1
|
Viaene KPJ, Vlaeminck K, Hansul S, Janssen S, Weighman K, Van Sprang P, De Schamphelaere KAC. Population Modeling in Metal Risk Assessment: Extrapolation of Toxicity Tests to the Population Level. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2308-2328. [PMID: 39221910 DOI: 10.1002/etc.5966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024]
Abstract
Population models can be a useful tool for ecological risk assessment to increase ecological realism. In the present study, population models were used to extrapolate toxicity test results of four metals (Ag, Cu, Ni, Zn) to the population level. In total, three primary producers, five invertebrate species, and five fish species were covered. The ecological modeling-based laboratory to population effect extrapolation factor (ECOPEX factor), defined as the ratio of the predicted 10% effect concentration (EC10) at the population level and the observed EC10 for the laboratory toxicity test, ranged from 0.7 to 78.6, with a median of 2.8 (n = 27). Population modeling indicated clearly higher effect concentrations in most of the cases (ECOPEX factor >2 in 14 out of 27 cases), but in some cases the opposite was observed (in three out of 27 cases). We identified five main contributors to the variability in ECOPEX factors: (1) uncertainty about the toxicity model, (2) uncertainty about the toxicity mechanism of the metal, (3) uncertainty caused by test design, (4) impact of environmental factors, and (5) impact of population endpoint chosen. Part of the uncertainty results from a lack of proper calibration data. Nonetheless, extrapolation with population models typically reduced the variability in EC10 values between tests. To explore the applicability of population models in a regulatory context, we included population extrapolations in a species sensitivity distribution for Cu, which increased the hazardous concentration for 5% of species by a factor 1.5 to 2. Furthermore, we applied a fish population model in a hypothetical Water Framework Directive case using monitored Zn concentrations. This article includes recommendations for further use of population models in (metal) risk assessment. Environ Toxicol Chem 2024;43:2308-2328. © 2024 SETAC.
Collapse
Affiliation(s)
| | | | - Simon Hansul
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Ghent, Belgium
| | - Sharon Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Ghent, Belgium
| | - Kristi Weighman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Ghent, Belgium
| | | | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Ghent, Belgium
| |
Collapse
|
2
|
Romoli C, Trijau M, Muller EB, Zakharova L, Kuhl R, Coors A, Sherborne N, Goussen B, Ashauer R. Environmental Risk Assessment of Time-Variable Toxicant Exposure with Toxicokinetic-Toxicodynamic Modeling of Sublethal Endpoints and Moving Time Windows: A Case Study with Ceriodaphnia dubia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2409-2421. [PMID: 39221922 DOI: 10.1002/etc.5975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Toxicokinetic-toxicodynamic (TKTD) modeling has received increasing attention in terms of the regulatory environmental risk assessment of chemicals. This type of mechanistic model can integrate all available data from individual-level bioassays into a single framework and enable refined risk assessments by extrapolating from laboratory results to time-variable exposure scenarios, based, for instance, on surface water exposure modeling (e.g., FOCUS). Dynamic energy budget (DEB) models coupled with TKTD modules (DEB-TKTD) constitute the leading approach to assess and predict sublethal effects of chemicals on individual organisms. However, thorough case studies are rare. We provide a state-of-the-art example with the standard aquatic test species Ceriodaphnia dubia and the fungicide azoxystrobin, including all steps, from bespoke laboratory toxicity tests to model calibration and validation, through to environmental risk assessment. Following the framework proposed in the European Food Safety Authority Scientific Opinion from 2018, we designed bespoke good laboratory practice-compliant laboratory toxicity studies based on test guideline 211 of the Organisation for Economic Co-operation and Development and then identified robust parameter values from those data for all relevant model parameters through model calibration. The DEB-TKTD model, DEBtox2019, then informed the design of the validation experiment. Once validated, the model was used to perform predictions for a time-variable exposure scenario generated by FOCUS. A moving time-window approach was used to perform the environmental risk assessment. This assessment method reduces uncertainty in the risk assessment while maintaining consistency with the traditional measures of risk. Environ Toxicol Chem 2024;43:2409-2421. © 2024 Syngenta Crop Protection AG. ibacon GmbH and The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Erik B Muller
- ibacon, Roßdorf, Germany
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | | | | | | | - Neil Sherborne
- Syngenta, Jealott's Hill International Research Centre, Berkshire, United Kingdom
| | | | - Roman Ashauer
- Syngenta Crop Protection, Basel, Switzerland
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
3
|
Rakel K, Roeben V, Ernst G, Gergs A. Advancing Soil Risk Assessment: A Novel Earthworm Cocoon Test with a Complementary Toxicokinetic-Toxicodynamic Modeling Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2377-2386. [PMID: 39171945 DOI: 10.1002/etc.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
In the current European Union pesticide risk assessment for soil organisms, effect endpoints from laboratory studies (Tier 1) and field studies (higher-tier risk assessment) are compared with predicted environmental concentrations in soil, derived from the proposed use pattern. The simple but conservative initial Tier 1 risk assessment considers a range of worst-case assumptions. In contrast, the higher-tier assessment focuses on specific conditions tested in the corresponding field study. Effect modeling, such as toxicokinetic-toxicodynamic (TKTD) modeling, is considered a promising future tool to address uncertainties in soil risk assessment, such as extrapolation to different ecological, pedo-climatical, or agronomical situations, or to serve as an intermediate tier for potential refinement of the risk assessment. For the implementation of TKTD modeling in soil organism risk assessment, data on earthworm growth and reproduction over time are required, which are not provided by the standard Organisation for Economic Co-operation and Development (OECD) 222 laboratory test. The underlying study with carbendazim presents a new earthworm cocoon test design, based on the OECD 222 test, to provide the necessary data as input for TKTD modeling. This proposed test design involves destructive samplings at days 7, 14, 21, and 28, enabling the determination of growth, cocoon number, and the number of juveniles hatched per cocoon in 7-day intervals. The new cocoon test allowed the disentanglement of the toxic effect of carbendazim in earthworms: At the highest concentration prominent effects on growth and reproductive output were observed, and the number of cocoons was significantly reduced compared to control. The results highlighted different physiological modes of action: effect on growth via higher maintenance costs as a primary mode of action as well as a reduced number of cocoons (effect on reproduction) and a lower number of juveniles hatching from each cocoon (hazard during oogenesis) as a secondary mode of action. We provide an example of how this new test's data can be used to feed a dynamic energy budget theory-TKTD model of Eisenia fetida. We also validate it against the original OECD 222 test design, outlining its potential future use in soil risk assessment. Environ Toxicol Chem 2024;43:2377-2386. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kim Rakel
- Research Institute gaiac, Aachen, Germany
| | | | | | | |
Collapse
|
4
|
C. Muñoz C, Charles S, Vermeiren P. Advancing Maternal Transfer of Organic Pollutants across Reptiles for Conservation and Risk Assessment Purposes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17567-17579. [PMID: 39311708 PMCID: PMC11465641 DOI: 10.1021/acs.est.4c04668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Embryonic exposure through maternally transferred pollutants can affect embryo vitality, survival, and health. Reptiles face global declines and are sensitive to embryonic pollutant exposure. Yet, they are often neglected in pollution risk assessment and conservation. We analyzed maternal transfer of organic pollutants in reptiles through a systematic extraction, homogenization, and integration of published data on organic pollutants measured in mother-egg pairs into a comprehensive database (DOI:10.5281/zenodo.10900226), complemented with molecular physical-chemical properties of the pollutants. Over four decades, 17 publications provided 19,955 data points shifting from legacy to emerging contaminants although research on newer contaminants lags regulatory and societal demands. Challenges including taxonomic bias, heterogeneity in sampled tissues, and 73% of censored data complicate comparative analyses. However, significant opportunities were identified including the use of the turtle Malachlemys terrapin and snake Enhydris chinensis as flagship species where a large amount of data is available across tissues (allowing investigation into physiological relations) and compounds (allowing insights into maternal transfer across the chemical universe). Data on other freshwater and marine turtles provide the possibility of exploring taxonomic patterns in this subgroup. The analysis, integrated database, and discussion present opportunities for research in an era where science needs to achieve more with limited wildlife data.
Collapse
Affiliation(s)
- Cynthia C. Muñoz
- Department
of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø, Norway
| | - Sandrine Charles
- CNRS,
UMR 5558, Laboratory of Biometry and Evolutionary Biology, Claude Bernard University Lyon 1, Villeurbanne F-69622, France
| | - Peter Vermeiren
- Department
of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø, Norway
| |
Collapse
|
5
|
Collins JJ, Reynolds J, Campos B, Engi P, Rivetti C, Pietrenko T, Viant MR, Fitton G. A proof-of-concept multi-tiered Bayesian approach for the integration of physiochemical properties and toxicokinetic time-course data for Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107107. [PMID: 39341088 DOI: 10.1016/j.aquatox.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The use of in silico and in vitro methods, commonly referred to as New Approach Methodologies (NAMs), has been proposed to support environmental (and human) chemical safety decisions, ensuring enhanced environmental protection. Toxicokinetic models developed for environmentally relevant species are fundamental to the deployment of a NAMs-based safety strategy, enabling the conversion between external and internal chemical concentrations, although they require historical toxicokinetic data and robust physical models to be considered a viable solution. Daphnia magna is a key model organism in ecotoxicology albeit with limited and scattered quantitative toxicokinetic data, as for most invertebrates, resulting in a lack of robust toxicokinetic models. Moreover, current D. magna models are chemical specific, which restricts their applicability domain. One aim of this study was to address the current data availability limitations by collecting toxicokinetic time-course data for D. magna covering a broad chemical space and assessing the dataset's uniqueness. The collated toxicokinetic dataset included 48 time-courses for 30 chemicals from 17 studies, which was developed into an R package named AquaTK, with 11 studies unique to our work when compared to existing databases. Subsequently, a proof-of-concept Bayesian analysis was developed to estimate the steady-state concentration ratio (internal concentration / external concentration) from the data at three different levels of precision given three different data availability scenarios for environmental risk assessment. Specifically, an atrazine case study illustrates the multi-level modelling approach providing improvements (uncertainty reductions) in predictions of ratios for increasing amounts of data availability. Our work provides a consistent and self-contained Bayesian framework that irrespective of the hierarchy or resolution of individual experiments, can utilise the available information to generate optimal predictions of steady-state concentration ratios in D. magna. This approach is paramount to supporting the implementation of a NAMs based environmental safety paradigm shift in environmental risk assessment.
