1
|
Petrin S, Mancin M, Losasso C, Deotto S, Olsen JE, Barco L. Effect of pH and Salinity on the Ability of Salmonella Serotypes to Form Biofilm. Front Microbiol 2022; 13:821679. [PMID: 35464965 PMCID: PMC9021792 DOI: 10.3389/fmicb.2022.821679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Salmonella is a major cause of food-borne infections in Europe, and the majority of human infections are caused by only a few serotypes, among them are Salmonella enterica subsp. enterica serotype Enteritidis (hereafter Salmonella Enteritidis), Salmonella Typhimurium, and the monophasic variant of S. Typhimurium. The reason for this is not fully understood, but could include virulence factors as well as increased ability to transfer via the external environment. Formation of biofilm is considered an adaptation strategy used by bacteria to overcome environmental stresses. In order to assess the capability of different Salmonella serotypes to produce biofilm and establish whether this is affected by pH and salinity, 88 Salmonella isolates collected from animal, food, and human sources and belonging to 15 serotypes, including those most frequently responsible for human infections, were tested. Strains were grown in tryptic soy broth (TSB), TSB with 4% NaCl pH 4.5, TSB with 10% NaCl pH 4.5, TSB with 4% NaCl pH 7, or TSB with 10% NaCl pH 7, and biofilm production was assessed after 24 h at 37°C using crystal violet staining. A linear mixed effect model was applied to compare results from the different experimental conditions. Among the tested serotypes, S. Dublin showed the greatest ability to form biofilm even at pH 4.5, which inhibited biofilm production in the other tested serotypes. Salmonella Senftenberg and the monophasic variant of S. Typhimurium showed the highest biofilm production in TSB with 10% NaCl pH 7. In general, pH had a high influence on the ability to form biofilm, and most of the tested strains were not able to produce biofilm at pH 4.5. In contrast, salinity only had a limited influence on biofilm production. In general, serotypes causing the highest number of human infections showed a limited ability to produce biofilm in the tested conditions, indicating that biofilm formation is not a crucial factor in the success of these clones.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microorganisms Genomics Laboratory - SCS1, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marzia Mancin
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microorganisms Genomics Laboratory - SCS1, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- *Correspondence: Carmen Losasso,
| | - Silvia Deotto
- Clinical Diagnostics Laboratory - SCT4, Istituto Zooprofilattico Sperimentale delle Venezie, Basaldella di Campoformido, Italy
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
2
|
Santana AM, da Silva DG, Maluta RP, Pizauro LJL, Simplício KMDMG, Santana CH, Rodrigues SDAD, Rodrigues DDP, Fagliari JJ. Comparative Analysis Using Pulsed-Field Gel Electrophoresis Highlights a Potential Transmission of Salmonella Between Asymptomatic Buffaloes and Pigs in a Single Farm. Front Vet Sci 2020; 7:552413. [PMID: 33240945 PMCID: PMC7683720 DOI: 10.3389/fvets.2020.552413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Buffaloes and pigs play an important epidemiological roll in the Salmonella infection cycle, and asymptomatic animals can act as key component in the dissemination of the disease by horizontal, vertical, and cross-species transmission. Our study aimed and was able to confirm evidences of a cross-species transmission of Salmonella Agona between asymptomatic buffaloes and pigs. Also, we described Salmonella infection within the pig production phases, involving serotypes Agona, Senftenberg and Schwarzengrund. Rectal samples were collected from Jafarabadi buffaloes (n = 25) and Piau pigs (n = 32), located on a single farm. Salmonella Agona was isolated from lactating buffaloes, gilts, pregnant sows, and weaned pigs, Salmonella Schwarzengrund from lactating sows and Salmonella Senftenberg from gilts, pregnant sows, lactating sows, and weaned pigs. Pulsed-field Gel Electrophoresis protocol (PFGE) was performed and revealed four different profiles. Profile 1 (Salmonella Agona), isolated from a pregnant sow, a gilt and two lactating buffaloes, revealed a indistinguishable PFGE pattern, confirming evidences of potential cross-species transmission. Profile 2 (Salmonella Agona), 3 (Salmonella Senftenberg), and 4 (Salmonella Schwarzengrund), isolated from pigs, revealed important indistinguishable PFGE patterns, evidencing Salmonella infection within the pig production phases. Considering the epidemiological relevance of buffaloes and pigs in the cycle of Salmonella infection, confirmation of a potential cross-species transmission of Salmonella Agona and potential Salmonella infection within the pig production phases highlights the importance of the correct establishment of preventive health strategies in farms, in special the importance of avoiding contact between buffaloes and pigs, since cross-species transmission can occur, increasing the risk of spreading the disease.
