1
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Lietz G, Passeri G, Craciun I, Fabiani L, Horvath Z, Valtueña Martínez S, Naska A. Scientific opinion on the tolerable upper intake level for preformed vitamin A and β-carotene. EFSA J 2024; 22:e8814. [PMID: 38846679 PMCID: PMC11154838 DOI: 10.2903/j.efsa.2024.8814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Following two requests from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for preformed vitamin A and β-carotene. Systematic reviews of the literature were conducted for priority adverse health effects of excess vitamin A intake, namely teratogenicity, hepatotoxicity and endpoints related to bone health. Available data did not allow to address whether β-carotene could potentiate preformed vitamin A toxicity. Teratogenicity was selected as the critical effect on which to base the UL for preformed vitamin A. The Panel proposes to retain the UL for preformed vitamin A of 3000 μg RE/day for adults. This UL applies to men and women, including women of child-bearing age, pregnant and lactating women and post-menopausal women. This value was scaled down to other population groups using allometric scaling (body weight0.75), leading to ULs between 600 μg RE/day (infants 4-11 months) and 2600 μg RE/day (adolescents 15-17 years). Based on available intake data, European populations are unlikely to exceed the UL for preformed vitamin A if consumption of liver, offal and products thereof is limited to once per month or less. Women who are planning to become pregnant or who are pregnant are advised not to consume liver products. Lung cancer risk was selected as the critical effect of excess supplemental β-carotene. The available data were not sufficient and suitable to characterise a dose-response relationship and identify a reference point; therefore, no UL could be established. There is no indication that β-carotene intake from the background diet is associated with adverse health effects. Smokers should avoid consuming food supplements containing β-carotene. The use of supplemental β-carotene by the general population should be limited to the purpose of meeting vitamin A requirements.
Collapse
|
2
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
3
|
Bohn T, Hellman-Regen J, de Lera AR, Böhm V, Rühl R. Human nutritional relevance and suggested nutritional guidelines for vitamin A5/X and provitamin A5/X. Nutr Metab (Lond) 2023; 20:34. [PMID: 37582723 PMCID: PMC10426203 DOI: 10.1186/s12986-023-00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/27/2023] [Indexed: 08/17/2023] Open
Abstract
In the last century, vitamin A was identified that included the nutritional relevant vitamin A1 / provitamin A1, as well as the vitamin A2 pathway concept. Globally, nutritional guidelines have focused on vitamin A1 with simplified recommendations and calculations based solely on vitamin A. The vitamin A / provitamin A terminology described vitamin A with respect to acting as a precursor of 11-cis-retinal, the chromophore of the visual pigment, as well as retinoic acid(s), being ligand(s) of the nuclear hormone receptors retinoic acid receptors (RARs) α, β and γ. All-trans-retinoic acid was conclusively shown to be the endogenous RAR ligand, while the concept of its isomer 9-cis-retinoic acid, being "the" endogenous ligand of the retinoid-X receptors (RXRs), remained inconclusive. Recently, 9-cis-13,14-dihydroretinoic acid was conclusively reported as an endogenous RXR ligand, and a direct nutritional precursor was postulated in 2018 and further confirmed by Rühl, Krezel and de Lera in 2021. This was further termed vitamin A5/X / provitamin A5/X. In this review, a new vitamin A5/X / provitamin A5/X concept is conceptualized in parallel to the vitamin A(1) / provitamin A(1) concept for daily dietary intake and towards dietary guidelines, with a focus on the existing national and international regulations for the physiological and nutritional relevance of vitamin A5/X. The aim of this review is to summarize available evidence and to emphasize gaps of knowledge regarding vitamin A5/X, based on new and older studies and proposed future directions as well as to stimulate and propose adapted nutritional regulations.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition Research Group, Department of Precision Health, Luxembourg Institute and Health, 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Berlin, Germany
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ralph Rühl
- CISCAREX UG, Transvaalstr. 27c, 13351, Berlin, Germany.
