak for this response occurs 5–8 days post-Flu Avert treatment. Future in vivo studies are needed to investigate Flu Avert as a prophylactic in situations where EHV-1 exposure may occur.
Collapse
Affiliation(s)
- Lila M Zarski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| | | | | | | | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Veterinary Medical Center, East Lansing, MI, United States
| |
Collapse
|
8
|
Zarski LM, Giessler KS, Jacob SI, Weber PSD, McCauley AG, Lee Y, Soboll Hussey G. Identification of Host Factors Associated with the Development of Equine Herpesvirus Myeloencephalopathy by Transcriptomic Analysis of Peripheral Blood Mononuclear Cells from Horses. Viruses 2021; 13:v13030356. [PMID: 33668216 PMCID: PMC7995974 DOI: 10.3390/v13030356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Equine herpesvirus-1 is the cause of respiratory disease, abortion, and equine herpesvirus myeloencephalopathy (EHM) in horses worldwide. EHM affects as many as 14% of infected horses and a cell-associated viremia is thought to be central for EHM pathogenesis. While EHM is infrequent in younger horses, up to 70% of aged horses develop EHM. The aging immune system likely contributes to EHM pathogenesis; however, little is known about the host factors associated with clinical EHM. Here, we used the “old mare model” to induce EHM following EHV-1 infection. Peripheral blood mononuclear cells (PBMCs) of horses prior to infection and during viremia were collected and RNA sequencing with differential gene expression was used to compare the transcriptome of horses that did (EHM group) and did not (non-EHM group) develop clinical EHM. Interestingly, horses exhibiting EHM did not show respiratory disease, while non-EHM horses showed significant respiratory disease starting on day 2 post infection. Multiple immune pathways differed in EHM horses in response to EHV-1. These included an upregulation of IL-6 gene expression, a dysregulation of T-cell activation through AP-1 and responses skewed towards a T-helper 2 phenotype. Further, a dysregulation of coagulation and an upregulation of elements in the progesterone response were observed in EHM horses.
Collapse
Affiliation(s)
- Lila M. Zarski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Kim S. Giessler
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Sarah I. Jacob
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Patty Sue D. Weber
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Allison G. McCauley
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Yao Lee
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA; (L.M.Z.); (K.S.G.); (S.I.J.); (A.G.M.); (Y.L.)
- Correspondence:
| |
Collapse
|
9
|
Transcriptomic Profiling of Equine and Viral Genes in Peripheral Blood Mononuclear Cells in Horses during Equine Herpesvirus 1 Infection. Pathogens 2021; 10:pathogens10010043. [PMID: 33430330 PMCID: PMC7825769 DOI: 10.3390/pathogens10010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory disease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell-associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathology results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were identified in addition to 57 and 41 potentially novel miRNAs that mapped to the EHV-2 and EHV-5 genomes, respectively. Of those, 1 EHV-5 and 4 equine miRNAs were differentially expressed in PBMCs during viremia. In conclusion, this work expands our current knowledge about the role of PBMCs during EHV-1 viremia and will inform the focus on future experiments to identify host and viral factors that contribute to clinical EHM.
Collapse
|
10
|
Ali AA, Refat NA, Algabri NA, Sobh MS. Fetal lesions of EHV-1 in equine. AN ACAD BRAS CIENC 2020; 92:e20180837. [PMID: 32965312 DOI: 10.1590/0001-3765202020180837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
EHV-1 infection is responsible for huge economic losses in equines due to abortion and neonatal mortality. In this study, we describe 4 cases of abortion and neonatal deaths from pregnant mares and a she-donkey from different localities in Egypt during the period from May 2015 to October 2017. Attempts were made to isolate and identify EHV-1, in addition to compare the different pathological lesions in various tissues of the necropsied cases. EHV-1 was successfully isolated from two aborted fetuses and one dead neonatal foal from mares, beside one aborted fetus from a she-donkey. The positive cases showed cytopathic effect on embryonated chicken eggs scattered on chorioallantoic membrane. Moreover, PCR was applied for the pock lesions and revealed positive results for EHV-1. Interstitial pneumonia, bronchopneumonia and necrosis of hepatic, myocardial, microcotyledonary tissues besides disseminated thrombi were the main encountered lesions. Intranuclear inclusion bodies were demonstrated in brain, liver, placenta and pulmonary tissues. Here, we describe EHV-1 induced brain lesions represented by degenerated neurons, vascular endotheliosis with intranuclear inclusion bodies in the aborted she-donkey fetus. Lesions were more sever in the aborted fetuses from mares than the one from the she-donkey. EHV-1 antigen was detected by immunohistochemistry staining.
Collapse
Affiliation(s)
- Abdelmoneim A Ali
- Zagazig University, Pathology Department, Faculty of Veterinary Medicine, 44159, Sharkia, Zagazig, Egypt
| | - Nahla A Refat
- Zagazig University, Pathology Department, Faculty of Veterinary Medicine, 44159, Sharkia, Zagazig, Egypt
| | - Naif A Algabri
- Zagazig University, Pathology Department, Faculty of Veterinary Medicine, 44159, Sharkia, Zagazig, Egypt.,Thamar University, Pathology Department, Faculty of Veterinary Medicine, 2153, Dhamar, Yemen.,Laboratory of Djibouti Regional Livestock Quarantine, Abu Yasser International Est. 1999, Djibouti
| | - Mohammed S Sobh
- Zagazig University, Pathology Department, Faculty of Veterinary Medicine, 44159, Sharkia, Zagazig, Egypt
| |
Collapse
|
11
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
12
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Brown LJ, Brown G, Kydd J, Stout TAE, Schulman ML. Failure to detect equid herpesvirus types 1 and 4 DNA in placentae and healthy new-born Thoroughbred foals. J S Afr Vet Assoc 2019; 90:e1-e5. [PMID: 31170779 PMCID: PMC6556910 DOI: 10.4102/jsava.v90i0.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 03/27/2019] [Indexed: 11/01/2022] Open
Abstract
Equid herpesvirus type 1 is primarily a respiratory tract virus associated with poor athletic performance that can also cause late gestation abortion, neonatal foal death and encephalomyelopathy. Horizontal transmission is well described, whereas evidence of vertical transmission of equid herpesvirus type 1 associated with the birth of a healthy foal has not been demonstrated. This study sampled a population of Thoroughbred mares (n = 71), and their healthy neonatal foals and foetal membranes, to test for the presence of both equid herpesvirus types 1 and 4 using a quantitative polymerase chain reaction assay. Foetal membrane swabs and tissue samples were taken immediately post-partum, and venous blood samples and nasal swabs were obtained from both mare and foal 8 h after birth. Neither equid herpesvirus type 1 nor equid herpesvirus type 4 nucleic acid was detected in any sample, and it was concluded that there was no active shedding of equid herpesvirus types 1 and 4 at the time of sampling. Consequently, no evidence of vertical transmission of these viruses could be found on this stud farm during the sampling period.
