1
|
Lin TL, Chen WJ, Hung CM, Wong YL, Lu CC, Lai HC. Characterization and Safety Evaluation of Autoclaved Gut Commensal Parabacteroides goldsteinii RV-01. Int J Mol Sci 2024; 25:12660. [PMID: 39684372 DOI: 10.3390/ijms252312660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Gut commensals play important roles in maintaining the homeostasis of human health. Previous studies indicated that the abundance of P. goldsteinii in animal hosts was increased by the administration of prebiotics such as polysaccharides purified from iconic oriental medicinal fungi. Subsequently, P. goldsteinii was found to exert beneficial effects on the amelioration of multiple chronic inflammation-associated diseases. Even so, during the process of the development of P. goldsteinii as a next-generation probiotic (NGP), care has to be taken when it is used as a functional food ingredient. In this study, we isolated a novel P. goldsteinii strain, RV-01, from the feces of a healthy adult and carried out comprehensive analyses of its genomic and phenotypic characteristics. Bioinformatic analysis of P. goldsteinii RV-01 revealed the absence of potential virulence genes, as well as the presence of genes and traits potentially beneficial to human health, such as the production of short-chain fatty acids, anti-inflammatory lipopolysaccharides, and zwitterionic capsular polysaccharides, as well as immune regulatory proteins. To circumvent any potential side effects, the P. goldsteinii RV-01 was autoclaved before proceeding to the nonclinical safety assessment. The autoclaved P. goldsteinii RV-01 retained its anti-inflammatory effect in human colon epithelial cells. In addition to the three genotoxicity assays, 28-day subacute and 90-day subchronic animal toxicity studies (the highest dose tested was equivalent to 8.109 × 1010P. goldsteinii RV-01 cells/kg body weight/day) were also implemented. The results of all studies were negative for toxicity. These results support the conclusion that autoclaved P. goldsteinii RV-01 is safe for use as a food ingredient.
Collapse
|
2
|
Morán J, Kilasoniya A. Integration of Postbiotics in Food Products through Attenuated Probiotics: A Case Study with Lactic Acid Bacteria in Bread. Foods 2024; 13:2042. [PMID: 38998548 PMCID: PMC11240946 DOI: 10.3390/foods13132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The study examines the integration of postbiotics in food products through the use of attenuated probiotics, specifically lactic acid bacteria (LAB) in bread. Postbiotics, non-viable microorganisms or their metabolites, offer health benefits similar to probiotics without the risks associated with live bacteria. This research evaluates the regulatory aspects and safety of LAB in sourdough bread production, highlighting their historical and significant use in Europe before 1997. The study includes microbial quantification and Next-Generation Sequencing (NGS) to identify LAB in traditional sourdough, comparing them with historical and current EFSA Qualified Presumption of Safety (QPS) lists. Findings show that the LAB present in sourdough have been extensively and safely used in bread making, supporting their classification as non-novel foods under EU regulations. The stability and consistency of LAB metabolites in sourdough bread are also confirmed, ensuring quality and safety in each batch. The study concludes that LAB in sourdough, when inactivated through bread-making processes, are not considered novel foods, aligning with historical, scientific, and regulatory evidence.
Collapse
Affiliation(s)
- Javier Morán
- Department of Food Innovation, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Alina Kilasoniya
- International PhD School, Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| |
Collapse
|
3
|
Guan Y, Zhu Z, Peng Q, Li M, Li X, Yang JW, Lu YH, Wang M, Xie BB. Genomic and Metagenomic Insights into the Distribution of Nicotine-degrading Enzymes in Human Microbiota. Curr Genomics 2024; 25:226-235. [PMID: 39086996 PMCID: PMC11288164 DOI: 10.2174/0113892029302230240319042208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Nicotine degradation is a new strategy to block nicotine-induced pathology. The potential of human microbiota to degrade nicotine has not been explored. Aims This study aimed to uncover the genomic potentials of human microbiota to degrade nicotine. Methods To address this issue, we performed a systematic annotation of Nicotine-Degrading Enzymes (NDEs) from genomes and metagenomes of human microbiota. A total of 26,295 genomes and 1,596 metagenomes for human microbiota were downloaded from public databases and five types of NDEs were annotated with a custom pipeline. We found 959 NdhB, 785 NdhL, 987 NicX, three NicA1, and three NicA2 homologs. Results Genomic classification revealed that six phylum-level taxa, including Proteobacteria, Firmicutes, Firmicutes_A, Bacteroidota, Actinobacteriota, and Chloroflexota, can produce NDEs, with Proteobacteria encoding all five types of NDEs studied. Analysis of NicX prevalence revealed differences among body sites. NicX homologs were found in gut and oral samples with a high prevalence but not found in lung samples. NicX was found in samples from both smokers and non-smokers, though the prevalence might be different. Conclusion This study represents the first systematic investigation of NDEs from the human microbiota, providing new insights into the physiology and ecological functions of human microbiota and shedding new light on the development of nicotine-degrading probiotics for the treatment of smoking-related diseases.