| |
Collapse
|
4
|
Lis K, Bartuzi Z. Plant Food Dyes with Antioxidant Properties and Allergies-Friend or Enemy? Antioxidants (Basel) 2023; 12:1357. [PMID: 37507897 PMCID: PMC10376437 DOI: 10.3390/antiox12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Color is an important food attribute which increases its attractiveness, thus influencing consumer preferences and acceptance of food products. The characteristic color of fresh, raw food is due to natural dyes present in natural food sources. Food loses its natural color during processing or storage. Loss of natural color (e.g., graying) often reduces the appeal of a product to consumers. To increase the aesthetic value of food, natural or synthetic dyes are added to it. Interestingly, the use of food coloring to enhance food attractiveness and appetizing appearance has been practiced since antiquity. Food coloring can also cause certain health effects, both negative and positive. Dyes added to food, both natural and synthetic, are primarily chemical substances that may not be neutral to the body. Some of these substances have strong antioxidant properties. Thanks to this activity, they can also perform important pro-health functions, including antiallergic ones. On the other hand, as foreign substances, they can also cause various adverse food reactions, including allergic reactions of varying severity and anaphylactic shock. This article discusses food dyes of plant origins with antioxidant properties (anthocyanins, betanins, chlorophylls, carotenoids, and curcumin) and their relationship with allergy, both as sensitizing agents and immunomodulatory agents with potential antiallergic properties.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
5
|
Riley WW, Nickerson JG, Mogg TJ, Burton GW. Oxidized β-Carotene Is a Novel Phytochemical Immune Modulator That Supports Animal Health and Performance for Antibiotic-Free Production. Animals (Basel) 2023; 13:ani13020289. [PMID: 36670829 PMCID: PMC9854599 DOI: 10.3390/ani13020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Oxidized β-carotene (OxBC), a phytochemical that occurs naturally in plants, is formed by the spontaneous reaction of β-carotene with ambient oxygen. Synthetic OxBC, obtained by full oxidation of β-carotene with air, shows considerable promise as an in-feed antimicrobial alternative additive that enhances health and performance in livestock. OxBC is predominantly composed of β-carotene-oxygen copolymers that have beneficial immune-modulating effects that occur within the innate immune system by priming it to face microbial challenges and by mitigating the inflammatory response. OxBC does not have any direct anti-bacterial activity. Further, unlike traditional immune stimulants, OxBC modulates but does not stimulate and utilize the animal's energy stores unless directly stress-challenged. These immune effects occur by mechanisms distinct from the provitamin A or antioxidant pathways commonly proposed as explanations for β-carotene's actions. Trials in poultry, swine, and dairy cows with low parts-per-million in-feed OxBC supplementation have shown performance benefits over and above those of feeds containing regular vitamin and mineral premixes. Through its ability to enhance immune function, health, and performance, OxBC has demonstrated utility not only as a viable alternative to in-feed antimicrobials but also in its ability to provide tangible health and performance benefits in applications where antimicrobial usage is precluded.
Collapse
|
6
|
Murillo‐Cruz MC, Rodrigues N, Dias MI, Bermejo‐Román R, Veloso ACA, Pereira JA, Peres AM. Monovarietal olive oils fortified with carotenoids: Physicochemical and sensory trends and taste sensor evaluation. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mª Carmen Murillo‐Cruz
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Ruperto Bermejo‐Román
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB Coimbra Portugal
- CEB ‐ Centre of Biological Engineering University of Minho, Campus de Gualtar Braga Portugal
- LABBELS – Associate Laboratory Braga/Guimarães Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| |
Collapse
|
7
|
Murillo M, García A, Lafarga T, Melgosa M, Bermejo R. Color of extra virgin olive oils enriched with carotenoids from microalgae: influence of ultraviolet exposure and heating. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0104211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A carotenoid-rich extract containing 2.5 mg/mL of lutein and 3.3 mg/mL of β-carotene from the microalga Scenedesmus almeriensis was added to ten extra virgin olive oils from four Spanish cultivars with differing degrees of ripeness, obtaining carotenoid enriched oils with lutein and β-carotene concentrations of 0.082 and 0.11 mg/mL, respectively. Extra virgin olive oils enriched with carotenoids from microalgae were studied by analyzing the effect on color of three different treatments: ultraviolet exposure, microwave heating and immersion bath heating. The methodology was designed to simulate, in controlled laboratory conditions, the effects of household treatments. Spectrophotometric color measurements were then performed to monitor color changes in the enriched and non-enriched extra virgin olive oil samples. Enriched oils are much more chromatic, darker and redder than natural oils. After 55 days UV irradiation, 40 min microwave heating, and 72 hours thermostatic heating, the average color differences for natural/enriched extra virgin olive oils were 98/117, 15/9 and 57/28 CIELAB units, respectively. In general, increasing temperature and ultraviolet exposure produced higher CIELAB color differences in the non-enriched samples. The addition of microalga extracts to extra virgin olive oils was found to induce some color stability and may constitute a future way of increasing the daily intake of beneficial bioactive compounds such as carotenoids.