Collapse
Affiliation(s)
- Lara J Brown
- Department of Production Animal Studies, University of Pretoria, Pretoria.
| | | | | | | | | |
Collapse
|
14
|
Moore SE, Strang CL, Marr CM, Newton R, Cameron IJ. Management of an outbreak of multiple equine herpesvirus type 1 abortions among vaccinated mares on a large UK Thoroughbred stud farm. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2018-000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Camilla L Strang
- Epidemiology UnitAnimal Health TrustNewmarketUK
- Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | | | | | | |
Collapse
|
15
|
Wagner B, Perkins G, Babasyan S, Freer H, Keggan A, Goodman LB, Glaser A, Torsteinsdóttir S, Svansson V, Björnsdóttir S. Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age. PLoS One 2017; 12:e0169072. [PMID: 28045974 PMCID: PMC5207648 DOI: 10.1371/journal.pone.0169072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023] Open
Abstract
Neonatal foals respond poorly to conventional vaccines. These vaccines typically target T-helper (Th) cell dependent B-cell activation. However, Th2-cell immunity is impaired in foals during the first three months of life. In contrast, neonatal basophils are potent interleukin-4 (IL-4) producers. The purpose of this study was to develop a novel vaccine triggering the natural capacity of neonatal basophils to secrete IL-4 and to evaluate if vaccination resulted in B-cell activation and antibody production against EHV-1 glycoprotein C (gC). Neonatal vaccination was performed by oral biotinylated IgE (IgE-bio) treatment at birth followed by intramuscular injection of a single dose of streptavidin-conjugated gC/IL-4 fusion protein (Sav-gC/IL-4) for crosslinking of receptor-bound IgE-bio (group 1). Neonates in group 2 received the intramuscular Sav-gC/IL-4 vaccine only. Group 3 remained non-vaccinated at birth. After vaccination, gC antibody production was not detectable. The ability of the vaccine to induce protection was evaluated by an EHV-1 challenge infection after weaning at 7 months of age. Groups 1 and 2 responded to EHV-1 infection with an earlier onset and overall significantly increased anti-gC serum antibody responses compared to control group 3. In addition, group 1 weanlings had a decreased initial fever peak after infection indicating partial protection from EHV-1 infection. This suggested that the neonatal vaccination induced a memory B-cell response at birth that was recalled at weanling age after EHV-1 challenge. In conclusion, early stimulation of neonatal immunity via the innate arm of the immune system can induce partial protection and increased antibody responses against EHV-1.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Alison Keggan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Laura B. Goodman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | | | - Vilhjálmur Svansson
- Institute for Experimental Pathology, Keldur, University of Iceland, Reykjavik, Iceland
| | - Sigríður Björnsdóttir
- Icelandic Food and Veterinary Authority, MAST, Office of Animal Health and Welfare, Selfoss, Iceland
| |
Collapse
|
16
|
Affiliation(s)
- Magda Dunowska
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, New Zealand e-mail:
| |
Collapse
|
17
|
McFadden AMJ, Hanlon D, McKenzie RK, Gibson I, Bueno IM, Pulford DJ, Orr D, Dunowska M, Stanislawek WL, Spence RP, McDonald WL, Munro G, Mayhew IG. The first reported outbreak of equine herpesvirus myeloencephalopathy in New Zealand. N Z Vet J 2015; 64:125-34. [DOI: 10.1080/00480169.2015.1096853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells. J Virol 2015. [PMID: 26292328 DOI: 10.1128/jvi.01589-15%20jvi.01589-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a(+)) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a "Trojan horse" to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a(+) cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a(+) cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a(+) cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a(+) cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a(+) cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a(+) cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a(+) cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a(+) cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a(+) cells to EC, which enhances viral replication, but that transfer of viral material from CD172a(+) cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. IMPORTANCE Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates via cell-associated viremia in peripheral blood mononuclear cells (PBMC) and subsequently infects the endothelial cells (EC) of the pregnant uterus or central nervous system, leading in some cases to abortion and/or neurological disorders. Recently, we demonstrated that CD172a(+) monocytic carrier cells serve as a "Trojan horse" to facilitate EHV-1 spread from blood to target organs. Here, we investigated the mechanism underlying the transmission of EHV-1 from CD172a(+) cells to EC. We demonstrated that EHV-1 infection induces cellular changes in CD172a(+) cells, promoting their adhesion to EC. We found that both cell-to-cell contacts and the secretion of soluble factors by EC activate EHV-1 replication in CD172a(+) cells. This facilitates transfer of cytoplasmic viral material to EC, resulting mainly in a nonproductive infection. Our findings give new insights into how EHV-1 may spread to EC of target organs in vaccinated horses.