Collapse
Affiliation(s)
- Ying Guan
- Joint Institute of Tobacco and Health, Kunming, 650106, Yunnan, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Kunming, 650106, Yunnan, China
| | - Qiyuan Peng
- Joint Institute of Tobacco and Health, Kunming, 650106, Yunnan, China
| | - Meng Li
- Joint Institute of Tobacco and Health, Kunming, 650106, Yunnan, China
| | - Xuan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jia-Wei Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yan-Hong Lu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Taghizadeh SF, Rezaee R, Azizi M, Hayes AW, Karimi G. Occurrence of 3-monochloropropane-1,2-Diol (3-MCPD) in canned vegetables: A probabilistic assessment of health risk for Iranian consumers. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Vinderola G, Sanders ME, Salminen S, Szajewska H. Postbiotics: The concept and their use in healthy populations. Front Nutr 2022; 9:1002213. [PMID: 36570166 PMCID: PMC9780264 DOI: 10.3389/fnut.2022.1002213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The term postbiotic was recently defined by an panel of scientists convened by the International Scientific Association of Probiotics and Prebiotics as "a preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." This definition focused on the progenitor microbial cell or cell fragments, not just metabolites, proteins or carbohydrates they might produce. Although such microbe-produced constituents may be functional ingredients of the preparation, they are not required to be present in a postbiotic according to this definition. In this context, terms previously used such as paraprobiotics, ghostbiotics, heat-inactivated probiotics, non-viable probiotics, cell fragments or cell lysates, among others, align with the term postbiotics as conceived by this definition. The applications of postbiotics to infant nutrition and pediatric and adult gastroenterology, mainly, are under development. Some applications for skin health are also underway. As postbiotics are composed of inanimate microorganisms, they cannot colonize the host. However, they can in theory modify the composition or functions of the host microbiota, although evidence for this is scarce. Clinical results are promising, but, overall, there is limited evidence for postbiotics in healthy populations. For example, postbiotics have been studied in fermented infant formulas. The regulation of the term postbiotic is still in its infancy, as no government or international agency around the world has yet incorporated this term in their regulation.
Collapse
Affiliation(s)
- Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina,*Correspondence: Gabriel Vinderola,
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, United States
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Ağagündüz D, Yılmaz B, Koçak T, Altıntaş Başar HB, Rocha JM, Özoğul F. Novel Candidate Microorganisms for Fermentation Technology: From Potential Benefits to Safety Issues. Foods 2022; 11:foods11193074. [PMID: 36230150 PMCID: PMC9564171 DOI: 10.3390/foods11193074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fermentation is one of the oldest known production processes and the most technologically valuable in terms of the food industry. In recent years, increasing nutrition and health awareness has also changed what is expected from fermentation technology, and the production of healthier foods has started to come a little more forward rather than increasing the shelf life and organoleptic properties of foods. Therefore, in addition to traditional microorganisms, a new generation of (novel) microorganisms has been discovered and research has shifted to this point. Novel microorganisms are known as either newly isolated genera and species from natural sources or bacterial strains derived from existing bacteria. Although novel microorganisms are mostly studied for their use in novel food production in terms of gut-microbiota modulation, recent innovative food research highlights their fermentative effects and usability, especially in food modifications. Herein, Clostridium butyricum, Bacteroides xylanisolvens, Akkermansia muciniphila, Mycobacterium setense manresensis, and Fructophilic lactic acid bacteria (FLAB) can play key roles in future candidate microorganisms for fermentation technology in foods. However, there is also some confusion about the safety issues related to the use of these novel microorganisms. This review paper focuses on certain novel candidate microorganisms for fermentation technology with a deep view of their functions, benefits, and safety issues.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara 06490, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, Adana 01380, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara 06490, Turkey
| | | | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
- Correspondence:
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana 01330, Turkey
| |
Collapse
|
7
|
Guerin E, Shkoporov AN, Stockdale SR, Comas JC, Khokhlova EV, Clooney AG, Daly KM, Draper LA, Stephens N, Scholz D, Ross RP, Hill C. Isolation and characterisation of ΦcrAss002, a crAss-like phage from the human gut that infects Bacteroides xylanisolvens. MICROBIOME 2021; 9:89. [PMID: 33845877 PMCID: PMC8042965 DOI: 10.1186/s40168-021-01036-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The gut phageome comprises a complex phage community of thousands of individual strains, with a few highly abundant bacteriophages. CrAss-like phages, which infect bacteria of the order Bacteroidales, are the most abundant bacteriophage family in the human gut and make an important contribution to an individual's core virome. Based on metagenomic data, crAss-like phages form a family, with four sub-families and ten candidate genera. To date, only three representatives isolated in pure culture have been reported: ΦcrAss001 and two closely related phages DAC15 and DAC17; all are members of the less abundant candidate genus VI. The persistence at high levels of both crAss-like phage and their