Collapse
|
8
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
9
|
Silva MM, Reboredo FH, Lidon FC. Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects. Foods 2022; 11:379. [PMID: 35159529 PMCID: PMC8834239 DOI: 10.3390/foods11030379] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colour is one of the most relevant organoleptic attributes that directly affects consumers' acceptance and food selection. However, as food colouring pigments are generally unstable and become modified during processing, in order to maintain or restore product colour uniformity, colourants are added to food products around the world. In this context, although they are still widely used, synthetic food colorants, due to their potential hazards, are being replaced by those obtained from natural origins. Indeed, numerous side effects and toxicities, at both the medium and long-terms-namely allergic reactions, and behavioral and neurocognitive effects-have been related to the use of synthetic colourants, whereas their naturally-derived counterparts seem to provide a somewhat high-quality and effective contribution as a health promoter. In order to further understand the implications of the use of synthetic and naturally derived food colourants, this review aims to provide a synoptical approach to the chemical characteristics, properties, uses and side effects on health of those which are currently allowed and applied during food processing.
Collapse
Affiliation(s)
| | - Fernando Henrique Reboredo
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.H.R.); (F.C.L.)
| | - Fernando Cebola Lidon
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.H.R.); (F.C.L.)
| |
Collapse
|
10
|
An electronic tongue as a tool for assessing the impact of carotenoids’ fortification on cv. Arbequina olive oils. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Şenöztop E, Dokuzlu T, Güngörmüşler M. A comprehensive review on the development of probiotic supplemented confectioneries. Z NATURFORSCH C 2021; 77:71-84. [PMID: 34653326 DOI: 10.1515/znc-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/25/2021] [Indexed: 11/15/2022]
Abstract
Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.
Collapse
Affiliation(s)
- Eylül Şenöztop
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Tuğçe Dokuzlu
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| |
Collapse
|
12
|
Murillo-Cruz MC, García-Ruíz AB, Chova-Martínez M, Bermejo-Román R. Improvement of Physico-chemical Properties of Arbequina Extra Virgin Olive Oil Enriched with β-Carotene from Fungi. J Oleo Sci 2021; 70:459-469. [PMID: 33692234 DOI: 10.5650/jos.ess20195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays the consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables, being humans not capable of synthesizing these molecules. β-carotene is one of the most important carotenoids possessing anti-oxidation, anti-inflammation and anti-cancer properties. The aim of this work consists of preparing virgin olive oils enriched in β-carotene from fungi at different concentrations (0.041 and 0.082 mg/mL) in order to obtain new functional foods. Values of quality parameters (free acidity, peroxide value, coefficients of specific extinction and p-anisidine) have been obtained, showing that quality of olive oils was improved. Furthermore, the effect of β-carotene was evaluated as possible oxidative stabilizer during microwave heating and ultra violet-light exposure of the oils. As expected, the enrichment process brought changes in olive oils color, turning them orange-reddish. The use of natural antioxidants, in particular β-carotene could be an effective way to protect virgin olive oils from degradation and is a good strategy also to enhance the consumption of bioactive compounds improving olive oils shelf-life and nutritional value.