Collapse
|
19
|
Equine Herpesvirus Type 1 Enhances Viral Replication in CD172a+ Monocytic Cells upon Adhesion to Endothelial Cells. J Virol 2015; 89:10912-23. [PMID: 26292328 DOI: 10.1128/jvi.01589-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Equine herpesvirus type 1 (EHV-1) is a main cause of respiratory disease, abortion, and encephalomyelopathy in horses. Monocytic cells (CD172a(+)) are the main carrier cells of EHV-1 during primary infection and are proposed to serve as a "Trojan horse" to facilitate the dissemination of EHV-1 to target organs. However, the mechanism by which EHV-1 is transferred from CD172a(+) cells to endothelial cells (EC) remains unclear. The aim of this study was to investigate EHV-1 transmission between these two cell types. We hypothesized that EHV-1 employs specific strategies to promote the adhesion of infected CD172a(+) cells to EC to facilitate EHV-1 spread. Here, we demonstrated that EHV-1 infection of CD172a(+) cells resulted in a 3- to 5-fold increase in adhesion to EC. Antibody blocking experiments indicated that α4β1, αLβ2, and αVβ3 integrins mediated adhesion of infected CD172a(+) cells to EC. We showed that integrin-mediated phosphatidylinositol 3-kinase (PI3K) and ERK/MAPK signaling pathways were involved in EHV-1-induced CD172a(+) cell adhesion at early times of infection. EHV-1 replication was enhanced in adherent CD172a(+) cells, which correlates with the production of tumor necrosis factor alpha (TNF-α). In the presence of neutralizing antibodies, approximately 20% of infected CD172a(+) cells transferred cytoplasmic material to uninfected EC and 0.01% of infected CD172a(+) cells transmitted infectious virus to neighboring cells. Our results demonstrated that EHV-1 infection induces adhesion of CD172a(+) cells to EC, which enhances viral replication, but that transfer of viral material from CD172a(+) cells to EC is a very specific and rare event. These findings give new insights into the complex pathogenesis of EHV-1. IMPORTANCE Equine herpesvirus type 1 (EHV-1) is a highly prevalent pathogen worldwide, causing frequent outbreaks of abortion and myeloencephalopathy, even in vaccinated horses. After primary replication in the respiratory tract, EHV-1 disseminates via cell-associated viremia in peripheral blood mononuclear cells (PBMC) and subsequently infects the endothelial cells (EC) of the pregnant uterus or central nervous system, leading in some cases to abortion and/or neurological disorders. Recently, we demonstrated that CD172a(+) monocytic carrier cells serve as a "Trojan horse" to facilitate EHV-1 spread from blood to target organs. Here, we investigated the mechanism underlying the transmission of EHV-1 from CD172a(+) cells to EC. We demonstrated that EHV-1 infection induces cellular changes in CD172a(+) cells, promoting their adhesion to EC. We found that both cell-to-cell contacts and the secretion of soluble factors by EC activate EHV-1 replication in CD172a(+) cells. This facilitates transfer of cytoplasmic viral material to EC, resulting mainly in a nonproductive infection. Our findings give new insights into how EHV-1 may spread to EC of target organs in vaccinated horses.
Collapse
|
20
|
Badenhorst M, Page P, Ganswindt A, Laver P, Guthrie A, Schulman M. Detection of equine herpesvirus-4 and physiological stress patterns in young Thoroughbreds consigned to a South African auction sale. BMC Vet Res 2015; 11:126. [PMID: 26033323 PMCID: PMC4450643 DOI: 10.1186/s12917-015-0443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of equine herpesvirus types-1 and -4 (EHV-1 and -4) in South African Thoroughbreds at auction sales is currently undefined. Commingling of young Thoroughbreds from various populations together with physiological stress related to their transport and confinement at a sales complex, may be associated with shedding and transmission of EHV-1 and -4. This prospective cohort study sampled 90 young Thoroughbreds consigned from eight farms, originating from three provinces representative of the South African Thoroughbred breeding demographic to a sales complex. Nasal swabs for quantitative real-time polymerase chain reaction (qPCR) assay to detect EHV-1 and -4 nucleic acid and blood samples for enzyme-linked immunosorbent assay for EHV-1 and -4 antibodies were collected from all horses on arrival and departure. Additional nasal swabs for qPCR were obtained serially from those displaying pyrexia and, or nasal discharge. Daily faecal samples were used for determination of faecal glucocorticoid metabolite (FGM) concentrations as a measurement of physiological stress and these values were modelled to determine the factors best explaining FGM variability. Results EHV-4 nucleic acid was detected in 14.4 % and EHV-1 from none of the animals in the study population. Most (93.3 %) and very few (1.1 %) of this population showed antibodies indicating prior exposure to EHV-4 and EHV-1 respectively. Pyrexia and nasal discharge were poor predictors for detecting EHV-4 nucleic acid. The horses’ FGM concentrations increased following arrival before decreasing for most of the remaining study period including the auction process. Model averaging showed that variation in FGM concentrations was best explained by days post-arrival and transport duration. Conclusions In this study population, sales consignment was associated with limited detection of EHV-4 nucleic acid in nasal secretions, with most showing prior exposure to EHV-4 and very few to EHV-1. The physiological stress response shown by most reflected the combination of stressors associated with transport and arrival and these are key areas for future investigation into management practices to enhance health and welfare of young Thoroughbreds during sales consignment.