Collapse
Affiliation(s)
- Jacob-Joe Collins
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Joe Reynolds
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Bruno Campos
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Patrik Engi
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Claudia Rivetti
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Tymoteusz Pietrenko
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - George Fitton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
6
|
Schmolke A, Galic N, Roeben V, Preuss TG, Miles M, Hinarejos S. SolBeePop ecotox: A Population Model for Pesticide Risk Assessments of Solitary Bees. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 39291837 DOI: 10.1002/etc.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
In agricultural landscapes, solitary bees occur in a large diversity of species and are important for crop and wildflower pollination. They are distinguished from honey bees and bumble bees by their solitary lifestyle as well as different nesting strategies, phenologies, and floral preferences. Their ecological traits and presence in agricultural landscapes imply potential exposure to pesticides and suggest a need to conduct ecological risk assessments for solitary bees. However, assessing risks to the large diversity of managed and wild bees across landscapes and regions poses a formidable challenge. Population models provide tools to estimate potential population-level effects of pesticide exposures, can support field study design and interpretation, and can be applied to expand study data to untested conditions. We present a population model for solitary bees, SolBeePopecotox, developed for use in the context of ecological risk assessments. The trait-based model extends a previous version with the explicit representation of exposures to pesticides from relevant routes. Effects are implemented in the model using a simplified toxicokinetic-toxicodynamic model, BeeGUTS (GUTS = generalized unified threshold model for survival), adapted specifically for bees. We evaluated the model with data from semifield studies conducted with the red mason bee, Osmia bicornis, in which bees were foraging in tunnels over control and insecticide-treated oilseed rape fields. We extended the simulations to capture hypothetical semifield studies with two soil-nesting species, Nomia melanderi and Eucera pruinosa, which are difficult to test in empirical studies. The model provides a versatile tool for higher-tier risk assessments, for instance, to estimate effects of potential exposures, expanding available study data to untested species, environmental conditions, or exposure scenarios. Environ Toxicol Chem 2024;00:1-17. © 2024 SETAC.
Collapse
Affiliation(s)
- Amelie Schmolke
- RIFCON GmbH, Hirschberg, Germany
- Waterborne Environmental, Leesburg, Virginia, USA
| | - Nika Galic
- Syngenta Crop Protection, Basel, Switzerland
| | | | | | - Mark Miles
- Bayer Crop Science, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Santos GS, Casallanovo F, Scorza Júnior RP, Daam MA, Cione AP. Proposal for a tiered regulatory framework for the aquatic risk assessment of pesticides in Brazil. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1514-1528. [PMID: 38629463 DOI: 10.1002/ieam.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 08/13/2024]
Abstract
Aquatic risk assessment is essential to guarantee the sustainable use of pesticides and the conservation of water resources near agricultural fields. This article discusses a proposal for a tiered regulatory framework for the aquatic risk assessment of pesticides in Brazil. The first step is problem formulation, which includes establishing general and specific protection goals. In the exposure assessment, the Estimated Environmental Concentrations in water should be calculated based on realistic worst-case assumptions regarding application rate and frequency, the entry into the edge-of-field water body, and fate in the water body, using scenario-dependent models suggested by the Brazilian Environmental Agency. These calculations can be refined by including Efate studies with variable exposures to reflect realistic environmental conditions accurately and include mitigation measures that impact the modeling. In the hazard assessment, ecotoxicological data for toxicity to fish, aquatic invertebrates, algae, and aquatic plants should be required for all pesticides based on standardized protocols and species. Tier 2 has several refinement options, including incorporating toxicity data from additional test species and effect modeling. In Tier 3, population- and community-level effects are evaluated using semi-field studies. Considering the case study in Brazil, Tier 1 demonstrated that, from the 12 pesticides that were assessed, seven (58%) failed based on the value of the Risk Quotient. In Tier 2, when exposure refinement options and mitigation measures such as buffer zones are considered, all seven pesticides, for which Tier 1 indicated risk, still failed the assessment. The risk for four of these seven pesticides could be refined by considering toxicity information from additional species. Refinement options and mitigation measures that could be applied to the agricultural scenario in Brazil were discussed. In conclusion, the proposed tiered risk assessment is a feasible way to evaluate whether a pesticide will pose an unacceptable risk to aquatic organisms. Integr Environ Assess Manag 2024;20:1514-1528. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | - Michiel A Daam
- School of Science and Technology, Center for Environmental and Sustainability Research (CENSE) & Global Change and Sustainability Institute (CHANGE), NOVA University Lisbon, NOVA, Caparica, Portugal
- Federal University of Alfenas, Poços de Caldas, MG, Brazil
| | | |
Collapse
|
8
|
Arts GHP, van Smeden J, Wolters MF, Belgers JDM, Matser AM, Hommen U, Bruns E, Heine S, Solga A, Taylor S. Seasonal dynamics of the standard test species Lemna sp. in outdoor microcosms. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1625-1638. [PMID: 38546104 DOI: 10.1002/ieam.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 08/13/2024]
Abstract
Lemna L. sp. is a free-floating aquatic macrophyte that plays a key role as a standard test species in aquatic risk assessment for herbicides and other contaminants. Population modeling can be used to extrapolate from laboratory to field conditions. However, there are insufficient data on longer-term seasonal dynamics of this species to evaluate such models. Therefore, several long-term growth experiments were conducted in outdoor microcosms (surface area 0.174 m2). Monitoring parameters included biomass, frond numbers, water parameters, and weather data. Three different datasets were generated: frond numbers and biomass from weekly to monthly destructively sampled microcosms; a year-round dataset of frond numbers from five continuously monitored microcosms; and seasonal growth rates without the effect of density dependence over 1-2 weeks in freshly inoculated microcosms. Lemna sp. reached a maximum of approximately 500 000 fronds m-2 and 190 g dry weight m-2. During the first winter, the microcosms were covered by ice for approximately four weeks, and Lemna sp. populations collapsed. The second winter was warmer, without any ice cover, and Lemna sp. populations maintained high abundance throughout the winter. Dry weight per frond was not constant throughout the year but was highest in autumn and winter. Growth rates without density dependence under outdoor environmental conditions reached 0.29 day-1 for frond number, 0.43 day-1 for fresh weight, and 0.39 day-1 for dry weight. In linear regressions, these growth rates were best explained by water temperature. For the populations continuously monitored throughout a year, the nitrogen-to-phosphorus ratio best explained the growth rate of frond numbers. This study yielded a relevant dataset for testing and refining Lemna population models used in chemical risk assessment as well as for managing ecosystems and combating the effects of eutrophication. Integr Environ Assess Manag 2024;20:1625-1638. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gertie H P Arts
- Environmental Risk Assessment, Wageningen University and Research, Wageningen, The Netherlands
| | - Jasper van Smeden
- Environmental Risk Assessment, Wageningen University and Research, Wageningen, The Netherlands
| | - Marieke F Wolters
- Environmental Risk Assessment, Wageningen University and Research, Wageningen, The Netherlands
| | - J Dick M Belgers
- Environmental Risk Assessment, Wageningen University and Research, Wageningen, The Netherlands
| | - Arrienne M Matser
- Environmental Risk Assessment, Wageningen University and Research, Wageningen, The Netherlands
| | - Udo Hommen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg, Germany
| | | | | | | | | |
Collapse
|
9
|
Tarazona JV, de Alba-Gonzalez M, Bedos C, Benoit P, Bertrand C, Crouzet O, Dagès C, Dorne JLC, Fernandez-Agudo A, Focks A, Gonzalez-Caballero MDC, Kroll A, Liess M, Loureiro S, Ortiz-Santaliestra ME, Rasmussen JJ, Royauté R, Rundlöf M, Schäfer RB, Short S, Siddique A, Sousa JP, Spurgeon D, Staub PF, Topping CJ, Voltz M, Axelman J, Aldrich A, Duquesne S, Mazerolles V, Devos Y. A conceptual framework for landscape-based environmental risk assessment (ERA) of pesticides. ENVIRONMENT INTERNATIONAL 2024; 191:108999. [PMID: 39276592 DOI: 10.1016/j.envint.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
While pesticide use is subject to strict regulatory oversight worldwide, it remains a main concern for environmental protection, including biodiversity conservation. This is partly due to the current regulatory approach that relies on separate assessments for each single pesticide, crop use, and non-target organism group at local scales. Such assessments tend to overlook the combined effects of overall pesticide usage at larger spatial scales. Integrative landscape-based approaches are emerging, enabling the consideration of agricultural management, the environmental characteristics, and the combined effects of pesticides applied in a same or in different crops within an area. These developments offer the opportunity to deliver informative risk predictions relevant for different decision contexts including their connection to larger spatial scales and to combine environmental risks of pesticides, with those from other environmental stressors. We discuss the needs, challenges, opportunities and available tools for implementing landscape-based approaches for prospective and retrospective pesticide Environmental Risk Assessments (ERA). A set of "building blocks" that emerged from the discussions have been integrated into a conceptual framework. The framework includes elements to facilitate its implementation, in particular: flexibility to address the needs of relevant users and stakeholders; means to address the inherent complexity of environmental systems; connections to make use of and integrate data derived from monitoring programs; and options for validation and approaches to facilitate future use in a regulatory context. The conceptual model can be applied to existing ERA methodologies, facilitating its comparability, and highlighting interoperability drivers at landscape level. The benefits of landscape-based pesticide ERA extend beyond regulation. Linking and validating risk predictions with relevant environmental impacts under a solid science-based approach will support the setting of protection goals and the formulation of sustainable agricultural strategies. Moreover, landscape ERA offers a communication tool on realistic pesticide impacts in a multistressors environment for stakeholders and citizens.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Carole Bedos
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Pierre Benoit
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Colette Bertrand
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Olivier Crouzet
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Cécile Dagès
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | - Ana Fernandez-Agudo
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | - Andreas Focks
- Research Center Environmental Systems Research, Osnabrück University, Osnabrück, Germany
| | | | - Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Dübendorf, Switzerland
| | - Matthias Liess
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Aachen, Germany
| | - Susana Loureiro
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | - Raphaël Royauté
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Ralf B Schäfer
- Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany; Research Centre One Health Ruhr, Research Alliance Ruhr, Germany
| | | | - Ayesha Siddique
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Pierre-François Staub
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Chris J Topping
- Social-Ecological Systems Simulation Centre, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Marc Voltz
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | | | | | - Vanessa Mazerolles
- Regulated Products Assessment Directorate, Anses (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Yann Devos
- European Food Safety Authority (EFSA), Parma, Italy
| |
Collapse
|
10
|
Lamonica D, Charvy L, Kuo D, Fritsch C, Coeurdassier M, Berny P, Charles S. A brief review on models for birds exposed to chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34628-5. [PMID: 39133414 DOI: 10.1007/s11356-024-34628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
"A Who's Who of pesticides is therefore of concern to us all. If we are going to live so intimately with these chemicals eating and drinking them, taking them into the very marrow of our bones - we had better know something about their nature and their power."-Rachel Carson, Silent Spring. In her day, Rachel Carson was right: plant protection products (PPP), like all the other chemical substances that humans increasingly release into the environment without further precaution, are among our worst enemies today (Bruhl and Zaller, 2019; Naidu et al., 2021; Tang et al., 2021; Topping et al., 2020). All compartments of the biosphere, air, soil and water, are potential reservoirs within which all species that live there are impaired. Birds are particularly concerned: PPP are recognized as a factor in the decline of their abundance and diversity predominantly in agricultural landscapes. Due to the restrictions on vertebrates testing, in silico-based approaches are an ideal choice alternative given input data are available. This is where the problem lies as we will illustrate in this paper. We performed an extensive literature search covering a long period of time, a wide diversity of bird species, a large range of chemical substances, and as many model types as possible to encompass all our future need to improve environmental risk assessment of chemicals for birds. In the end, we show that poultry species exposed to pesticides are the most studied at the individual level with physiologically based toxicokinetic models. To go beyond, with more species, more chemical types, over several levels of biological organization, we show that observed data are crucially missing (Gilbert, 2011). As a consequence, improving existing models or developing new ones could be like climbing Everest if no additional data can be gathered, especially on chemical effects and toxicodynamic aspects.