Bacteroidales hosts in the human gut has not been explained mechanistically, and this phage-host relationship can only be properly studied with isolated phage-host pairs from as many genera as possible. RESULTS Faeces from a healthy donor with high levels of crAss-like phage was used to initiate a faecal fermentation in a chemostat, with selected antibiotics chosen to inhibit rapidly growing bacteria and selectively enrich for Gram-negative Bacteroidales. This had the objective of promoting the simultaneous expansion of crAss-like phages on their native hosts. The levels of seven different crAss-like phages expanded during the fermentation, indicating that their hosts were also present in the fermenter. The enriched supernatant was then tested against individual Bacteroidales strains isolated from the same faecal sample. This resulted in the isolation of a previously uncharacterised crAss-like phage of candidate genus IV of the proposed Alphacrassvirinae sub-family, ΦcrAss002, that infects the gut commensal Bacteroides xylanisolvens. ΦcrAss002 does not form plaques or spots on lawns of sensitive cells, nor does it lyse liquid cultures, even at high titres. In keeping with the co-abundance of phage and host in the human gut, ΦcrAss002 and Bacteroides xylanisolvens can also co-exist at high levels when co-cultured in laboratory media. CONCLUSIONS We report the isolation and characterisation of ΦcrAss002, the first representative of the proposed Alphacrassvirinae sub-family of crAss-like phages. ΦcrAss002 cannot form plaques or spots on bacterial lawns but can co-exist with its host, Bacteroides xylanisolvens, at very high levels in liquid culture without impacting on bacterial numbers. Video abstract.
Collapse
Affiliation(s)
- Emma Guerin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Karen M Daly
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Niamh Stephens
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitri Scholz
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, Sanders ME, Shamir R, Swann JR, Szajewska H, Vinderola G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol 2021; 18:649-667. [PMID: 33948025 PMCID: PMC8387231 DOI: 10.1038/s41575-021-00440-6] [Citation(s) in RCA: 821] [Impact Index Per Article: 205.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term 'postbiotics' is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products.
Collapse
Affiliation(s)
- Seppo Salminen
- grid.1374.10000 0001 2097 1371Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Maria Carmen Collado
- grid.419051.80000 0001 1945 7738Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Akihito Endo
- grid.410772.70000 0001 0807 3368Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Colin Hill
- grid.7872.a0000000123318773School of Microbiology, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Lebeer
- grid.5284.b0000 0001 0790 3681Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eamonn M. M. Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO USA
| | - Raanan Shamir
- grid.414231.10000 0004 0575 3167Institute of Pediatric Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center, Petach Tikva, Israel ,grid.12136.370000 0004 1937 0546Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hania Szajewska
- grid.13339.3b0000000113287408Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Gabriel Vinderola
- grid.10798.370000 0001 2172 9456Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| |
Collapse
|
9
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
10
|
Druart C, Plovier H, Van Hul M, Brient A, Phipps KR, de Vos WM, Cani PD. Toxicological safety evaluation of pasteurized Akkermansia muciniphila. J Appl Toxicol 2020; 41:276-290. [PMID: 32725676 PMCID: PMC7818173 DOI: 10.1002/jat.4044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Gut microorganisms are vital for many aspects of human health, and the commensal bacterium Akkermansia muciniphila has repeatedly been identified as a key component of intestinal microbiota. Reductions in A. muciniphila abundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration of A. muciniphila has beneficial effects and that these are not diminished, but rather enhanced after pasteurization. Pasteurized A. muciniphila is proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurized A. muciniphila at doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 × 109 , 2.4 × 1010 , or 9.6 × 1010 A. muciniphila cells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 × 1010 A. muciniphila cells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurized A. muciniphila is safe for use as a food ingredient.
Collapse
Affiliation(s)
| | | | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | - Kirt R Phipps
- Intertek Health Sciences Inc., Farnborough, Hampshire, UK
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Andrade JC, Almeida D, Domingos M, Seabra CL, Machado D, Freitas AC, Gomes AM. Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies. Front Bioeng Biotechnol 2020; 8:550. [PMID: 32582673 PMCID: PMC7291883 DOI: 10.3389/fbioe.2020.00550] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
In the last years several human commensals have emerged from the gut microbiota studies as potential probiotics or therapeutic agents. Strains of human gut inhabitants such as Akkermansia, Bacteroides, or Faecalibacterium have shown several interesting bioactivities and are thus currently being considered as food supplements or as live biotherapeutics, as is already the case with other human commensals such as bifidobacteria. The large-scale use of these bacteria will pose many challenges and drawbacks mainly because they are quite sensitive to oxygen and/or very difficult to cultivate. This review highlights the properties of some of the most promising human commensals bacteria and summarizes the most up-to-date knowledge on their potential health effects. A comprehensive outlook on the potential strategies currently employed and/or available to produce, stabilize, and deliver these microorganisms is also presented.