Collapse
Affiliation(s)
- Marcha Badenhorst
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Patrick Page
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Andre Ganswindt
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Peter Laver
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Alan Guthrie
- Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Martin Schulman
- Section of Reproduction, Department of Production Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| |
Collapse
|
21
|
Gilkerson JR, Bailey KE, Diaz-Méndez A, Hartley CA. Update on Viral Diseases of the Equine Respiratory Tract. Vet Clin North Am Equine Pract 2015; 31:91-104. [DOI: 10.1016/j.cveq.2014.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Dunowska M, Gopakumar G, Perrott MR, Kendall AT, Waropastrakul S, Hartley CA, Carslake HB. Virological and serological investigation of Equid herpesvirus 1 infection in New Zealand. Vet Microbiol 2015; 176:219-28. [PMID: 25666453 DOI: 10.1016/j.vetmic.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/01/2022]
Abstract
Infection with equid herpesvirus 1 (EHV-1) may be asymptomatic, or may result in respiratory disease, abortion, neonatal death, or neurological disease. The aim of this study was to estimate the prevalence of EHV-1 infection, including differentiation between genotypes with aspartic acid (D) and asparagine (N) at position 752 of the DNA polymerase sequence, within a selected population of New Zealand horses. The second aim was to determine the predictive value of serology for detection of latently infected horses. Retropharyngeal lymph nodes (RLN) and trigeminal ganglia (TG) were dissected from 52 horses at slaughter and tested for the presence of EHV-1 DNA using magnetic bead, sequence-capture enrichment followed by nested PCR. Sera were tested for EHV-1 antibody using type-specific glycoprotein G ELISA. Overall, 17/52 horses tested positive for EHV-1 DNA. All but one positive PCR results were obtained from RLN samples. Fifteen of the EHV-1 positive horses harboured EHV-1 with N752 genotype, one of which was additionally infected with the D752 genotypes of the virus. Our data comprise the first detection of EHV-1 with D752 genotype in New Zealand and suggest that the "neurovirulent" variant of EHV-1 had been present in New Zealand for at least two years before the first reported outbreak of EHM. All sampled horses tested positive for EHV-4 antibody, and 11/52 tested positive for EHV-1 antibody. The strength of agreement between results of EHV-1 PCR and EHV-1 serology was "fair" (Kappa 0.259, 95% CI: -0.022-0.539), which was likely a reflection of low levels of both EHV-1 antibody in sera and EHV-1 DNA in tissues tested.
Collapse
Affiliation(s)
- M Dunowska
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - G Gopakumar
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - M R Perrott
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - A T Kendall
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - S Waropastrakul
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - C A Hartley
- Centre for Equine Virology, School of Veterinary Science, University of Melbourne, Melbourne, Australia
| | - H B Carslake
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
23
|
Dunowska M. A review of equid herpesvirus 1 for the veterinary practitioner. Part B: pathogenesis and epidemiology. N Z Vet J 2014; 62:179-88. [DOI: 10.1080/00480169.2014.899946] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Hu Z, Zhu C, Chang H, Guo W, Liu D, Xiang W, Wang X. Development of a single-tube duplex EvaGreen real-time PCR for the detection and identification of EHV-1 and EHV-4. Appl Microbiol Biotechnol 2014; 98:4179-86. [PMID: 24615388 DOI: 10.1007/s00253-014-5626-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/24/2022]
Abstract
The objective of this study was to develop a novel EvaGreen (EG) based real-time PCR technique for the simultaneous detection of Equine herpesvirus 1 (EHV-1) and Equine herpesvirus 4 (EHV-4) genomes from equine nasal swabs. Viral genomes were identified based on their specific melting temperatures (T m), which are 88.0 and 84.4 °C for EHV-1 and EHV-4, respectively. The detection limitation of this method was 50 copies/μl or 0.15 pg/μl for EHV-1 and 5 copies/μl or 2.5 fg/μl for EHV-4. This assay was 50-1,000 times more sensitive than the SYBR Green (SG)-based assay using the same primer pairs and as sensitive as the TaqMan-MGB probe-based assay. The validity of the real-time PCR assays was confirmed by testing 13 clinical samples. When all results of the EG, SG, and TaqMan probe-based singleplex and duplex real-time PCRs were considered together, a total of 84.6 % (11/13) horses and donkeys were positive for at least one virus. EHV-1 and EHV-4 coexisted in 81.8 % (9/11) horses. Overall, we report that the EvaGreen duplex real-time PCR is an economical and alternative diagnostic method for the rapid differentiation of EHV-1 and EHV-4 in nasal swabs.
Collapse
Affiliation(s)
- Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Development of a peptide ELISA for discrimination between serological responses to equine herpesvirus type 1 and 4. J Virol Methods 2013; 193:667-73. [PMID: 23928223 DOI: 10.1016/j.jviromet.2013.07.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/24/2022]
Abstract
A peptide-based enzyme-linked immunosorbent assay (ELISA) for discrimination between serological responses to equine herpesvirus type 1 (EHV-1) and 4 (EHV-4) was developed. Three and four peptides for EHV-1 and EHV-4, respectively, were designed and studied initially in the ELISA using sera from foals infected experimentally. The most promising peptide pair, derived from EHV-1 glycoprotein E and EHV-4 glycoprotein G, was evaluated further using acute and convalescent sera from horses infected experimentally and naturally as well as a panel of horse field sera. Ten pre- and post-vaccination serum pairs were similarly tested in the type-specific ELISA. The peptide ELISA was able to identify horses which had been infected with EHV-1 or EHV-4 as derived from the results using acute and convalescent sera collected from natural outbreaks. When applied to a set of field samples, the assay proved robust with respect to determining the EHV-1 and EHV-4 antibody status. Also, the peptide ELISA was able to detect type-specific seroconversion for EHV-1 in vaccinated animals. With further validation, the EHV-1/EHV-4 peptide ELISA described in this study could serve as a reliable and cost-effective alternative to current methods for serological EHV-1 and EHV-4 diagnosis.