Collapse
Affiliation(s)
- Dominique Lamonica
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France.
- Research Institute for Development, BotAny and Modeling of Plant Architecture and Vegetation - UMR AMAP, TA A51/PS2, Montpellier Cedex 05, 34398, France.
| | - Lison Charvy
- INSA Lyon, Biosciences department, 20 avenue Albert Einstein, Villeurbanne, 69100, France
| | - Dave Kuo
- Institute of Environmental Engineering (GIEE), National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement, CNRS - Université de Franche-Comté, 16 route de Gray, Besançon cedex, 25030, France
| | - Philippe Berny
- UR ICE, VetAgro Sup Campus Vétérinaire de Lyon, 1 Avenue Bourgelat, Marcy l'étoile, F-69280, France
| | - Sandrine Charles
- University Lyon 1, Laboratory of Biometry and Evolutionary Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918, Villeurbanne Cedex, 69622, France
| |
Collapse
|
11
|
Ashauer R. Correspondence on "Mortality Pattern of Poecilus cupreus Beetles after Repeated Topical Exposure to Insecticide─Stochastic Death or Individual Tolerance?". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10874-10876. [PMID: 38842005 PMCID: PMC11191583 DOI: 10.1021/acs.est.4c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Roman Ashauer
- Syngenta
Crop Protection AG, 4058 Basel, Switzerland
- Department
of Environment and Geography, University
of York, York YO10 5NG, U.K.
| |
Collapse
|
12
|
Baas J, Goussen B, Taenzler V, Roeben V, Miles M, Preuss TG, van den Berg S, Roessink I. Comparing Sensitivity of Different Bee Species to Pesticides: A TKTD modeling approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1431-1441. [PMID: 38661474 DOI: 10.1002/etc.5871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Risk assessment for bees is mainly based on data for honey bees; however, risk assessment is intended to protect all bee species. This raises the question of whether data for honey bees are a good proxy for other bee species. This issue is not new and has resulted in several publications in which the sensitivity of bee species is compared based on the values of the 48-h median lethal dose (LD50) from acute test results. When this approach is used, observed differences in sensitivity may result both from differences in kinetics and from inherent differences in species sensitivity. In addition, the physiology of the bee, like its overall size, the size of the honey stomach (for acute oral tests), and the physical appearance (for acute contact tests) also influences the sensitivity of the bee. The recently introduced Toxicokinetic-Toxicodynamic (TKTD) model that was developed for the interpretation of honey bee tests (Bee General Uniform Threshold Model for Survival [BeeGUTS]) could integrate the results of acute oral tests, acute contact tests, and chronic tests within one consistent framework. We show that the BeeGUTS model can be calibrated and validated for other bee species and also that the honey bee is among the more sensitive bee species. In addition, we found that differences in sensitivity between species are smaller than previously published comparisons based on 48-h LD50 values. The time-dependency of the LD50 and the specifics of the bee physiology are the main causes of the wider variation found in the published literature. Environ Toxicol Chem 2024;43:1431-1441. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jan Baas
- Wageningen University and Research, Wageningen, The Netherlands
| | - Benoit Goussen
- Institute for Biological Analysis and Consulting, Roßdorf, Germany
| | - Verena Taenzler
- Research & Development, Crop Science Terrestrial Invertebrates & Bees, Bayer CropScience, Monheim, Germany
| | - Vanessa Roeben
- Research & Development, Crop Science Terrestrial Invertebrates & Bees, Bayer CropScience, Monheim, Germany
| | - Mark Miles
- Research & Development, Crop Science Terrestrial Invertebrates & Bees, Bayer CropScience, Monheim, Germany
| | - Thomas G Preuss
- Research & Development, Crop Science Terrestrial Invertebrates & Bees, Bayer CropScience, Monheim, Germany
| | | | - Ivo Roessink
- Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Jager T. Identifying and Predicting Delayed Mortality with Toxicokinetic-Toxicodynamic Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1030-1035. [PMID: 38415798 DOI: 10.1002/etc.5833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
The prevalence of standardized toxicity testing in ecotoxicology has largely obscured the notion that toxicity is a function of time as well. The necessity of considering time is vividly demonstrated by observations of delayed mortality, that is, deaths continue to occur even when animals are no longer exposed to a toxicant. In this contribution, I explore to what extent toxicokinetic-toxicodynamic (TKTD) models from the framework of the General Unified Threshold model for Survival (GUTS) can capture delayed mortality, and to what extent this phenomenon can be predicted from short-term standard tests. I use a previously published data set for fluoroquinolones in Daphnia magna that shows strongly delayed mortality (using immobilization as a proxy for death). The model analysis shows that the GUTS stochastic death models can capture delayed mortality in the complete data set with a long recovery phase, but that the delayed effects would not have been predicted from a 2-day standard test. The study underlines the limited information content of standard acute test designs. Toxicokinetic-toxicodynamic modeling offers a handle on the time aspects of toxicity but cannot always be relied on to provide accurate extrapolations based on severely limited standard tests. The phenomenon of delayed toxicity requires more structured study to clarify its prevalence and impact; I discuss several avenues for further investigation. Environ Toxicol Chem 2024;43:1030-1035. © 2024 SETAC.
Collapse
|
14
|
Clewell HJ, Fuchsman PC. Interspecies scaling of toxicity reference values in human health versus ecological risk assessments: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:749-764. [PMID: 37724480 DOI: 10.1002/ieam.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Risk assessments that focus on anthropogenic chemicals in environmental media-whether considering human health or ecological effects-often rely on toxicity data from experimentally studied species to estimate safe exposures for species that lack similar data. Current default extrapolation approaches used in both human health risk assessments and ecological risk assessments (ERAs) account for differences in body weight between the test organisms and the species of interest, but the two default approaches differ in important ways. Human health risk assessments currently employ a default based on body weight raised to the three-quarters power. Ecological risk assessments for wildlife (i.e., mammals and birds) are typically based directly on body weight, as measured in the test organism and receptor species. This review describes differences in the experimental data underlying these default practices and discusses the many factors that affect interspecies variability in chemical exposures. The interplay of these different factors can lead to substantial departures from default expectations. Alternative methodologies for conducting more accurate interspecies extrapolations in ERAs for wildlife are discussed, including tissue-based toxicity reference values, physiologically based toxicokinetic and/or toxicodynamic modeling, chemical read-across, and a system of categorical defaults based on route of exposure and toxic mode of action. Integr Environ Assess Manag 2024;20:749-764. © 2023 SETAC.
Collapse
|
15
|
Martin T, Bauer B, Baier V, Paini A, Schaller S, Hubbard P, Ebeling M, Heckmann D, Gergs A. Reproductive toxicity in birds predicted by physiologically-based kinetics and bioenergetics modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169096. [PMID: 38092208 DOI: 10.1016/j.scitotenv.2023.169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Effects on the growth and reproduction of birds are important endpoints in the environmental risk assessment (ERA) of pesticides. Toxicokinetic-toxicodynamic models based on dynamic energy budget theory (DEB) are promising tools to predict these effects mechanistically and make extrapolations relevant to ERA. However, before DEB-TKTD models are accepted as part of ERA for birds, ecotoxicological case studies are required so that stakeholders can assess their capabilities. We present such a case-study, modelling the effects of the fluopyram metabolite benzamide on the northern bobwhite quail (Colinus virginianus). We parametrised a DEB-TKTD model for the embryo stage on the basis of an egg injection study, designed to provide data for model development. We found that information on various endpoints, such as survival, growth, and yolk utilisation were needed to clearly distinguish between the performance of model variants with different TKTD assumptions. The calibration data were best explained when it was assumed that chemical uptake occurs via the yolk and that benzamide places stress on energy assimilation and mobilisation. To be able to bridge from the in vitro tests to real-life exposure, we developed a physiologically-based toxicokinetic (PBK) model for the quail and used it to predict benzamide exposure inside the eggs based on dietary exposure in a standard reproductive toxicity study. We then combined the standard DEB model with the TKTD module calibrated to the egg injection studies and used it to predict effects on hatchling and 14-day chick weight based on the exposure predicted by the PBK model. Observed weight reductions, relative to controls, were accurately predicted. Thus, we demonstrate that DEB-TKTD models, in combination with suitable experimental data and, if necessary, with an exposure model, can be used in bird ERA to predict chemical effects on reproduction.
Collapse
Affiliation(s)
- Thomas Martin
- Rifcon GmbH, Goldbeckstraße 13, 69493 Hirschberg an der Bergstraße, Germany.