Collapse
Affiliation(s)
- José Carlos Andrade
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Diana Almeida
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Melany Domingos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Catarina Leal Seabra
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Daniela Machado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Cristina Freitas
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Maria Gomes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
12
|
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr Rev Food Sci Food Saf 2019; 18:587-625. [DOI: 10.1111/1541-4337.12440] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Emanuele Zannini
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Luk Daenen
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
- APC Microbiome IrelandUniv. College Cork Cork T12 K8AF Ireland
| |
Collapse
|
13
|
Douillard FP, de Vos WM. Biotechnology of health-promoting bacteria. Biotechnol Adv 2019; 37:107369. [PMID: 30876799 DOI: 10.1016/j.biotechadv.2019.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
Over the last decade, there has been an increasing scientific and public interest in bacteria that may positively contribute to human gut health and well-being. This interest is reflected by the ever-increasing number of developed functional food products containing health-promoting bacteria and reaching the market place as well as by the growing revenue and profits of notably bacterial supplements worldwide. Traditionally, the origin of probiotic-marketed bacteria was limited to a rather small number of bacterial species that mostly belong to lactic acid bacteria and bifidobacteria. Intensifying research efforts on the human gut microbiome offered novel insights into the role of human gut microbiota in health and disease, while also providing a deep and increasingly comprehensive understanding of the bacterial communities present in this complex ecosystem and their interactions with the gut-liver-brain axis. This resulted in rational and systematic approaches to select novel health-promoting bacteria or to engineer existing bacteria with enhanced probiotic properties. In parallel, the field of gut microbiomics developed into a fertile framework for the identification, isolation and characterization of a phylogenetically diverse array of health-promoting bacterial species, also called next-generation therapeutic bacteria. The present review will address these developments with specific attention for the selection and improvement of a selected number of health-promoting bacterial species and strains that are extensively studied or hold promise for future food or pharma product development.
Collapse
Affiliation(s)
- François P Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
14
|
Brodmann T, Endo A, Gueimonde M, Vinderola G, Kneifel W, de Vos WM, Salminen S, Gómez-Gallego C. Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Front Microbiol 2017; 8:1725. [PMID: 28955311 PMCID: PMC5601064 DOI: 10.3389/fmicb.2017.01725] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Novel microbes are either newly isolated genera and species from natural sources or bacterial strains derived from existing bacteria. Novel microbes are gaining increasing attention for the general aims to preserve and modify foods and to modulate gut microbiota. The use of novel microbes to improve health outcomes is of particular interest because growing evidence points to the importance of gut microbiota in human health. As well, some recently isolated microorganisms have promise for use as probiotics, although in-depth assessment of their safety is necessary. Recent examples of microorganisms calling for more detailed evaluation include Bacteroides xylanisolvens, Akkermansia muciniphila, fructophilic lactic acid bacteria (FLAB), and Faecalibacterium prausnitzii. This paper discusses each candidate's safety evaluation for novel food or novel food ingredient approval according to European Union (EU) regulations. The factors evaluated include their beneficial properties, antibiotic resistance profiling, history of safe use (if available), publication of the genomic sequence, toxicological studies in agreement with novel food regulations, and the qualified presumptions of safety. Sufficient evidences have made possible to support and authorize the use of heat-inactivated B. xylanisolvens in the European Union. In the case of A. muciniphila, the discussion focuses on earlier safety studies and the strain's suitability. FLAB are also subjected to standard safety assessments, which, along with their proximity to lactic acid bacteria generally considered to be safe, may lead to novel food authorization in the future. Further research with F. prausnitzii will increase knowledge about its safety and probiotic properties and may lead to its future use as novel food. Upcoming changes in EUU Regulation 2015/2283 on novel food will facilitate the authorization of future novel products and might increase the presence of novel microbes in the food market.
Collapse
Affiliation(s)
- Theodor Brodmann
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of AgricultureHokkaido, Japan
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias, Spanish Higher Research CouncilVillaviciosa, Spain
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (UNL-CONICET), National University of the LitoralSanta Fe, Argentina
| | - Wolfgang Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science ViennaVienna, Austria
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University and ResearchWageningen, Netherlands
- Immunobiology Research Program, Research Programs Unit, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of TurkuTurku, Finland
| | | |
Collapse
|