Collapse
|
26
|
Abstract
AIMS To determine which viruses circulate among selected populations of New Zealand horses and whether or not viral infections were associated with development of respiratory disease. METHODS Nasal swabs were collected from 33 healthy horses and 52 horses with respiratory disease and tested by virus isolation and/or PCR for the presence of equine herpesviruses (EHV) and equine rhinitis viruses. RESULTS Herpesviruses were the only viruses detected in nasal swab samples. When both the results of nasal swab PCR and virus isolation were considered together, a total of 41/52 (79%) horses with respiratory disease and 2/32 (6%) healthy horses were positive for at least one virus. As such, rates of virus detection were significantly higher (p<0.001) in samples from horses with respiratory disease than from healthy horses. More than half of the virus-positive horses were infected with multiple viruses. Infection with EHV-5 was most common (28 horses), followed by EHV-2 (27 horses), EHV-4 (21 horses) and EHV-1 (3 horses). CONCLUSIONS Herpesviruses were more commonly detected in nasal swabs from horses with respiratory disease than from healthy horses suggesting their aetiological involvement in the development of clinical signs among sampled horses. Further investigation to elucidate the exact relationships between these viruses and respiratory disease in horses is warranted. CLINICAL RELEVANCE Equine respiratory disease has been recognised as an important cause of wastage for the equine industry worldwide. It is likely multifactorial, involving complex interactions between different microorganisms, the environment and the host. Ability to control, or minimise, the adverse effects of equine respiratory disease is critically dependent on our understanding of microbial agents involved in these interactions. The results of the present study update our knowledge on the equine respiratory viruses currently circulating among selected populations of horses in New Zealand.
Collapse
Affiliation(s)
- K A McBrearty
- Institute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
27
|
Serological responses and clinical outcome after vaccination of mares and foals with equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) vaccines. Vet Microbiol 2012; 160:9-16. [PMID: 22633483 DOI: 10.1016/j.vetmic.2012.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 11/23/2022]
Abstract
Equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) cause infections of horses worldwide. While both EHV-1 and EHV-4 cause respiratory disease, abortion and myeloencephalopathy are observed after infection with EHV-1 in the vast majority of cases. Disease control is achieved by hygiene measures that include immunization with either inactivated or modified live virus (MLV) vaccine preparations. We here compared the efficacy of commercially available vaccines, an EHV-1/EHV-4 inactivated combination and an MLV vaccine, with respect to induction of humoral responses and protection of clinical disease (abortion) in pregnant mares and foals on a large stud with a total of approximately 3500 horses. The MLV vaccine was administered twice during pregnancy (months 5 and 8 of gestation) to 383 mares (49.4%), while the inactivated vaccine was administered three times (months 5, 7, and 9) to 392 mares (50.6%). From the vaccinated mares, 192 (MLV) and 150 (inactivated) were randomly selected for serological analyses. There was no significant difference between the groups with respect to magnitude or duration of the humoral responses as assessed by serum neutralization assays (median range from 1:42 to 1:130) and probing for EHV-1-specific IgG isotypes, although neutralizing responses were higher in animals vaccinated with the MLV preparation at all time points sampled. The total number of abortions in the study population was 55/775 (7.1%), 9 of which were attributed to EHV-1. Seven of the abortions were in the inactivated and two in the MLV vaccine group (p=0.16). When foals of vaccinated mares were followed up, a dramatic drop of serum neutralizing titers (median below 1:8) was observed in all groups, indicating that the half-life of maternally derived antibody is less than 4 weeks.
Collapse
|
28
|
Pusterla N, Mapes S, David Wilson W. Prevalence of latent alpha-herpesviruses in Thoroughbred racing horses. Vet J 2012; 193:579-82. [PMID: 22405721 DOI: 10.1016/j.tvjl.2012.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 11/17/2022]
Abstract
The objective of this study was to detect and characterize latent equine herpes virus (EHV)-1 and -4 from the submandibular (SMLN) and bronchial lymph (BLN) nodes, as well as from the trigeminal ganglia (TG) of 70 racing Thoroughbred horses submitted for necropsy following sustaining serious musculoskeletal injuries while racing. A combination of nucleic acid precipitation and pre-amplification steps was used to increase analytical sensitivity. Tissues were deemed positive for latent EHV-1 and/or -4 infection when found PCR positive for the corresponding glycoprotein B (gB) gene in the absence of detectable late structural protein gene (gB gene) mRNA. The EHV-1 genotype was also determined using a discriminatory real-time PCR assay targeting the DNA polymerase gene (ORF 30). Eighteen (25.7%) and 58 (82.8%) horses were PCR positive for the gB gene of EHV-1 and -4, respectively, in at least one of the three tissues sampled. Twelve horses were dually infected with EHV-1 and -4, two carried a latent neurotropic strain of EHV-1, six carried a non-neurotropic genotype of EHV-1 and 10 were dually infected with neurotropic and non-neurotropic EHV-1. The distribution of latent EHV-1 and -4 infection varied in the samples, with the TG found to be most commonly infected. Overall, non-neurotropic strains were more frequently detected than neurotropic strains, supporting the general consensus that non-neurotropic strains are more prevalent in horse populations, and hence the uncommon occurrence of equine herpes myeloencephalopathy.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
29
|
Wagner B, Wimer C, Freer H, Osterrieder N, Erb HN. Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains. Vet Immunol Immunopathol 2011; 143:116-24. [PMID: 21764140 DOI: 10.1016/j.vetimm.2011.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022]
Abstract