Collapse
Affiliation(s)
- Mª Carmen Murillo-Cruz
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| | - Ana Belén García-Ruíz
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| | | | - Ruperto Bermejo-Román
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| |
Collapse
|
13
|
Murillo‐Cruz MC, Chova M, Bermejo‐Román R. Effect of adding fungal β‐carotene to picual extra virgin olive oils on their physical and chemical properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mª Carmen Murillo‐Cruz
- Department of Physical and Analytical Chemistry Jaén UniversityLinares High Polytechnic School (EPSL) Linares Spain
| | - Mariela Chova
- Cortijo de la Loma S.L. (Castillo de Canena Olive Juice) Jaén Spain
| | - Ruperto Bermejo‐Román
- Department of Physical and Analytical Chemistry Jaén UniversityLinares High Polytechnic School (EPSL) Linares Spain
| |
Collapse
|
14
|
Swamy BPM, Samia M, Boncodin R, Marundan S, Rebong DB, Ordonio RL, Miranda RT, Rebong ATO, Alibuyog AY, Adeva CC, Reinke R, MacKenzie DJ. Compositional Analysis of Genetically Engineered GR2E "Golden Rice" in Comparison to That of Conventional Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7986-7994. [PMID: 31282158 PMCID: PMC6646955 DOI: 10.1021/acs.jafc.9b01524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
Compositional analyses were performed on samples of rice grain, straw, and derived bran obtained from golden rice event GR2E and near-isogenic control PSBRc82 rice grown at four locations in the Philippines during 2015 and 2016. Grain samples were analyzed for key nutritional components, including proximates, fiber, polysaccharides, fatty acids, amino acids, minerals, vitamins, and antinutrients. Samples of straw and bran were analyzed for proximates and minerals. The only biologically meaningful difference between GR2E and control rice was in levels of β-carotene and other provitamin A carotenoids in the grain. Except for β-carotene and related carotenoids, the compositional parameters of GR2E rice were within the range of natural variability of those components in conventional rice varieties with a history of safe consumption. Mean provitamin A concentrations in milled rice of GR2E can contribute up to 89-113% and 57-99% of the estimated average requirement for vitamin A for preschool children in Bangladesh and the Philippines, respectively.
Collapse
Affiliation(s)
| | - Mercy Samia
- International
Rice Research Institute, Los Banos, Laguna 4031, Philippines
| | - Raul Boncodin
- International
Rice Research Institute, Los Banos, Laguna 4031, Philippines
| | - Severino Marundan
- International
Rice Research Institute, Los Banos, Laguna 4031, Philippines
| | - Democrito B. Rebong
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | - Reynante L. Ordonio
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | - Ronalyn T. Miranda
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | - Anna T. O. Rebong
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | - Anielyn Y. Alibuyog
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | - Cheryl C. Adeva
- The
Philippines Rice Research Institute, Science City of Munoz, 3119 Nueva Ecija, Philippines
| | | | - Donald J. MacKenzie
- Donald
Danforth Plant Science Center, Saint Louis, Missouri 63132, United States
| |
Collapse
|
15
|
Meléndez-Martínez AJ. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Mol Nutr Food Res 2019; 63:e1801045. [PMID: 31189216 DOI: 10.1002/mnfr.201801045] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/14/2019] [Indexed: 01/05/2023]
Abstract
Carotenoids are fascinating compounds that can be converted into many others, including retinoids that also play key roles in many processes. Although carotenoids are largely known in the context of food science, nutrition, and health as natural colorants and precursors of vitamin A (VA), evidence has accumulated that even those that cannot be converted to VA may be involved in health-promoting biological actions. It is not surprising that carotenoids (most notably lutein) are among the bioactives for which the need to establish recommended dietary intakes have been recently discussed. In this review, the importance of carotenoids (including apocarotenoids) and key derivatives (retinoids with VA activity) in agro-food with relevance to health is summarized. Furthermore, the European Network to Advance Carotenoid Research and Applications in Agro-Food and Health (EUROCAROTEN) is introduced. EUROCAROTEN originated from the Ibero-American Network for the Study of Carotenoids as Functional Food Ingredients (IBERCAROT).
Collapse
Affiliation(s)
- Antonio J Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012, Seville, Spain
| |
Collapse
|
16
|
Preliminary Data on the Safety of Phytoene- and Phytofluene-Rich Products for Human Use including Topical Application. J Toxicol 2018; 2018:5475784. [PMID: 29849613 PMCID: PMC5925131 DOI: 10.1155/2018/5475784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
The colorless carotenoids phytoene and phytofluene are comparatively understudied compounds found in common foods (e.g., tomatoes) and in human plasma, internal tissues, and skin. Being naturally present in common foods, their intake at dietary levels is not expected to present a safety concern. However, since the interest in these compounds in the context of many applications is expanding, it is important to conduct studies aimed at assessing their safety. We present here results of in vitro cytotoxicity and genotoxicity studies, revealing no significant cytotoxic or genotoxic potential and of short- and long-term human in vivo skin compatibility studies with phytoene- and phytofluene-rich tomato and Dunaliella salina alga extracts, showing a lack of irritancy or sensitization reactions. These results support the safe use of phytoene- and phytofluene-rich products in human topical applications.