| | - Barbara Bauer
- Rifcon GmbH, Goldbeckstraße 13, 69493 Hirschberg an der Bergstraße, Germany
| | - Vanessa Baier
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | - Alicia Paini
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | | | | | | | | | - André Gergs
- Bayer AG, Crop Science Division, Monheim, Germany
| |
Collapse
|
16
|
Romoli C, Jager T, Trijau M, Goussen B, Gergs A. Environmental Risk Assessment with Energy Budget Models: A Comparison Between Two Models of Different Complexity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:440-449. [PMID: 38051527 DOI: 10.1002/etc.5795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
The extrapolation of effects from controlled standard laboratory tests to real environmental conditions is a major challenge facing ecological risk assessment (ERA) of chemicals. Toxicokinetic-toxicodynamic (TKTD) models, such as those based on dynamic energy budget (DEB) theory, can play an important role in filling this gap. Through the years, different practical TKTD models have been derived from DEB theory, ranging from the full "standard" DEB animal model to simplified "DEBtox" models. It is currently unclear what impact a different level of model complexity can have on the regulatory risk assessment. In the present study, we compare the performance of two DEB-TKTD models with different levels of complexity, focusing on model calibration on standard test data and on forward predictions for untested time-variable exposure profiles. The first model is based on the standard DEB model with primary parameters, whereas the second is a reduced version with compound parameters, based on DEBkiss. After harmonization of the modeling choices, we demonstrate that these two models can achieve very similar performances both in the calibration step and in the forward prediction step. With the data presented in the present study, selection of the most suitable TKTD model for ERA therefore cannot be based alone on goodness-of-fit or on the precision of model predictions (within current ERA procedures for pesticides) but would likely be based on the trade-off between ease of use and model flexibility. We also stress the importance of modeling choices, such as how to fill gaps in the information content of experimental toxicity data and how to accommodate differences in growth and reproduction between different data sets for the same chemical-species combination. Environ Toxicol Chem 2024;43:440-449. © 2023 ibacon GmbH. Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
17
|
Sowa G, Bednarska AJ, Laskowski R. Mortality Pattern of Poecilus cupreus Beetles after Repeated Topical Exposure to Insecticide─Stochastic Death or Individual Tolerance? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1854-1864. [PMID: 38251653 PMCID: PMC10832044 DOI: 10.1021/acs.est.3c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The mortality of organisms exposed to toxicants has been attributed to either stochastic processes or individual tolerance (IT), leading to the stochastic death (SD) and IT models. While the IT model follows the principles of natural selection, the relevance of the SD model has been debated. To clarify why the idea of stochastic mortality has found its way into ecotoxicology, we investigated the mortality of Poecilus cupreus (Linnaeus, 1758) beetles from pesticide-treated oilseed rape (OSR) fields and unsprayed meadows, subjected to repeated insecticide treatments. We analyzed the mortality with the Kaplan-Meier estimator and general unified threshold model for survival (GUTS), which integrates SD and IT assumptions. The beetles were exposed three times, ca. monthly, to the same dose of Proteus 110 OD insecticide containing thiacloprid and deltamethrin, commonly used in the OSR fields. Kaplan-Meier analysis showed that the mortality of beetles from meadows was much higher after the first treatment than after the next two, indicating the IT model. Beetles from the OSR displayed approximately constant mortality after the first and second treatments, consistent with the SD model. GUTS analysis did not conclusively identify the better model, with the IT being marginally better for beetles from meadows and the SD better for beetles from OSR fields.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Institute of Environmental
Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka J. Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental
Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Bauer B, Singer A, Gao Z, Jakoby O, Witt J, Preuss T, Gergs A. A Toxicokinetic-Toxicodynamic Modeling Workflow Assessing the Quality of Input Mortality Data. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:197-210. [PMID: 37818873 DOI: 10.1002/etc.5761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Toxicokinetic-toxicodynamic (TKTD) models simulate organismal uptake and elimination of a substance (TK) and its effects on the organism (TD). The Reduced General Unified Threshold model of Survival (GUTS-RED) is a TKTD modeling framework that is well established for aquatic risk assessment to simulate effects on survival. The TKTD models are applied in three steps: parameterization based on experimental data (calibration), comparing predictions with independent data (validation), and prediction of endpoints under environmental scenarios. Despite a clear understanding of the sensitivity of GUTS-RED predictions to the model parameters, the influence of the input data on the quality of GUTS-RED calibration and validation has not been systematically explored. We analyzed the performance of GUTS-RED calibration and validation based on a unique, comprehensive data set, covering different types of substances, exposure patterns, and aquatic animal species taxa that are regularly used for risk assessment of plant protection products. We developed a software code to automatically calibrate and validate GUTS-RED against survival measurements from 59 toxicity tests and to calculate selected model evaluation metrics. To assess whether specific survival data sets were better suited for calibration or validation, we applied a design in which all possible combinations of studies for the same species-substance combination are used for calibration and validation. We found that uncertainty of calibrated parameters was lower when the full range of effects (i.e., from high survival to high mortality) was covered by input data. Increasing the number of toxicity studies used for calibration further decreased parameter uncertainty. Including data from both acute and chronic studies as well as studies under pulsed and constant exposure in model calibrations improved model predictions on different types of validation data. Using our results, we derived a workflow, including recommendations for the sequence of modeling steps from the selection of input data to a final judgment on the suitability of GUTS-RED for the data set. Environ Toxicol Chem 2024;43:197-210. © 2023 Bayer AG and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - André Gergs
- Crop Science Division, Bayer, Monheim, Germany
| |
Collapse
|
19
|
Mangold-Döring A, Baas J, van den Brink PJ, Focks A, van Nes EH. Toxicokinetic-Toxicodynamic Model to Assess Thermal Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21029-21037. [PMID: 38062939 PMCID: PMC10734255 DOI: 10.1021/acs.est.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Temperature is a crucial environmental factor affecting the distribution and performance of ectothermic organisms. This study introduces a new temperature damage model to interpret their thermal stress. Inspired by the ecotoxicological damage model in the General Unified Threshold model for Survival (GUTS) framework, the temperature damage model assumes that damage depends on the balance between temperature-dependent accumulation and constant repair. Mortality due to temperature stress is driven by the damage level exceeding a threshold. Model calibration showed a good agreement with the measured survival of Gammarus pulex exposed to different constant temperatures. Further, model simulations, including constant temperatures, daily temperature fluctuations, and heatwaves, demonstrated the model's ability to predict temperature effects for various environmental scenarios. With this, the present study contributes to the mechanistic understanding of temperature as a single stressor while facilitating the incorporation of temperature as an additional stressor alongside chemicals in mechanistic multistressor effect models.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jan Baas
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Paul J. van den Brink
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Andreas Focks
- System
Science Group/Institute of Mathematics, Osnabrück University, Barbarastrasse 12, D-49076 Osnabrück, Germany
| | - Egbert H. van Nes
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
20
|
Buddendorf WB, Wipfler L, Beltman W, Baveco H, Braakhekke MC, Bub S, Gergs A, Schad T. Aquatic Risks at the Landscape Scale: A Case Study for Pyrethroid Use in Pome Fruit Orchards in Belgium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15608-15616. [PMID: 37796045 PMCID: PMC10586366 DOI: 10.1021/acs.est.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Procedures for environmental risk assessment for pesticides are under continuous development and subject to debate, especially at higher tier levels. Spatiotemporal dynamics of both pesticide exposure and effects at the landscape scale are largely ignored, which is a major flaw of the current risk assessment system. Furthermore, concrete guidance on risk assessment at landscape scales in the regulatory context is lacking. In this regard, we present an integrated modular simulation model system that includes spatiotemporally explicit simulation of pesticide application, fate, and effects on aquatic organisms. As a case study, the landscape model was applied to the Rummen, a river catchment in Belgium with a high density of pome fruit orchards. The application of a pyrethroid to pome fruit and the corresponding drift deposition on surface water and fate dynamics were simulated. Risk to aquatic organisms was quantified using a toxicokinetic/toxicodynamic model for individual survival at different levels of spatial aggregation, ranging from the catchment scale to individual stream segments. Although the derivation of landscape-scale risk assessment end points from model outputs is straightforward, a dialogue within the community, building on concrete examples as provided by this case study, is urgently needed in order to decide on the appropriate end points and on the definition of representative landscape scenarios for use in risk assessment.
Collapse
Affiliation(s)
- Willem B. Buddendorf
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Louise Wipfler
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Wim Beltman
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Hans Baveco
- Wageningen Environmental
Research, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | | | - Sascha Bub
- iES Landau, Institute for Environmental
Sciences, University of Kaiserslautern-Landau
(RPTU), Fortstraße 7, D-76829 Landau, Germany
| | - André Gergs
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| | - Thorsten Schad
- Research
& Development, Crop Science, Environmental Modelling, Bayer AG, 40789 Monheim, Germany
| |
Collapse
|
21
|
Álvarez F, Arena M, Auteri D, Leite SB, Binaglia M, Castoldi AF, Chiusolo A, Chukwubike NJK, Colagiorgi A, Colas M, Crivellente F, De Lentdecker C, De Magistris I, Egsmose M, Fait G, Ferilli F, Gouliarmou V, Halling K, Nogareda LH, Ippolito A, Istace F, Jarrah S, Kardassi D, Kienzler A, Lanzoni A, Lava R, Leuschner R, Linguadoca A, Louisse J, Lythgo C, Magrans O, Mangas I, Miron I, Molnar T, Padovani L, Padricello V, Panzarea M, Parra Morte JM, Rizzuto S, Romac A, Rortais A, Serafimova R, Sharp R, Szentes C, Terron A, Theobald A, Tiramani M, Vianello G, Villamar‐Bouza L. Peer review of the pesticide risk assessment of the active substance dimoxystrobin. EFSA J 2023; 21:e08329. [PMID: 37908444 PMCID: PMC10613935 DOI: 10.2903/j.efsa.2023.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
The conclusions of the EFSA following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, Hungary, and co-rapporteur Member State, Ireland, for the pesticide active substance dimoxystrobin as well as the assessment of maximum residue levels (MRLs) and confirmatory data following the review of the existing MRLs of dimoxystrobin according to Article 12 of Regulation (EC) No 396/2005 are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. In June 2023, the European Commission sent a mandate confirming the need to adopt and publish a conclusion on the peer review of the pesticide risk assessment of the active substance dimoxystrobin excluding the full assessment of endocrine-disrupting properties, containing all the results of the peer review process related to the renewal of approval as well as the assessment of the application for MRL for oilseed rapeseed, poppy seed, mustard seed and gold of pleasure seed, and the MRL application addressing the confirmatory data identified during the MRL review under Article 12 of Regulation (EC) No 396/2005. The conclusions were reached on the basis of the evaluation of the representative uses of dimoxystrobin as a fungicide on oilseed rape and sunflower. MRLs were assessed in rapeseeds, poppy seed, mustard seed and Gold of pleasure seed. The reliable end points, appropriate for use in regulatory risk assessment and the proposed MRLs, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are presented where identified.
Collapse
|
22
|
Bart S, Jager T, Short S, Robinson A, Sleep D, Pereira MG, Spurgeon DJ, Ashauer R. Modelling the effects of the pyrethroid insecticide cypermethrin on the life cycle of the soil dwelling annelid Enchytraeus crypticus, an original experimental design to calibrate a DEB-TKTD model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114499. [PMID: 36610295 DOI: 10.1016/j.ecoenv.2023.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The Dynamic Energy Budget theory (DEB) enables ecotoxicologists to model the effects of chemical stressors on organism life cycles through the coupling of toxicokinetic-toxicodynamic (TK-TD) models. While good progress has been made in the application of DEB-TKTD models for aquatic organisms, applications for soil fauna are scarce, due to the lack of dedicated experimental designs suitable for collecting the required time series effect data. Enchytraeids (Annelida: Clitellata) are model organisms in soil ecology and ecotoxicology. They are recognised as indicators of biological activity in soil, and chemical stress in terrestrial ecosystems. Despite this, the application of DEB-TKTD models to investigate the impact of chemicals has not yet been tested on this family. Here we assessed the impact of the pyrethroid insecticide cypermethrin on the life cycle of Enchytraeus crypticus. We developed an original experimental design to collect the data required for the calibration of a DEB-TKTD model for this species. E. crypticus presented a slow initial growth phase that has been successfully simulated with the addition of a size-dependent food limitation for juveniles in the DEB model. The DEB-TKTD model simulations successfully agreed with the data for all endpoints and treatments over time. The highlighted physiological mode of action (pMoA) for cypermethrin was an increase of the growth energy cost. The threshold for effects on survival was estimated at 73.14 mg kg- 1, and the threshold for effects on energy budget (i.e., sublethal effects) at 19.21 mg kg- 1. This study demonstrates that DEB-TKTD models can be successfully applied to E. crypticus as a representative soil species, and may improve the ecological risk assessment for terrestrial ecosystems, and our mechanistic understanding of chemical effects on non-target species.
Collapse
Affiliation(s)
- Sylvain Bart
- Department of Environment and Geography, University of York, York YO10 5NG, UK; UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK; MO-ECO2 (Modelling and Data Analyses for Ecology and Ecotoxicology), Paris, France.
| | | | - Stephen Short
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Alex Robinson
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Darren Sleep
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | | | - Roman Ashauer
- Department of Environment and Geography, University of York, York YO10 5NG, UK; Syngenta Crop Protection AG, Basel 4058, Switzerland
| |
Collapse
|
23
|
Oginah SA, Posthuma L, Maltby L, Hauschild M, Fantke P. Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment. ENVIRONMENT INTERNATIONAL 2023; 171:107705. [PMID: 36549223 PMCID: PMC9875201 DOI: 10.1016/j.envint.2022.107705] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Freshwater ecosystems provide major benefits to human wellbeing-so-called ecosystem services (ES)-but are currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate ecotoxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for linking ecotoxicity to damage on ecosystem functioning or ES. To overcome this challenge, we propose a way forward based on evaluating available approaches to characterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quantitative, comparative assessments. Second, within the proposed framework, we present possible approaches for stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we discuss strengths, limitations, and data availability of possible approaches for each step. Although most approaches for directly deriving damage on ES from either species loss or damage to functional diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional diversity components and functional groups could be adapted to link species loss to functional diversity loss. An Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with each other.