Collapse
Affiliation(s)
- André Marcos Santana
- Department of Veterinary Medicine, Maringá State University (UEM), Maringá, Brazil
| | - Daniela Gomes da Silva
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), São Paulo, Brazil
| | - Renato Pariz Maluta
- Department of Veterinary Pathology, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), São Paulo, Brazil
| | - Lucas José Luduverio Pizauro
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), São Paulo, Brazil
| | | | - Clarissa Helena Santana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), São Paulo, Brazil
| | | | - Dália Dos Prazeres Rodrigues
- National Reference Laboratory Diagnosis of Enteric Bacteria, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - José Jurandir Fagliari
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV/UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Retrospective assessment of rapid outbreak investigation for gastrointestinal diseases using only cases and background exposure data. Epidemiol Infect 2020; 148:e60. [PMID: 32079547 PMCID: PMC7078580 DOI: 10.1017/s0950268820000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For outbreaks of gastrointestinal disease, rapid identification of the source is crucial to enable public health intervention and prevent further cases. Outbreak investigation comprises analyses of exposure information from cases and, if required, undertaking analytical epidemiological studies. Hypothesis generation has been reliant on empirical knowledge of exposures historically associated with a given pathogen. Epidemiology studies are resource-intensive and prone to bias, one of the reasons being the difficulties in recruiting appropriate controls. For this paper, the information from cases was compared against pre-defined background exposure information. As exemplars, three past outbreaks were used, one of common and two of rare exposures. Information from historical case trawling questionnaires was used to define background exposure having removed any exposures implicated with the outbreak. The case-background approach showed good sensitivity and specificity, identifying correctly all outbreak-related exposures. One additional exposure related to a retailer was identified and four food items where all cases had been exposed. In conclusion, the case-background method, a development of the case-case design, can be used to assist with hypothesis generation or when a case-control study may not be possible to carry out.
Collapse
|
4
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
5
|
Sair A, Masud T, Sohail A, Rafique A. Microbiological variation amongst fresh and minimally processed vegetables from retail establishers - a public health study in Pakistan. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.6.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Fornefeld E, Schierstaedt J, Jechalke S, Grosch R, Schikora A, Smalla K. Persistence of Salmonella Typhimurium LT2 in Soil Enhanced after Growth in Lettuce Medium. Front Microbiol 2017; 8:757. [PMID: 28503171 PMCID: PMC5408095 DOI: 10.3389/fmicb.2017.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The persistence of Salmonella in the environment is influenced by a multitude of biotic and abiotic factors. In addition, its persistence can be influenced by preadaptation before the introduction into the environment. In order to study how preadaptation changes the survival of Salmonella in soil and therefore its potential to colonize the phytosphere, we developed a new medium based on lettuce material [lettuce medium (LM)]. Salmonella enterica serovar Typhimurium strain LT2 was used as a model for Salmonella in this study. LT2 was inoculated into soil microcosms after pregrowth in Luria Bertani (LB) broth or in LM. Survival of LT2 in soil was monitored over 56 days by plate counts and quantification of the Typhimurium-specific gene STM4497 using qPCR in total community DNA for which primers and TaqMan probe were designed in this study. Significantly enhanced persistence was observed for LT2 pregrown in LM compared to LT2 pregrown in LB, indicating a preadaptation effect. Surprisingly, no improved survival could be observed for S. Typhimurium strain 14028s and S. enterica serovar Senftenberg after pregrowth on LM. This indicates a high strain specificity of preadaptation. Results from previous studies suggested that biofilm formation could enhance the survival of human pathogens in various environments and might contribute to enhanced survival on plants. In vitro biofilm assays with several Salmonella strains revealed a strain-specific effect of LM on the biofilm formation. While LM significantly improved the biofilm formation of S. Senftenberg, the biofilm formation of LT2 was better in LB. This indicates that the better survival of LM-pregrown LT2 in soil was not linked to an improved ability to form biofilms but was likely due to other factors. Most importantly, this study showed that the medium used to pregrow Salmonella can influence its survival in soil and its biofilm formation which might influence the fate of Salmonella in soil.