Collapse
|
17
|
Schex R, Lieb VM, Jiménez VM, Esquivel P, Schweiggert RM, Carle R, Steingass CB. HPLC-DAD-APCI/ESI-MS n analysis of carotenoids and α-tocopherol in Costa Rican Acrocomia aculeata fruits of varying maturity stages. Food Res Int 2018; 105:645-653. [DOI: 10.1016/j.foodres.2017.11.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 11/16/2022]
|
18
|
Stonehouse W, Brinkworth GD, Thompson CH, Abeywardena MY. Short term effects of palm-tocotrienol and palm-carotenes on vascular function and cardiovascular disease risk: A randomised controlled trial. Atherosclerosis 2016; 254:205-214. [PMID: 27760402 DOI: 10.1016/j.atherosclerosis.2016.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS In vitro, ex vivo and animal studies suggest palm-based tocotrienols and carotenes enhance vascular function, but limited data in humans exists. The aim was to examine the effects of palm-tocotrienols (TRF- 80) and palm-carotene (CC-60) supplementation on vascular function and cardiovascular disease (CVD) risk factors in adults at increased risk of impaired vascular function. METHODS Ninety men and women (18-70 yr, 20-45 kg/m2) with type 2 diabetes, impaired fasting glucose and/or elevated waist circumference were randomised to consume either TRF-80 (420 mg/day tocotrienol + 132 mg/day tocopherol), CC-60 (21 mg/day carotenes) or placebo (palm olein) supplements for 8 weeks. Brachial artery flow-mediated dilation (FMD), other physiological and circulatory markers of vascular function, lipid profiles, glucose, insulin and inflammatory markers were assessed pre- and post-supplementation. Pairwise comparisons were performed using mixed effects longitudinal models (n = 87, n = 3 withdrew before study commencement). RESULTS Plasma α- and β-carotene and α-, δ- and γ-tocotrienol concentrations increased in CC-60 and TRF-80 groups, respectively, compared to placebo (mean ± SE difference in total plasma carotene change between CC-60 and placebo: 1.5 ± 0.13 μg/ml, p < 0.0001; total plasma tocotrienol change between TRF-80 and placebo: 0.36 ± 0.05 μg/ml, p < 0.0001). Neither FMD (treatment x time effect for CC-60 vs. placebo, p = 0.71; TRF-80 vs. placebo, p = 0.80) nor any other vascular function and CVD outcomes were affected by treatments. CONCLUSIONS CC-60 and TRF-80 supplementation increased bioavailability of palm-based carotenes and tocotrienols but had no effects, superior or detrimental, on vascular function or CVD risk factors.
Collapse
Affiliation(s)
- Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia.
| | - Grant D Brinkworth
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| | | | - Mahinda Y Abeywardena
- Commonwealth Scientific Industrial Research Organisation, Health and Biosecurity, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Safety of the proposed extension of use of beetroot red (E 162) in foods for special medical purposes in young children. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
20
|
|
21
|
Structure–response relationship of carotenoid bioaccessibility and antioxidant activity as affected by the hydroxylation and cyclization of their terminal end groups. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Grenfell-Lee D, Zeller S, Cardoso R, Pucaj K. The safety of β-carotene from Yarrowia lipolytica. Food Chem Toxicol 2014; 65:1-11. [DOI: 10.1016/j.fct.2013.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/14/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
23
|
Bessems JG, Geraets L. Proper knowledge on toxicokinetics improves human hazard testing and subsequent health risk characterisation. A case study approach. Regul Toxicol Pharmacol 2013; 67:325-34. [DOI: 10.1016/j.yrtph.2013.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/22/2013] [Accepted: 08/15/2013] [Indexed: 01/30/2023]
|