Collapse
Affiliation(s)
- Susan A Oginah
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Leo Posthuma
- National Institute for Public Health and the Environment, PO Box 1, 3720 Bilthoven, the Netherlands; Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, the Netherlands
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Michael Hauschild
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
24
|
Schneeweiss A, Juvigny-Khenafou NPD, Osakpolor S, Scharmüller A, Scheu S, Schreiner VC, Ashauer R, Escher BI, Leese F, Schäfer RB. Three perspectives on the prediction of chemical effects in ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:21-40. [PMID: 36131639 DOI: 10.1111/gcb.16438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.
Collapse
Affiliation(s)
- Anke Schneeweiss
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | | - Stephen Osakpolor
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Andreas Scharmüller
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
- Institut Terre et Environnement de Strasbourg (ITES), UMR 7063, CNRS-Université de Strasbourg-ENGEES, Strasbourg, France
| | - Sebastian Scheu
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel, Switzerland
- Department of Environment and Geography, University of York, York, UK
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
25
|
Redman AD, Parkerton TF, Letinski DJ, Sutherland CA, Butler JD, Di Toro DM. Modeling Time-Dependent Aquatic Toxicity of Hydrocarbons: Role of Organism Weight, Temperature, and Substance Hydrophobicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3070-3083. [PMID: 36102847 PMCID: PMC9827832 DOI: 10.1002/etc.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 06/09/2023]
Abstract
Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dominic M. Di Toro
- Civil and Environmental EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
26
|
Mangold-Döring A, Huang A, van Nes EH, Focks A, van den Brink PJ. Explicit Consideration of Temperature Improves Predictions of Toxicokinetic-Toxicodynamic Models for Flupyradifurone and Imidacloprid in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15920-15929. [PMID: 36281980 PMCID: PMC9671055 DOI: 10.1021/acs.est.2c04085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 05/11/2023]
Abstract
In the face of global climate change, where temperature fluctuations and the frequency of extreme weather events are increasing, it is needed to evaluate the impact of temperature on the ecological risk assessment of chemicals. Current state-of-the-art mechanistic effect models, such as toxicokinetic-toxicodynamic (TK-TD) models, often do not explicitly consider temperature as a modulating factor. This study implemented the effect of temperature in a widely used modeling framework, the General Unified Threshold model for Survival (GUTS). We tested the model using data from toxicokinetic and toxicity experiments with Gammarus pulex exposed to the insecticides imidacloprid and flupyradifurone. The experiments revealed increased TK rates with increasing temperature and increased toxicity under chronic exposures. Using the widely used Arrhenius equation, we could include the temperature influence into the modeling. By further testing of different model approaches, differences in the temperature scaling of TK and TD model parameters could be identified, urging further investigations of the underlying mechanisms. Finally, our results show that predictions of TK-TD models improve if we include the toxicity modulating effect of temperature explicitly.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Anna Huang
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Egbert H. van Nes
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
| | - Andreas Focks
- System
Science Group/Institute of Mathematics, Osnabrück University, Barbarastr. 12, D-49076Osnabrück, Germany
| | - Paul J. van den Brink
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research,
P.O. Box 47, 6700 AAWageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AAWageningen, The Netherlands
| |
Collapse
|
27
|
Ratier A, Lopes C, Charles S. Improvements in Estimating Bioaccumulation Metrics in the Light of Toxicokinetic Models and Bayesian Inference. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:339-348. [PMID: 35904623 DOI: 10.1007/s00244-022-00947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The surveillance of chemical substances in the scope of Environmental Risk Assessment (ERA) is classically performed through bio-assays from which data are collected and then analysed and/or modelled. Some analysis are based on the fitting of toxicokinetic (TK) models to assess the bioaccumulation capacity of chemical substances via the estimation of bioaccumulation metrics as required by regulatory documents. Given that bio-assays are particularly expensive and time consuming, it is of crucial importance to deeply benefit from all information contained in the data. By revisiting the calculation of bioaccumulation metrics under a Bayesian framework, this paper suggests changes in the way of characterising the bioaccumulation capacity of chemical substances. For this purpose, a meta-analysis of a data-rich TK database was performed, considering uncertainties around bioaccumulation metrics. Our results were statistically robust enough to suggest an additional criterion to the single median estimate of bioaccumulation metrics to assign a chemical substance to a given bioaccumulation capacity. Our proposal is to use the 75th percentile of the uncertainty interval of the bioaccumulation metrics, which revealed an appropriate complement for the classification of chemical substances (e.g. PBT (persistent, bioaccumulative and toxic) and vPvB (very persistent and very bioaccumulative) under the EU chemicals legislation). The 75% quantile proved its efficiency, similarly classifying 90% of the chemical substances as the conventional method.
Collapse
Affiliation(s)
- Aude Ratier
- CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, 69100, Villeurbanne, France
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc ALATA BP2, 60550, Verneuil en Halatte, France
| | - Christelle Lopes
- CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, 69100, Villeurbanne, France
| | - Sandrine Charles
- CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, 69100, Villeurbanne, France.
| |
Collapse
|
28
|
Rakel K, Becker D, Bussen D, Classen S, Preuss T, Strauss T, Zenker A, Gergs A. Physiological Dependency Explains Temperature Differences in Sensitivity Towards Chemical Exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:349-360. [PMID: 36264308 DOI: 10.1007/s00244-022-00963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In chemical risk assessment, extrapolations from laboratory tests to more realistic conditions are essential to address the toxic effects of pesticides on individuals and populations under field conditions. To transfer toxicological laboratory tests to differing temperature conditions, or outdoor field scenarios, the consideration of temperature dependence is essential and increases realism. Special consideration is given to the impact of temperature on direct sensitivity of organisms to pesticides, for which there are only few modelling approaches available so far. We present a concept for applying physiological temperature dependencies to toxicokinetic-toxicodynamic (TKTD) parameters in the General Uniformed Threshold model of Survival (GUTS). To test this approach in an exemplary study, temperature dependencies from studies on the developmental rate of the mayfly Cloeon dipterum were applied to the parameters of a previously parameterised TKTD model of this species after exposure to imidacloprid. Using a physiologically derived temperature correction for the TKTD rate constants, model predictions for independently conducted toxicology experiments with temperature ranges between 7.8 and 26.4 °C were performed for validation. Our approach demonstrates the successful transfer of a physiological observed temperature dependency on toxicity parameters and survival patterns for Cloeon dipterum and imidacloprid as a case study.
Collapse
Affiliation(s)
- Kim Rakel
- Research Institute for Ecosystem Analysis and Assessment (Gaiac), Kackertstrasse 10, 52072, Aachen, Germany.
| | - Dennis Becker
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany
| | - Dino Bussen
- Research Institute for Ecosystem Analysis and Assessment (Gaiac), Kackertstrasse 10, 52072, Aachen, Germany
| | - Silke Classen
- Research Institute for Ecosystem Analysis and Assessment (Gaiac), Kackertstrasse 10, 52072, Aachen, Germany
| | - Thomas Preuss
- Bayer AG, Alfred-Nobel-Straße 50, 40789, Monheim am Rhein, Germany
| | - Tido Strauss
- Research Institute for Ecosystem Analysis and Assessment (Gaiac), Kackertstrasse 10, 52072, Aachen, Germany
| | - Armin Zenker
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 340, 4132, Muttenz, Switzerland
| | - André Gergs
- Bayer AG, Alfred-Nobel-Straße 50, 40789, Monheim am Rhein, Germany
| |
Collapse
|
29
|
Preuss TG, Agatz A, Goussen B, Roeben V, Rumkee J, Zakharova L, Thorbek P. The BEEHAVE ecotox Model-Integrating a Mechanistic Effect Module into the Honeybee Colony Model. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2870-2882. [PMID: 36040132 PMCID: PMC9828121 DOI: 10.1002/etc.5467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Mechanistic effect models are powerful tools for extrapolating from laboratory studies to field conditions. For bees, several good models are available that can simulate colony dynamics. Controlled and reliable experimental systems are also available to estimate the inherent toxicity of pesticides to individuals. However, there is currently no systematic and mechanistic way of linking the output of experimental ecotoxicological testing to bee models for bee risk assessment. We introduce an ecotoxicological module that mechanistically links exposure with the hazard profile of a pesticide for individual honeybees so that colony effects emerge. This mechanistic link allows the translation of results from standard laboratory studies to relevant parameters and processes for simulating bee colony dynamics. The module was integrated into the state-of-the-art honeybee model BEEHAVE. For the integration, BEEHAVE was adapted to mechanistically link the exposure and effects on different cohorts to colony dynamics. The BEEHAVEecotox model was tested against semifield (tunnel) studies, which were deemed the best study type to test whether BEEHAVEecotox predicted realistic effect sizes under controlled conditions. Two pesticides used as toxic standards were chosen for this validation to represent two different modes of action: acute mortality of foragers and chronic brood effects. The ecotoxicological module was able to predict effect sizes in the tunnel studies based on information from standard laboratory tests. In conclusion, the BEEHAVEecotox model is an excellent tool to be used for honeybee risk assessment, interpretation of field and semifield studies, and exploring the efficiency of different mitigation measures. The principles for exposure and effect modules are portable and could be used for any well-constructed honeybee model. Environ Toxicol Chem 2022;41:2870-2882. © 2022 Bayer AG & Sygenta, et al. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Annika Agatz
- Institute for Biological Analytics & ConsultingRoßdorfGermany
| | - Benoit Goussen
- Institute for Biological Analytics & ConsultingRoßdorfGermany
| | | | | | | | | |
Collapse
|
30
|
Desforges JP, Weijs L, Hickie B, Gergs A. Models as Much Needed Tools in Ecotoxicology: Integrative Approaches to Cross Barriers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:295-298. [PMID: 36301327 DOI: 10.1007/s00244-022-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Jean-Pierre Desforges
- Department of Environmental Studies and Sciences, University of Winnipeg, Winnipeg, MB, Canada.