The recent increase in incidence, morbidity, and mortality of neurological disease induced by equine herpesvirus type 1 (EHV-1) has suggested a change of virulence of the virus. The exact mechanisms by which EHV-1 induces neurologic disease are not known. Environmental, viral, and host risk factors might contribute to neurological manifestation. Here, we investigated innate interferon-α (IFN-α), interleukin-10 (IL-10) and IL-4 responses after infection of equine peripheral blood mononuclear cells (PBMC) with EHV-1 using an available cytokine multiplex assay. Three viral strains representing an older isolate (RacL11), a recent abortigenic (NY03) and a neuropathogenic isolate (Ab4) were compared to identify differences in cytokine induction that might explain the increased pathogenicity of Ab4. Cytokine concentrations were also compared between foals, mares after birth, pregnant and non-pregnant mares to investigate whether immune responses to EHV-1 infection are influenced by age or pregnancy status. PBMC from all groups secreted high concentrations of anti-viral IFN-α in response to EHV-1. A reduced response was observed in foals compared to non-pregnant mares. EHV-1 infection induced moderate IL-10 and overall low IL-4 secretion. Ab4 infection resulted in a significant reduction of IL-10 responses in adult horses. IL-10 and IL-4 responses were lower in foals than in most mare groups. These data suggested that EHV-1 induces robust IFN-α secretion without major differences between viral strains. However, anti-inflammatory IL-10 production was significantly reduced after infection with neuropathogenic Ab4. The ability of this EHV-1 isolate to down-regulate IL-10 production might contribute to increased local inflammation and a higher risk for neurological manifestation of the disease after infection with Ab4.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
30
|
Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol 2011; 140:266-74. [DOI: 10.1016/j.vetimm.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
31
|
Ohta M, Nemoto M, Tsujimura K, Kondo T, Matsumura T. Evaluation of the usefulness of a PCR assay performed at a clinical laboratory for the diagnosis of respiratory disease induced by equine herpesvirus type 1 in the field. J Equine Sci 2011; 22:53-6. [PMID: 24833987 PMCID: PMC4013993 DOI: 10.1294/jes.22.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/01/2022] Open
Abstract
A PCR assay for the diagnosis of respiratory disease induced by equine herpesvirus type 1 (EHV-1) was performed at the clinical laboratory in the Racehorse Clinic of the Ritto Training Center of the Japan Racing Association from December 2007 to March 2008. The assay was performed without the trouble of contamination throughout the study and its turnaround time was approximately 6 hr. The PCR detection rates of EHV-1 among seroconverted horses were 22.2% for nasal swabs and 33.3% for blood samples. However, EHV-1 DNA was also detected in horses without seroconversion at a low rate. These results indicated that the PCR assay should be used as an adjunct method, but would help to make an early diagnosis of EHV-1 infection.
Collapse
Affiliation(s)
- Minoru Ohta
- Racehorse Clinic, Ritto Training Center, Japan Racing Association (JRA), 1028 Misono, Ritto-shi, Shiga 520-3085, Japan
| | - Manabu Nemoto
- Epizootic Research Center, Equine Research Institute, JRA, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Koji Tsujimura
- Epizootic Research Center, Equine Research Institute, JRA, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Takashi Kondo
- Epizootic Research Center, Equine Research Institute, JRA, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Tomio Matsumura
- Epizootic Research Center, Equine Research Institute, JRA, 1400-4 Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| |
Collapse
|
32
|
Lunn DP, Davis-Poynter N, Flaminio MJBF, Horohov DW, Osterrieder K, Pusterla N, Townsend HGG. Equine herpesvirus-1 consensus statement. J Vet Intern Med 2009; 23:450-61. [PMID: 19645832 DOI: 10.1111/j.1939-1676.2009.0304.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Equine herpesvirus-1 is a highly prevalent and frequently pathogenic infection of equids. The most serious clinical consequences of infection are abortion and equine herpesvirus myeloencephalopathy (EHM). In recent years, there has been an apparent increase in the incidence of EHM in North America, with serious consequences for horses and the horse industry. This consensus statement draws together current knowledge in the areas of pathogenesis, strain variation, epidemiology, diagnostic testing, vaccination, outbreak prevention and control, and treatment.
Collapse
Affiliation(s)
- D P Lunn
- Department of Clinical Sciences, James L Voss Veterinary Teaching Hospital, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1620, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
The effect of siRNA treatment on experimental equine herpesvirus type 1 (EHV-1) infection in horses. Virus Res 2009; 147:176-81. [PMID: 19896512 PMCID: PMC7114471 DOI: 10.1016/j.virusres.2009.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/23/2022]
Abstract
Available vaccines fail to induce lasting and protective immunity to equine herpesvirus 1 (EHV-1) associated diseases. RNA interference is a novel approach showing promise for therapeutic use in outbreak situations. This study examined the effect of small interfering RNA (siRNA) on clinical signs as well as the presence of live virus and viral DNA in nasal secretions and peripheral blood mononuclear cells (PBMCs) in horses experimentally infected with EHV-1. siRNA targeting two EHV-1 genes (glycoprotein B and the origin binding protein) was administered 12 h before and 12 h after intranasal infection with EHV-1. Control horses received siRNA targeting firefly luciferase. A significantly smaller proportion (0/10) of horses receiving siRNA targeting viral genes required euthanasia due to intractable neurologic disease as compared to horses in the control group (3/4; p = 0.01). There was no significant difference in the presence of live virus or viral DNA in the nasal secretions or PBMCs between the two groups. Future studies are necessary to define the relative contributions of host and virus factors in the development of the neurological form of the infection and to determine an optimal dosing regimen for metaphylactic or therapeutic use of siRNA for treating EHV-1 infection.