Collapse
Affiliation(s)
- Eva Fornefeld
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| | | | - Sven Jechalke
- Institute of Phytopathology, Justus-Liebig University GiessenGiessen, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen DiagnosticsBraunschweig, Germany
| |
Collapse
|
7
|
Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China. J Clin Microbiol 2016; 54:2014-22. [PMID: 27225410 DOI: 10.1128/jcm.00052-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
Human infections with Salmonella enterica subspecies enterica serovar Senftenberg are often associated with exposure to poultry flocks, farm environments, or contaminated food. The recent emergence of multidrug-resistant isolates has raised public health concerns. In this study, comparative genomics and phenotypic analysis were used to characterize 14 Salmonella Senftenberg clinical isolates recovered from multiple outbreaks in Shenzhen and Shanghai, China, between 2002 and 2011. Single-nucleotide polymorphism analyses identified two phylogenetically distinct clades of S Senftenberg, designated SC1 and SC2, harboring variations in Salmonella pathogenicity island 1 (SPI-1) and SPI-2 and exhibiting distinct biochemical and phenotypic signatures. Although the two variants shared the same serotype, the SC2 isolates of sequence type 14 (ST14) harbored intact SPI-1 and -2 and hence were characterized by possessing efficient invasion capabilities. In contrast, the SC1 isolates had structural deletion patterns in both SPI-1 and -2 that correlated with an impaired capacity to invade cultured human cells and also the year of their isolation. These atypical SC1 isolates also lacked the capacity to produce hydrogen sulfide. These findings highlight the emergence of atypical Salmonella Senftenberg variants in China and provide genetic validation that variants lacking SPI-1 and regions of SPI-2, which leads to impaired invasion capacity, can still cause clinical disease. These data have identified an emerging public health concern and highlight the need to strengthen surveillance to detect the prevalence and transmission of nontyphoidal Salmonella species.
Collapse
|
8
|
Marin C, Palomeque MD, Marco-Jiménez F, Vega S. Wild griffon vultures (Gyps fulvus) as a source of Salmonella and Campylobacter in Eastern Spain. PLoS One 2014; 9:e94191. [PMID: 24710464 PMCID: PMC3978023 DOI: 10.1371/journal.pone.0094191] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 01/29/2023] Open
Abstract
The existence of Campylobacter and Salmonella reservoirs in wildlife is a potential hazard to animal and human health; however, the prevalence of these species is largely unknown. Until now, only a few studies have evaluated the presence of Campylobacter and Salmonella in wild griffon vultures and based on a small number of birds. The aim of this study was to evaluate the presence of Campylobacter and Salmonella in wild griffon vultures (n = 97) during the normal ringing programme at the Cinctorres Observatory in Eastern Spain. In addition, the effect of ages of individuals (juveniles, subadult and adult) on the presence were compared. Campylobacter was isolated from 1 of 97 (1.0%) griffon vultures and identified as C. jejuni. Salmonella was isolated from 51 of 97 (52.6%) griffon vultures. No significant differences were found between the ages of individuals for the presence of Salmonella. Serotyping revealed 6 different serovars among two Salmonella enterica subspecies; S. enterica subsp. enterica (n = 49, 96.1%) and S. enterica subsp. salamae (n = 2, 3.9%). No more than one serovar was isolated per individual. The serovars isolated were S. Typhimurium (n = 42, 82.3%), S. Rissen (n = 4, 7.8%), S. Senftenberg (n = 3, 5.9%) and S. 4,12:b[-] (n = 2, 3.9%). Our results imply that wild griffon vultures are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out vultures as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results.
Collapse
Affiliation(s)
- Clara Marin
- Instituto de Ciencias Biomédicas, Departamento de Producción Animal, Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, Alfara del Patriarca, Valencia, Spain
| | - Maria-Dolores Palomeque
- Instituto de Ciencias Biomédicas, Departamento de Producción Animal, Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, Alfara del Patriarca, Valencia, Spain
| | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago Vega
- Instituto de Ciencias Biomédicas, Departamento de Producción Animal, Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU-Cardenal Herrera, Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
9
|
Extremely drug-resistant Salmonella enterica serovar Senftenberg infections in patients in Zambia. J Clin Microbiol 2012; 51:284-6. [PMID: 23077128 DOI: 10.1128/jcm.02227-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones and extended-spectrum cephalosporins, contained two plasmid replicons, and differed by 93 single-nucleotide polymorphisms.
Collapse
|
10
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Salmonellae in food stuffs of plant origin and their implications on human health. Eur J Clin Microbiol Infect Dis 2010; 29:1321-5. [DOI: 10.1007/s10096-010-1001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 06/10/2010] [Indexed: 11/25/2022]
|
12
|
Heaton J, Jones K. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J Appl Microbiol 2008; 104:613-26. [DOI: 10.1111/j.1365-2672.2007.03587.x] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int J Food Microbiol 2008; 123:121-9. [DOI: 10.1016/j.ijfoodmicro.2007.12.013] [Citation(s) in RCA: 436] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 12/10/2007] [Accepted: 12/18/2007] [Indexed: 11/21/2022]
|