| | - Liesbeth Weijs
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Brendan Hickie
- The School of the Environment, Trent University, Peterborough, ON, Canada
| | - André Gergs
- Crop Science Division, Bayer AG, Monheim, Germany
| |
Collapse
|
31
|
Arts GHP, van Smeden J, Wolters MF, Belgers JDM, Matser AM, Hommen U, Bruns E, Heine S, Solga A, Taylor S. Seasonal dynamics of the macrophyte test species Myriophyllum spicatum over two years in experimental ditches for population modeling application in risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1375-1386. [PMID: 34755447 PMCID: PMC9545951 DOI: 10.1002/ieam.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Myriophyllum spicatum is a sediment-rooted, aquatic macrophyte growing submerged, with a wide geographical distribution and high ecological relevance in freshwater ecosystems. It is used in testing and risk assessment for pesticides in water and sediment. Population models enable effects measured under laboratory conditions to be extrapolated to effects expected in the field with time-variable environmental factors including exposure. These models are a promising tool in higher-tier risk assessments. However, there is a lack of data on the seasonal dynamics of M. spicatum, which is needed to test model predictions of typical population dynamics in the field. To generate such data, a two-year study was set up in outdoor experimental systems from May 2017 to May 2019. The growth of M. spicatum was monitored in 0.2025 m2 plant baskets installed in an experimental ditch. Parameters monitored included biomass (fresh weight [FW] and dry weight [DW]), shoot length, seasonal short-term growth rates of shoots, relevant environmental parameters, and weather data. The results showed a clear seasonal pattern of biomass and shoot length and their variability. M. spicatum reached a maximum total shoot length (TSL) of 279 m m-2 and a maximum standing crop above-ground DW of 262 g m-2 . Periodical growth rates reached up to 0.072, 0.095, and 0.085 day-1 for total length, FW, and DW, respectively. Multivariate regression revealed that pH (as a surrogate for the availability of carbon species) and water temperature could explain a significant proportion of the variability in M. spicatum growth rates (p < 0.05). This study has provided an ecologically relevant data set on seasonal population dynamics representative of shallow freshwater ecosystems, which can be used to test and refine population models for use in chemical risk assessment and ecosystem management. Integr Environ Assess Manag 2022;18:1375-1386. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gertie H. P. Arts
- Environmental Risk AssessmentWageningen University and ResearchWageningenThe Netherlands
| | - Jasper van Smeden
- Environmental Risk AssessmentWageningen University and ResearchWageningenThe Netherlands
| | - Marieke F. Wolters
- Environmental Risk AssessmentWageningen University and ResearchWageningenThe Netherlands
| | - J. Dick M. Belgers
- Environmental Risk AssessmentWageningen University and ResearchWageningenThe Netherlands
| | - Arrienne M. Matser
- Environmental Risk AssessmentWageningen University and ResearchWageningenThe Netherlands
| | - Udo Hommen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMESchmallenbergGermany
| | | | | | | | | |
Collapse
|
32
|
Baas J, Goussen B, Miles M, Preuss TG, Roessink I. BeeGUTS-A Toxicokinetic-Toxicodynamic Model for the Interpretation and Integration of Acute and Chronic Honey Bee Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2193-2201. [PMID: 35770718 PMCID: PMC9541331 DOI: 10.1002/etc.5423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Understanding the survival of honey bees after pesticide exposure is key for environmental risk assessment. Currently, effects on adult honey bees are assessed by Organisation for Economic Co-operation and Development standardized guidelines, such as the acute and chronic oral exposure and acute contact exposure tests. The three different tests are interpreted individually, without consideration that the same compound is investigated in the same species, which should allow for an integrative assessment. In the present study we developed, calibrated, and validated a toxicokinetic-toxicodynamic model with 17 existing data sets on acute and chronic effects for honey bees. The model is based on the generalized unified threshold model for survival (GUTS), which is able to integrate the different exposure regimes, taking into account the physiology of the honey bee: the BeeGUTS model. The model is able to accurately describe the effects over time for all three exposure routes combined within one consistent framework. The model can also be used as a validity check for toxicity values used in honey bee risk assessment and to conduct effect assessments for real-life exposure scenarios. This new integrative approach, moving from single-point estimates of toxicity and exposure to a holistic link between exposure and effect, will allow for a higher confidence of honey bee toxicity assessment in the future. Environ Toxicol Chem 2022;41:2193-2201. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jan Baas
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | | | | | | - Ivo Roessink
- Wageningen Environmental ResearchWageningenThe Netherlands
| |
Collapse
|
33
|
Nickisch Born Gericke D, Rall BC, Singer A, Ashauer R. Fish Species Sensitivity Ranking Depends on Pesticide Exposure Profiles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1732-1741. [PMID: 35452530 PMCID: PMC9328144 DOI: 10.1002/etc.5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In the regulatory environmental risk assessment of plant protection products, the exposure tested in standard toxicity tests assumes simple exposure dynamics, such as constant exposure at the first stage of testing. However, environmental exposure can be highly dynamic. A species response to exposure is governed by toxicokinetics (TK) and toxicodynamics (TD). Therefore, it can be expected that the sensitivity of a species to a substance is dependent on the interplay of TKTD processes with the dynamics of the exposure. We investigated whether exposure dynamics affects species sensitivity of five fish species and if their sensitivity rankings differ among exposure profiles. We analyzed individual survival under projected surface water exposure to benzovindiflupyr. For this purpose, we calibrated compound- and species-specific reduced general unified threshold models of survival (GUTS-RED) models from standard laboratory toxicity data with the assumptions of stochastic death and individual tolerance. Using the calibrated models, we generated species sensitivity distributions based on median lethal profile multiplication factors for three characteristic exposure profiles. The analysis was performed using different GUTS-RED implementations: openGUTS (MATLAB® and Windows® versions) and the R package morse. The sensitivity rankings of the fish species changed as a function of exposure profile. For a multiple-peak scenario, rainbow trout was the most sensitive species. For a single peak followed by a slow concentration decline the most sensitive species was the fathead minnow (GUTS-RED-stochastic death) or the common carp (GUTS-RED-individual tolerance). Our results suggest that a single most sensitive species cannot be defined for all situations, all exposure profiles, and both GUTS-RED variants. Environ Toxicol Chem 2022;41:1732-1741. © 2022 Syngenta. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Roman Ashauer
- Syngenta Crop ProtectionBaselSwitzerland
- Department of Environment and GeographyUniversity of YorkYorkUK
| |
Collapse
|
34
|
Wolf Y, Gabsi F, Bruns E, Heine S, Solga A, Witt J, Preuss TG. TWAc-Check: A New Approach to Determine the Appropriate Use of Time-Weighted Average Concentration in Aquatic Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1778-1787. [PMID: 35435995 PMCID: PMC9324870 DOI: 10.1002/etc.5346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In pesticide risk assessment, regulatory acceptable concentrations for surface water bodies (RACsw,ch) are used that are derived from standard studies with continuous exposure of organisms to a test compound for days or months. These RACsw,ch are compared with the maximum tested concentration of more realistic exposure scenarios. However, the actual exposure duration could be notably shorter (e.g., hours) than the standard study, which intentionally leads to an overly conservative Tier 1 risk assessment. This discrepancy can be addressed in a risk assessment using the time-weighted average concentration (TWAc). In Europe, the applicability of TWAc for a particular risk assessment is evaluated using a complex decision scheme, which has been controversial; thus we propose an alternative approach: We used TWAc-check (which is based on the idea that the TWAc concept is just a model for aquatic risk assessment) to test whether the use of a TWAc is appropriate for such assessment. The TWAc-check method works by using predicted-measured diagrams to test how well the TWAc model predicts experimental data from peak exposure experiments. Overestimated effects are accepted because the conservatism of the TWAc model is prioritized over the goodness of fit. We illustrate the applicability of TWAc-check by applying it to various data sets for different species and substances. We demonstrate that the applicability is case dependent. Specifically, TWAc-check correctly identifies that the use of TWAc is not appropriate for early onset of effects or delayed effects. The proposed concept shows that the time window is a decisive factor as to whether or not the model is acceptable and that this concept can be used as a potential refinement option prior to the use of toxicokinetic-toxicodynamic models. Environ Toxicol Chem 2022;41:1778-1787. © 2022 Bayer AG. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Faten Gabsi
- RifconHirschberg an der BergstrasseGermany
- Regachem ConsultingSfaxTunisia
| | | | | | | | | | | |
Collapse
|
35
|
Welch SA, Lane T, Desrousseaux AO, van Dijk J, Mangold-Döring A, Gajraj R, Hader JD, Hermann M, Parvathi Ayillyath Kutteyeri A, Mentzel S, Nagesh P, Polazzo F, Roth SK, Boxall AB, Chefetz B, Dekker SC, Eitzinger J, Grung M, MacLeod M, Moe SJ, Rico A, Sobek A, van Wezel AP, van den Brink P. ECORISK2050: An Innovative Training Network for predicting the effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. OPEN RESEARCH EUROPE 2022; 1:154. [PMID: 37645192 PMCID: PMC10446038 DOI: 10.12688/openreseurope.14283.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 08/31/2023]
Abstract
By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Skłodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.
Collapse
Affiliation(s)
| | - Taylor Lane
- Environment Department, University of York, Heslington, York, UK
| | | | - Joanke van Dijk
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Rudrani Gajraj
- Institute of Meteorology and Climatology, Department of Water, Atmosphere and Environment (WAU), University of Natural Resources and Life sciences (BOKU), Vienna, Austria
| | - John D. Hader
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | | | - Sophie Mentzel
- Norwegian Institute for Water Research, Oslo, 0579, Norway
| | - Poornima Nagesh
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Sabrina K. Roth
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | | | - Benny Chefetz
- Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Stefan C. Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Josef Eitzinger
- Institute of Meteorology and Climatology, Department of Water, Atmosphere and Environment (WAU), University of Natural Resources and Life sciences (BOKU), Vienna, Austria
| | - Merete Grung
- Norwegian Institute for Water Research, Oslo, 0579, Norway
| | - Matthew MacLeod
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | | | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, Stockholm, 106 91, Sweden
| | - Annemarie P. van Wezel
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Paul van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
36
|
Bodin L, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Bignami M, Hoogenboom L(R, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Schrenk D, Vleminckx C, Wallace H, Focks A, Gregorc A, Metzler M, Sgolastra F, Tosi S, Horvath Z, Ippolito A, Rortais A, Steinkellner H, Szentes C, Sand S. Evaluation of the risks for animal health related to the presence of hydroxymethylfurfural (HMF) in feed for honey bees. EFSA J 2022; 20:e07227. [PMID: 35475165 PMCID: PMC9019825 DOI: 10.2903/j.efsa.2022.7227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The European Commission has asked the EFSA to evaluate the risk for animal health related to the presence of hydroxymethylfurfural (HMF) in honey bee feed. HMF is a degradation product of particular sugars and can be present in bee feed. HMF is of low acute toxicity in bees but causes increased mortality upon chronic exposure. A benchmark dose lower limit 10% (BMDL10) of 1.16 μg HMF per bee per day has been calculated from mortalities observed in a 20-day study and established as a Reference Point covering also mortality in larvae, drones and queens for which no or insufficient toxicity data were available. Winter bees have a much longer lifespan than summer bees and HMF shows clear time reinforced toxicity (TRT) characteristics. Therefore, additional Reference Point intervals of 0.21-3.1, 0.091-1.1 and 0.019-0.35 µg HMF/bee per day were calculated based on extrapolation to exposure durations of 50, 90 and 180 days, respectively. A total of 219 analytical data of HMF concentrations in bee feed from EU Member States and 88 from Industry were available. Exposure estimates of worker bees and larvae ranged between 0.1 and 0.48, and between 0.1 and 0.51 μg HMF/per day, respectively. They were well below the BMDL10 of 1.16 μg HMF/bee per day, and thus, no concern was identified. However, when accounting for TRT, the probability that exposures were below established reference point intervals was assessed to be extremely unlikely to almost certain depending on exposure duration. A concern for bee health was identified when bees are exposed to HMF contaminated bee feed for several months.