Collapse
|
34
|
Marenzoni ML, Passamonti F, Cappelli K, Veronesi F, Capomaccio S, Supplizi AV, Valente C, Autorino G, Coletti M. Clinical, serological and molecular investigations of EHV-1 and EHV-4 in 15 unweaned thoroughbred foals. Vet Rec 2008; 162:337-41. [PMID: 18344498 DOI: 10.1136/vr.162.11.337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fifteen unweaned thoroughbred foals, born on a stud farm to vaccinated mares, were clinically monitored during their first six months of life and repeatedly tested for equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4). Nasopharyngeal swabs and blood samples were collected and screened respectively by PCR and seroneutralisation to detect the presence of the virus, explore its role as a possible cause of respiratory disease, and to assess the efficiency of the pcr for the diagnosis of this disease. The foals were divided into three groups on the basis of their clinical signs and whether they had seroconverted to EHV-1 and/or EHV-4: first, foals with no clinical signs of disease that had not seroconverted; secondly, foals with clinical signs that had seroconverted, and thirdly, foals with clinical signs that had not seroconverted. The results indicated that the viruses circulated on the stud farm despite stringent vaccination regimens against them, and confirmed their association with respiratory disease. The absence of significantly different pcr results among the three groups of foals showed that the pcr was effective in confirming the circulation of the viruses on the premises without being particularly helpful as a diagnostic tool.
Collapse
Affiliation(s)
- M L Marenzoni
- Facoltà di Medicina Veterinaria, Università di Perugia, via S. Costanzo 4, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luce R, Shepherd M, Paillot R, Blacklawst B, Wood JLN, Kydd JH. Equine herpesvirus-1-specific interferon gamma (IFNgamma) synthesis by peripheral blood mononuclear cells in thoroughbred horses. Equine Vet J 2007; 39:202-9. [PMID: 17520969 DOI: 10.2746/042516407x174216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY An assay has been developed that measures EHV-1 specific interferon gamma synthesis (IFNgamma), a cytokine produced following the activation of memory T lymphocytes and therefore a measure of cell mediated immunity. The method requires validation in the field. OBJECTIVES To measure the frequency of EHV-1 specific, IFNgamma synthesising peripheral blood mononuclear cells (PBMC) in a population of Thoroughbred horses, and examine its relationship with age, gender, premises and history of vaccination or field infection with EHV-1. METHODS Lymphocytes from 200 Thoroughbred horses were stimulated with EHV-1 in vitro, and IFNgamma detected using a monoclonal antibody and indirect immunofluorescence. Percent positive cells were enumerated by flow cytometric analysis and the results described and compared statistically between groups. RESULTS The frequency of IFNgamma+ PBMC was significantly higher in animals age >5 years compared with 2-4 years, in females vs. males, on stud farms vs. training yards and following vaccination of 2-year-olds with inactivated virus compared with nonvaccinates. Age strongly confounded all these associations and care must therefore be taken interpreting these results. Mares exposed to a field infection with EHV-1 also had higher frequencies of IFNgamma+ PBMC than other vaccinated horses. CONCLUSIONS The frequency of EHV-1 specific, IFNgama+ PBMC among the sample Thoroughbred population was diverse but lowest in young, unvaccinated horses-in-training. POTENTIAL RELEVANCE The frequency of EHV-1 specific lymphocytes synthesising IFNgamma in this population may be associated with its susceptibility to infection with this virus. This easy technique may be applied to monitor the antigenicity of vaccines and their effectiveness at stimulating cellular immunity.
Collapse
Affiliation(s)
- R Luce
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Kydd JH, Townsend HGG, Hannant D. The equine immune response to equine herpesvirus-1: The virus and its vaccines. Vet Immunol Immunopathol 2006; 111:15-30. [PMID: 16476492 DOI: 10.1016/j.vetimm.2006.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Equine herpesvirus-1 (EHV-1) is an alphaherpesvirus which infects horses, causing respiratory and neurological disease and abortion in pregnant mares. Latency is established in trigeminal ganglia and lymphocytes. Immunity to EHV-1 lasts between 3 and 6 months. Current vaccines, many of which contain inactivated virus, have reduced the incidence of abortion storms in pregnant mares but individual animals, which may be of high commercial value, remain susceptible to infection. The development of effective vaccines which stimulate both humoral and cellular immune responses remains a priority. Utilising data generated following experimental and field infections of the target species, this review describes the immunopathogenesis of EHV-1 and the interaction between the horse's immune system and this virus, both in vivo and in vitro, and identifies immune responses, highlighting those which have been associated with protective immunity. It then goes on to recount a brief history of vaccination, outlines factors likely to influence the outcome of vaccine administration and describes the immune response stimulated by a selection of commercial and experimental vaccines. Finally, based on the available data, a rational strategy designed to stimulate protective immune responses by vaccination is outlined.
Collapse
Affiliation(s)
- Julia H Kydd
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, United Kingdom.
| | | | | |
Collapse
|
38
|
Slater JD, Lunn DP, Horohov DW, Antczak DF, Babiuk L, Breathnach C, Chang YW, Davis-Poynter N, Edington N, Ellis S, Foote C, Goehring L, Kohn CW, Kydd J, Matsumura T, Minke J, Morley P, Mumford J, Neubauer T, O'Callaghan D, Osterrieder K, Reed S, Smith K, Townsend H, van der Meulen K, Whalley M, Wilson WD. Report of the equine herpesvirus-1 Havermeyer Workshop, San Gimignano, Tuscany, June 2004. Vet Immunol Immunopathol 2006; 111:3-13. [PMID: 16542736 DOI: 10.1016/j.vetimm.2006.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amongst the infectious diseases that threaten equine health, herpesviral infections remain a world wide cause of serious morbidity and mortality. Equine herpesvirus-1 infection is the most important pathogen, causing an array of disorders including epidemic respiratory disease abortion, neonatal foal death, myeloencephalopathy and chorioretinopathy. Despite intense scientific investigation, extensive use of vaccination, and established codes of practice for control of disease outbreaks, infection and disease remain common. While equine herpesvirus-1 infection remains a daunting challenge for immunoprophylaxis, many critical advances in equine immunology have resulted in studies of this virus, particularly related to MHC-restricted cytotoxicity in the horse. A workshop was convened in San Gimignano, Tuscany, Italy in June 2004, to bring together clinical and basic researchers in the field of equine herpesvirus-1 study to discuss the latest advances and future prospects for improving our understanding of these diseases, and equine immunity to herpesviral infection. This report highlights the new information that was the focus of this workshop, and is intended to summarize this material and identify the critical questions in the field.