Collapse
|
37
|
Martin T, Hodson ME, Ashauer R. Modelling the effects of variability in feeding rate on growth - a vital step for DEB-TKTD modelling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113231. [PMID: 35104776 PMCID: PMC8873987 DOI: 10.1016/j.ecoenv.2022.113231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A major limitation of dietary toxicity studies on rodents is that food consumption often differs between treatments. The control treatment serves as a reference of how animals would have grown if not for the toxicant in their diet, but this comparison unavoidably conflates the effects of toxicity and feeding rate on body weight over time. A key advantage of toxicity models based on dynamic energy budget theory (DEB) is that chemical stress and food consumption are separate model inputs, so their effects on growth rate can be separated. To reduce data requirements, DEB convention is to derive a simplified feeding input, f, from food availability; its value ranges from zero (starvation) to one (food available ad libitum). Observed food consumption in dietary toxicity studies shows that, even in the control treatment, rats limit their food consumption, contradicting DEB assumptions regarding feeding rate. Relatively little work has focused on addressing this mismatch, but accurately modelling the effects of food intake on growth rate is essential for the effects of toxicity to be isolated. This can provide greater insight into the results of chronic toxicity studies and allows accurate extrapolation of toxic effects from laboratory data. Here we trial a new method for calculating f, based on the observed relationships between food consumption and body size in laboratory rats. We compare model results with those of the conventional DEB method and a previous effort to calculate f using observed food consumption data. Our results showed that the new method improved model accuracy while modelled reserve dynamics closely followed observed body fat percentage over time. The new method assumes that digestive efficiency increases with body size. Verifying this relationship through data collection would strengthen the basis of DEB theory and support the case for its use in ecological risk assessment.
Collapse
Affiliation(s)
- Thomas Martin
- University of York, Environment Department, Heslington, York YO10 5NG, UK.
| | - Mark E Hodson
- University of York, Environment Department, Heslington, York YO10 5NG, UK
| | - Roman Ashauer
- University of York, Environment Department, Heslington, York YO10 5NG, UK; Syngenta Crop Protection AG, Basel 4002, Switzerland
| |
Collapse
|
38
|
Morgado RG, Pavlaki MD, Soares AMVM, Loureiro S. Terrestrial organisms react differently to nano and non-nano Cu(OH) 2 forms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150679. [PMID: 34599962 DOI: 10.1016/j.scitotenv.2021.150679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The application of nanomaterials in agriculture is deemed as a promising strategy to increase the sector's sustainability. Nanopesticides are expected to improve solutions for pest/disease management, while reducing adverse effects to ecosystems, in accordance with the European Green Deal strategy. Hitherto, nanopesticide research has mostly focused on assessing effects to target species or crops, and less attention has been devoted to non-target soil species. In this study, we explored whether three copper hydroxide-based forms (nano and non-nano) show different toxicity and accumulation patterns in two terrestrial invertebrates, the isopod Porcellionides pruinosus and the mealworm larvae Tenebrio molitor. Toxicity and bioaccumulation experiments were performed and time-course toxicity and toxicokinetics analyzed and modelled. We found important differences in copper sensitivity and accumulation: T. molitor was more resistant and able to eliminate copper compared to P. pruinosus. The nanopesticide mostly elicited lower effects for both species. Slower toxicokinetics by the nanopesticide and lower bioaccumulative potential to P. pruinosus must be partially responsible for the differences in toxicity. Although no toxicokinetics differences were found in T. molitor between Cu forms, distinct negative effects on growth must reflect different energetic costs for copper regulation. Even though effects on toxicity and bioaccumulation are species-specific, copper hydroxide-based nanopesticides may cause less adverse effects to soil organisms than conventional products, being a good solution for reducing the environmental impact. CAPSULE: Copper hydroxide-based nanopesticide was less toxic and bioaccumulative to soil organisms than conventional copper hydroxide products, being a good solution for reducing the environmental impact.
Collapse
Affiliation(s)
- Rui G Morgado
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, Dorne JLCM. In Silico Methods for Environmental Risk Assessment: Principles, Tiered Approaches, Applications, and Future Perspectives. Methods Mol Biol 2022; 2425:589-636. [PMID: 35188648 DOI: 10.1007/978-1-0716-1960-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.
Collapse
Affiliation(s)
| | | | | | - A Rortais
- European Food Safety Authority, Parma, Italy
| | - Yann Devos
- European Food Safety Authority, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Tarazona D, Tarazona G, Tarazona JV. A Simplified Population-Level Landscape Model Identifying Ecological Risk Drivers of Pesticide Applications, Part One: Case Study for Large Herbivorous Mammals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7720. [PMID: 34360014 PMCID: PMC8345457 DOI: 10.3390/ijerph18157720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Environmental risk assessment is a key process for the authorization of pesticides, and is subjected to continuous challenges and updates. Current approaches are based on standard scenarios and independent substance-crop assessments. This arrangement does not address the complexity of agricultural ecosystems with mammals feeding on different crops. This work presents a simplified model for regulatory use addressing landscape variability, co-exposure to several pesticides, and predicting the effect on population abundance. The focus is on terrestrial vertebrates and the aim is the identification of the key risk drivers impacting on mid-term population dynamics. The model is parameterized for EU assessments according to the European Food Safety Authority (EFSA) Guidance Document, but can be adapted to other regulatory schemes. The conceptual approach includes two modules: (a) the species population dynamics, and (b) the population impact of pesticide exposure. Population dynamics is modelled through daily survival and seasonal reproductions rates; which are modified in case of pesticide exposure. All variables, parameters, and functions can be modified. The model has been calibrated with ecological data for wild rabbits and brown hares and tested for two herbicides, glyphosate and bromoxynil, using validated toxicity data extracted from EFSA assessments. Results demonstrate that the information available for a regulatory assessment, according to current EU information requirements, is sufficient for predicting the impact and possible consequences at population dynamic levels. The model confirms that agroecological parameters play a key role when assessing the effect of pesticide exposure on population abundance. The integration of laboratory toxicity studies with this simplified landscape model allows for the identification of conditions leading to population vulnerability or resilience. An Annex includes a detailed assessment of the model characteristics according to the EFSA scheme on Good Modelling Practice.
Collapse
Affiliation(s)
| | | | - Jose V. Tarazona
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, 43126 Parma, Italy
| |
Collapse
|
41
|
Yang L, Feng J, Gao Y, Zhu L. Role of Toxicokinetic and Toxicodynamic Parameters in Explaining the Sensitivity of Zebrafish Larvae to Four Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8965-8976. [PMID: 34129327 DOI: 10.1021/acs.est.0c08725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the persistence and toxic potencies of metal contaminants in ecosystems, animals, and human beings, they are considered to be hazardous global pollutants. While the lethality of metal toxicities (e.g., LC50) can significantly vary, even within the same species, the underlying mechanisms are less well-understood. In this study, we developed a subcellular two-compartment toxicokinetic-toxicodynamic (TK-TD) model for zebrafish larvae when exposed to four metals (cadmium, lead, copper, and zinc) to reveal whether differences in metal toxicity (LC50 values) were dominated by the TK or TD processes. Results showed that the subcellular TK and TD parameters of the four metals were significantly different, and the bioconcentration factor (BCF) value of copper was higher than those of the other metals. We also found that the TD parameter internal threshold concentration (CIT) was significantly positively correlated to the LC50 values (R2 = 0.7), suggesting a dominant role of TD processes in metal toxicity. Furthermore, the combined parameter CIT/BCF for a metal-sensitive fraction (BCFMSF), which linked exposure to effects through the TK-TD approach, explained up to 89% of the variation in toxicity to the four metals. The present study suggests that the observed variation in toxicity of these four metals was mainly determined by TD processes but that TK processes should not be ignored, especially for copper.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
42
|
Raimondo S, Schmolke A, Pollesch N, Accolla C, Galic N, Moore A, Vaugeois M, Rueda-Cediel P, Kanarek A, Awkerman J, Forbes V. Pop-guide: Population modeling guidance, use, interpretation, and development for ecological risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:767-784. [PMID: 33241884 PMCID: PMC8751981 DOI: 10.1002/ieam.4377] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
Abstract
The assimilation of population models into ecological risk assessment (ERA) has been hindered by their range of complexity, uncertainty, resource investment, and data availability. Likewise, ensuring that the models address risk assessment objectives has been challenging. Recent research efforts have begun to tackle these challenges by creating an integrated modeling framework and decision guide to aid the development of population models with respect to ERA objectives and data availability. In the framework, the trade-offs associated with the generality, realism, and precision of an assessment are used to guide the development of a population model commensurate with the protection goal. The decision guide provides risk assessors with a stepwise process to assist them in developing a conceptual model that is appropriate for the assessment objective and available data. We have merged the decision guide and modeling framework into a comprehensive approach, Population modeling Guidance, Use, Interpretation, and Development for Ecological risk assessment (Pop-GUIDE), for the development of population models for ERA that is applicable across regulatory statutes and assessment objectives. In Phase 1 of Pop-GUIDE, assessors are guided through the trade-offs of ERA generality, realism, and precision, which are translated into model objectives. In Phase 2, available data are assimilated and characterized as general, realistic, and/or precise. Phase 3 provides a series of dichotomous questions to guide development of a conceptual model that matches the complexity and uncertainty appropriate for the assessment that is in concordance with the available data. This phase guides model developers and users to ensure consistency and transparency of the modeling process. We introduce Pop-GUIDE as the most comprehensive guidance for population model development provided to date and demonstrate its use through case studies using fish as an example taxon and the US Federal Insecticide Fungicide and Rodenticide Act and Endangered Species Act as example regulatory statutes. Integr Environ Assess Manag 2021;17:767-784. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Sandy Raimondo
- United States Environmental Protection Agency, Office of Research and Development
- Corresponding author:
| | | | - Nathan Pollesch
- United States Environmental Protection Agency, Office of Research and Development
| | | | - Nika Galic
- Syngenta Crop Protection LLC, Greensboro, NC, USA
| | | | | | | | - Andrew Kanarek
- United States Environmental Protection Agency, Office of Pesticide Programs
| | - Jill Awkerman
- United States Environmental Protection Agency, Office of Research and Development
| | | |
Collapse
|
43
|
Gergs A, Hager J, Bruns E, Preuss TG. Disentangling Mechanisms Behind Chronic Lethality through Toxicokinetic-Toxicodynamic Modeling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1706-1712. [PMID: 33629777 PMCID: PMC8252366 DOI: 10.1002/etc.5027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Ecotoxicological profiles of the 3 insecticides imidacloprid, thiacloprid, and flupyradifurone in terms of acute and chronic effects were analyzed in Chironomus riparius. Toxicokinetic-toxicodynamic modeling revealed that chironomids would die from starvation as a result of prolonged feeding inhibition under chronic exposures. The starvation effect is an indirect cause for mortality, which, for the neonicotinoids, adds to the direct/acute mortality, although the results suggests that this additional effect is not relevant for flupyradifurone. Environ Toxicol Chem 2021;40:1706-1712. © 2021 Bayer Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- André Gergs
- Environmental Safety, Bayer CropScienceMonheimGermany
| | - Jutta Hager
- Environmental Safety, Bayer CropScienceMonheimGermany
| | - Eric Bruns
- Environmental Safety, Bayer CropScienceMonheimGermany
| | | |
Collapse
|
44
|
Bart S, Jager T, Robinson A, Lahive E, Spurgeon DJ, Ashauer R. Predicting Mixture Effects over Time with Toxicokinetic-Toxicodynamic Models (GUTS): Assumptions, Experimental Testing, and Predictive Power. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2430-2439. [PMID: 33499591 PMCID: PMC7893709 DOI: 10.1021/acs.est.0c05282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 05/19/2023]
Abstract
Current methods to assess the impact of chemical mixtures on organisms ignore the temporal dimension. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models, which account for effects of toxicant exposure on survival in time. Starting from the classic assumptions of independent action and concentration addition, we derive equations for the GUTS reduced (GUTS-RED) model corresponding to these mixture toxicity concepts and go on to demonstrate their application. Using experimental binary mixture studies with Enchytraeus crypticus and previously published data for Daphnia magna and Apis mellifera, we assessed the predictive power of the extended GUTS-RED framework for mixture assessment. The extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration, and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action, specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture hazard assessments.