Collapse
Affiliation(s)
- J D Slater
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Holmes MA, Townsend HGG, Kohler AK, Hussey S, Breathnach C, Barnett C, Holland R, Lunn DP. Immune responses to commercial equine vaccines against equine herpesvirus-1, equine influenza virus, eastern equine encephalomyelitis, and tetanus. Vet Immunol Immunopathol 2006; 111:67-80. [PMID: 16476488 DOI: 10.1016/j.vetimm.2006.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Horses are commonly vaccinated to protect against pathogens which are responsible for diseases which are endemic within the general horse population, such as equine influenza virus (EIV) and equine herpesvirus-1 (EHV-1), and against a variety of diseases which are less common but which lead to greater morbidity and mortality, such as eastern equine encephalomyelitis virus (EEE) and tetanus. This study consisted of two trials which investigated the antigenicity of commercially available vaccines licensed in the USA to protect against EIV, EHV-1 respiratory disease, EHV-1 abortion, EEE and tetanus in horses. Trial I was conducted to compare serological responses to vaccines produced by three manufacturers against EIV, EHV-1 (respiratory disease), EEE, and tetanus given as multivalent preparations or as multiple vaccine courses. Trial II compared vaccines from two manufacturers licensed to protect against EHV-1 abortion, and measured EHV-1-specific interferon-gamma (IFN-gamma) mRNA production in addition to serological evidence of antigenicity. In Trial I significant differences were found between the antigenicity of different commercial vaccines that should be considered in product selection. It was difficult to identify vaccines that generate significant immune responses to respiratory viruses. The most dramatic differences in vaccine performance occurred in the case of the tetanus antigen. In Trial II both vaccines generated significant antibody responses and showed evidence of EHV-1-specific IFN-gamma mRNA responses. Overall there were wide variations in vaccine response, and the vaccines with the best responses were not produced by a single manufacturer. Differences in vaccine performance may have resulted from differences in antigen load and adjuvant formulation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Clostridium tetani/immunology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/prevention & control
- Encephalomyelitis, Equine/veterinary
- Encephalomyelitis, Equine/virology
- Female
- Herpesviridae Infections/immunology
- Herpesviridae Infections/prevention & control
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Equid/immunology
- Horse Diseases/immunology
- Horse Diseases/prevention & control
- Horse Diseases/virology
- Horses
- Immunoassay/veterinary
- Influenza A Virus, H3N8 Subtype/immunology
- Interferon-gamma/blood
- Neutralization Tests/veterinary
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/veterinary
- Orthomyxoviridae Infections/virology
- Polymerase Chain Reaction
- Tetanus/immunology
- Tetanus/prevention & control
- Tetanus/veterinary
- Tetanus/virology
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Mark A Holmes
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Foote CE, Raidal SL, Pecenpetelovska G, Wellington JE, Whalley JM. Inoculation of mares and very young foals with EHV-1 glycoproteins D and B reduces virus shedding following respiratory challenge with EHV-1. Vet Immunol Immunopathol 2006; 111:97-108. [PMID: 16504306 DOI: 10.1016/j.vetimm.2006.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated that intramuscular inoculation of EHV-1 glycoprotein D (gD) and glycoprotein B (gB) produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD- and gB-specific ELISA antibody in adult horses. In this study, 14 mares and their very young foals were inoculated with a combination of baculovirus-expressed EHV-1 gD and EHV-1 gB (EHV-1 gDBr) and challenged with a respiratory strain of EHV-1. Following experimental challenge, inoculated mares and foals shed virus in nasal secretions on significantly fewer occasions compared to uninoculated mares and foals. Uninoculated foals born from inoculated mares were no more protected against experimental challenge than uninoculated foals born from uninoculated mares. The results suggest that it is indeed possible to induce partial protection in very young foals through vaccination, and while the inoculation did not prevent infection, it did reduce the frequency of viral shedding with the potential to thereby reduce the risk and prevalence of infection in a herd situation.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | | | | | | | | |
Collapse
|
41
|
Foote CE, Love DN, Gilkerson JR, Wellington JE, Whalley JM. EHV-1 and EHV-4 infection in vaccinated mares and their foals. Vet Immunol Immunopathol 2006; 111:41-6. [PMID: 16513181 DOI: 10.1016/j.vetimm.2006.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A silent cycle of equine herpesvirus 1 infection was described following epidemiological studies of unvaccinated mares and foals on a Hunter Valley stud farm. Following the introduction of routine vaccination with an inactivated whole virus equine herpesvirus 1 (EHV-1) and equine herpesvirus 4 (EHV-4) vaccine in 1997, a subsequent study identified excretion of EHV-1 and EHV-4 in nasal swab samples tested by PCR from vaccinated mares and their unweaned, unvaccinated foals. The current sero-epidemiological investigation of vaccinated mares and their young foals found serological evidence of EHV-1 and EHV-4 infection in mares and foals in the first 5 weeks of life. The results further support that EHV-1 and EHV-4 circulate in vaccinated populations of mares and their unweaned foals and confirms the continuation of the cycle of EHV-1 and EHV-4 infection.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Foote CE, Love DN, Gilkerson JR, Rota J, Trevor-Jones P, Ruitenberg KM, Wellington JE, Whalley JM. Serum antibody responses to equine herpesvirus 1 glycoprotein D in horses, pregnant mares and young foals. Vet Immunol Immunopathol 2005; 105:47-57. [PMID: 15797474 DOI: 10.1016/j.vetimm.2004.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/22/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.
Collapse
Affiliation(s)
- C E Foote
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | | | | | |
Collapse
|