Collapse
Affiliation(s)
- Sylvain Bart
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | | | - Alex Robinson
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Elma Lahive
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - David J. Spurgeon
- UK
Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, Oxfordshire, U.K.
| | - Roman Ashauer
- Department
of Environment and Geography, University
of York, Heslington, York, YO10 5NG, U.K.
- Syngenta
Crop Protection AG, Basel 4058, Switzerland
| |
Collapse
|
45
|
Wolf R, Tollefsen KE. A Bayesian Approach to Incorporating Spatiotemporal Variation and Uncertainty Limits into Modeling of Predicted Environmental Concentrations from Chemical Monitoring Campaigns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1699-1709. [PMID: 33525880 DOI: 10.1021/acs.est.0c06268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental monitoring studies provide key information to assess ecosystem health. Results of chemical monitoring campaigns can be used to identify the exposure scenarios of regulatory concern. In environmental risk assessment (ERA), measured concentrations of chemicals can be used to model predicted environmental concentrations (PECs). As the PEC is, by definition, a predicted variable, it is highly dependent on the underlying modeling approach from which it is derived. We demonstrate the use of Bayesian distributional regression models to derive PECs by incorporating spatiotemporal conditional variances, and limits of quantification (LOQ) and detection (LOD) as de facto data censoring. Model accuracies increase when incorporating spatiotemporal conditional variances, and the inclusion of LOQ and LOD results in potentially more robust PEC distributions. The methodology is flexible, credibly quantifies uncertainty, and can be adjusted to different scientific and regulatory needs. Posterior sampling allows to express PECs as distributions, which makes this modeling procedure directly compatible with other Bayesian ERA approaches. We recommend the use of Bayesian modeling approaches with chemical monitoring data to make realistic and robust PEC estimations and encourage the scientific debate about the benefits and challenges of Bayesian methodologies in the context of ERA.
Collapse
Affiliation(s)
- Raoul Wolf
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
- Norwegian University of Life Science (NMBU), Universitetstunet 3, 1430 Ås, Norway
- Centre for Environmental Radioactivity (CERAD CoE), Fougnerbakken 1, 1432 Ås, Norway
| |
Collapse
|
46
|
Brock T, Arena M, Cedergreen N, Charles S, Duquesne S, Ippolito A, Klein M, Reed M, Teodorovic I, van den Brink PJ, Focks A. Application of General Unified Threshold Models of Survival Models for Regulatory Aquatic Pesticide Risk Assessment Illustrated with an Example for the Insecticide Chlorpyrifos. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:243-258. [PMID: 32786054 PMCID: PMC7821141 DOI: 10.1002/ieam.4327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Mathematical models within the General Unified Threshold models of Survival (GUTS) framework translate time-variable chemical exposure information into expected survival of animals. The GUTS models are species and compound specific and explicitly describe the internal exposure dynamics in an organism (toxicokinetics) and the related damage and effect dynamics (toxicodynamics), thereby connecting the external exposure concentration dynamics with the simulated mortality or immobility over time. In a recent scientific opinion on toxicokinetic-toxicodynamic (TKTD) models published by the European Food Safety Authority (EFSA), the GUTS modeling framework was considered ready for use in the aquatic risk assessment for pesticides and aquatic fauna. The GUTS models are suggested for use in risk assessment, if they are sufficiently validated for a specific substance-species combination. This paper aims to illustrate how they can be used in the regulatory environmental risk assessment for pesticides for a specific type of refinement, that is, when risks are triggered by lower tiers in acute as well as in chronic risk assessment and mortality or immobility is the critical endpoint. This approach involves the evaluation of time-variable exposure regimes in a so-called "Tier-2C" assessment. The insecticide chlorpyrifos was selected as an example compound because a large data set was available. The GUTS models for 13 different freshwater arthropods and 8 different theoretical aquatic exposure profiles were used to calculate a series of GUTS-based risk estimates, including exposure profile-specific multiplication factors leading to 50% mortality or immobility at the end of the tested profile (LP50/EP50) as "margins of safety." To put the use of GUTS models within the tiered aquatic risk assessment into perspective, GUTS models for the 13 aquatic arthropods were also used to predict the environmental risks of a measured chlorpyrifos exposure profile from an experimental ditch study (Tier-3 approach), and the results are discussed in the context of calibration of the tiered approach. Integr Environ Assess Manag 2021;17:243-258. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Theo Brock
- Wageningen Environmental ResearchWageningenthe Netherlands
| | | | | | | | | | | | | | - Melissa Reed
- Chemicals Regulation Division‐HSEYorkUnited Kingdom
| | | | | | - Andreas Focks
- Wageningen Environmental ResearchWageningenthe Netherlands
| |
Collapse
|
47
|
Sherborne N, Galic N, Ashauer R. Sublethal effect modelling for environmental risk assessment of chemicals: Problem definition, model variants, application and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141027. [PMID: 32758729 DOI: 10.1016/j.scitotenv.2020.141027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Bioenergetic models, and specifically dynamic energy budget (DEB) theory, are gathering a great deal of interest as a tool to predict the effects of realistically variable exposure to toxicants over time on an individual animal. Here we use aquatic ecological risk assessment (ERA) as the context for a review of the different model variants within DEB and the closely related DEBkiss theory (incl. reserves, ageing, size & maturity, starvation). We propose a coherent and unifying naming scheme for all current major DEB variants, explore the implications of each model's underlying assumptions in terms of its capability and complexity and analyse differences between the models (endpoints, mathematical differences, physiological modes of action). The results imply a hierarchy of model complexity which could be used to guide the implementation of simplified model variants. We provide a decision tree to support matching the simplest suitable model to a given research or regulatory question. We detail which new insights can be gained by using DEB in toxicokinetic-toxicodynamic modelling, both generally and for the specific example of ERA, and highlight open questions. Specifically, we outline a moving time window approach to assess time-variable exposure concentrations and discuss how to account for cross-generational exposure. Where possible, we suggest valuable topics for experimental and theoretical research.
Collapse
Affiliation(s)
- Neil Sherborne
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom.
| | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, NC, United States of America
| | - Roman Ashauer
- Department of Environment and Geography, University of York, Wentworth Way, Heslington, York YO10 5NG, United Kingdom; Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH-4002, Switzerland
| |
Collapse
|
48
|
Schmolke A, Abi‐Akar F, Roy C, Galic N, Hinarejos S. Simulating Honey Bee Large-Scale Colony Feeding Studies Using the BEEHAVE Model-Part I: Model Validation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2269-2285. [PMID: 32761964 PMCID: PMC7702171 DOI: 10.1002/etc.4839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 05/21/2023]
Abstract
In pesticide risk assessments, semifield studies, such as large-scale colony feeding studies (LSCFSs), are conducted to assess potential risks at the honey bee colony level. However, such studies are very cost and time intensive, and high overwintering losses of untreated control hives have been observed in some studies. Honey bee colony models such as BEEHAVE may provide tools to systematically assess multiple factors influencing colony outcomes, to inform study design, and to estimate pesticide impacts under varying environmental conditions. Before they can be used reliably, models should be validated to demonstrate they can appropriately reproduce patterns observed in the field. Despite the recognized need for validation, methodologies to be used in the context of applied ecological models are not agreed on. For the parameterization, calibration, and validation of BEEHAVE, we used control data from multiple LSCFSs. We conducted detailed visual and quantitative performance analyses as a demonstration of validation methodologies. The BEEHAVE outputs showed good agreement with apiary-specific validation data sets representing the first year of the studies. However, the simulations of colony dynamics in the spring periods following overwintering were identified as less reliable. The comprehensive validation effort applied provides important insights that can inform the usability of BEEHAVE in applications related to higher tier risk assessments. In addition, the validation methodology applied could be used in a wider context of ecological models. Environ Toxicol Chem 2020;39:2269-2285. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Nika Galic
- Syngenta Crop Protection, GreensboroNorth CarolinaUSA
| | | |
Collapse
|
49
|
Arlos MJ, Focks A, Hollender J, Stamm C. Improving Risk Assessment by Predicting the Survival of Field Gammarids Exposed to Dynamic Pesticide Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12383-12392. [PMID: 32900191 DOI: 10.1021/acs.est.0c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Exposure assessment of pesticides has substantially improved over time, with methods that now include a combination of advanced analytical techniques and fate/transport models to evaluate their spatiotemporal distribution. However, the current regulatory environmental risk assessment considers thresholds from laboratory studies completed under standardized conditions that do not reflect environmental dynamics. Using the General Unified Threshold model for Survival (GUTS) model framework, we predicted the impact of time-varying pesticide exposures on the survival of gammarids in a small agricultural stream. The LP50 values were used as an additional metric for assessing risks (defined in GUTS as a multiplication factor applied to the concentration time series to induce 50% mortality by the end of exposure). Although real-case exposures to individual pesticides were predicted to produce little to no impact on survival, the LP50 values indicate acute (LP50 ≤ 100) and/or chronic (LP50 ≤ 10) toxicities for azoxystrobin, chlorpyrifos, diazinon, and imidacloprid, while risk to propiconazole exposure was considered very low (LP50 ≫ 100). Finally, the model was extended to reflect mixture toxicity via concentration addition. It predicted risks under acute and chronic exposures to organophosphates and neonicotinoids. Given that gammarids are simultaneously exposed to multiple chemicals and other stressors throughout their lifetime, a decline in survival probabilities due to chemical stress can likely influence their overall fitness. We recognize that some assumptions require validation, but our work included a level of realism that can assist risk managers when evaluating the cumulative consequences of chemical exposure.
Collapse
Affiliation(s)
- Maricor J Arlos
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Andreas Focks
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
50
|
Klaessig FC. PBPK Modeling of Slightly Soluble Silver Nanomaterials and Regulatory Acceptance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907667. [PMID: 32449600 DOI: 10.1002/smll.201907667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
International efforts to promote predictive toxicology incorporate some form of modeling based on the regularities, insights, and hypotheses gained from analyzing laboratory studies compiled in databases. While there has been a broad commentary on definitions, metadata, and test methodologies, all necessary to establishing data repositories, there has been less on translating the resulting insights into computational models. The recent use of a computational model to support a recommended exposure limit for nanoparticulate silver is an opportunity to examine physiologically based toxicokinetics in terms of data availability, model verification and validation, and regulatory acceptance. The resulting suggestions align with findings from the EU-US Roadmap Nanoinformatics 2030 and the 2018 acceptance of a computational model by the European Food Safety Authority.
Collapse
Affiliation(s)
- Frederick C Klaessig
- Pennsylvania Bio Nano Systems, LLC, 69 Homestead Drive, Doylestown, PA, 18901, USA
| |
Collapse
|