1
|
Zhou Y, Jing J, Yu R, Zhao Y, Gou Y, Tang H, Zhang H, Huang Y. Distribution of pesticide residues in agricultural topsoil of the Huangshui catchment, Qinghai Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7582-7592. [PMID: 36040693 DOI: 10.1007/s11356-022-22704-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
This study presents monitoring data on the spatial distribution and occurrence of pesticide residues of cultivated soil in the Huangshui catchment in the northeastern part of the Qinghai Tibet Plateau. We also provide factors that influence the distribution of pesticides, such as the properties of pesticides and soil and crop types. A total of 110 soil samples were collected in early April 2021, and 49 pesticides were analyzed. Only 3.6% of the samples contained no pesticide residues (concentrations < limit of quantitation or not detected [ND]), and the total pesticide concentration ranged from ND to 0.925 mg/kg. Most commonly, two to five pesticides were found in the soil samples (> 70.9%), and up to 10 pesticide residues were present in some samples. A total of 85 different pesticide combinations were observed in all the soil samples. Chlorpyrifos and difenoconazole were the dominant compounds. The levels of pesticide residues were mainly driven by their half-life values. Bulk density, along with soil water content and pH, also affected the retention of pesticides in the soil. The crop type played no role in the distribution of pesticides.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jing Jing
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ruyue Yu
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunze Zhao
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuxuan Gou
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huaizhi Tang
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Yuanfang Huang
- Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
2
|
López-Ballesteros A, Delaney A, Quirke J, Stout JC, Saunders M, Carolan JC, White B, Stanley DA. Assessing availability of European plant protection product data: an example evaluating basic area treated. PeerJ 2022; 10:e13586. [PMID: 35855900 PMCID: PMC9288163 DOI: 10.7717/peerj.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Besides the benefits of plant protection products (PPPs) for agricultural production, there is an increasing acknowledgement of the associated potential environmental risks. Here, we examine the feasibility of summarizing the extent of PPP usage at the country level, using Ireland as a case study, as well as at the European level. We used the area over which PPPs are applied (basic area) as an example variable that is relevant to initially assess the geographic extent of environmental risk. In Irish agricultural systems, which are primarily grass-based, herbicides fluroxypyr and glyphosate are the most widely applied active substances (ASs) in terms of basic area, followed by the fungicides chlorothalonil and prothioconazole that are closely associated with arable crops. Although all EU countries are subject to Regulation (EC) No 1185/2009, which sets the obligation of PPP usage data reporting at the national level, we only found usable data that met our criteria for Estonia, Germany, Finland, and Spain (4 of 30 countries reviewed). Overall, the most widely applied fungicide and herbicide in terms of basic area were prothioconazole (20%, 7% and 5% of national cultivated areas of Germany, Estonia and Ireland) and glyphosate (11%, 8% and 5% of national cultivated areas of Spain, Estonia and Ireland) respectively, although evaluations using application frequency may result in the observation of different trends. Several recommendations are proposed to tackle current data gaps and deficiencies in accessibility and usability of pesticide usage data across the EU in order to better inform environmental risk assessment and promote evidence-based policymaking.
Collapse
Affiliation(s)
- Ana López-Ballesteros
- Department of Agricultural and Forest Systems and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain,School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aoife Delaney
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland,National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland
| | - James Quirke
- Department of Agriculture, Food and the Marine, Backweston, Kildare, Ireland
| | - Jane C. Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Matthew Saunders
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin, Ireland
| | - Dara A. Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Behavioural Responses and Mortality of Mozambique Tilapia Oreochromis mossambicus to Three Commonly Used Macadamia Plantation Pesticides. WATER 2022. [DOI: 10.3390/w14081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of pesticides in agricultural systems may have deleterious effects on surrounding environments. Aquatic systems are no exception and are increasingly polluted through the leaching of pesticides from agricultural activities. However, the pesticide pollution effects on key aquatic species have not been studied in many regions. In southern Africa, increasing pesticide use associated with macadamia tree Macadamia integrifolia farming presents a growing risk to surrounding aquatic ecosystems. This study assessed behavioural responses of an important and widely-distributed freshwater fish, Mozambique tilapia Oreochromis mossambicus, following exposure to three commonly used macadamia pesticides (i.e., Karate Zeon 10 CS, Mulan 20 SP, Pyrinex 250 CS) at different concentrations (0.7–200 µL, 0.3–1000 mg, and 0.7–8750 µL, respectively) over 24 h. Behavioural responses, i.e., swimming erratically, surfacing, vertical positioning, loss of equilibrium, being motionless and mortality were observed after pesticides exposure. Lethal dose 50 (LD50) values of Karate Zeon 10 CS, Mulan 20 SP and Pyrinex 250 CS were 2.1 µL (per water litre dilution—WLD), 5.2 mg (WLD) and 21.5 µL (WLD), respectively. These concentrations are therefore expressed as a maximal threshold usage in the environment around macadamia farms and a minimum distance of the plantations to water systems should be considered. Further studies should examine effects on other fish species and aquatic invertebrates to inform on pesticide pollution threats and mitigation plans for the region.
Collapse
|
4
|
Vischetti C, Casucci C, De Bernardi A, Monaci E, Tiano L, Marcheggiani F, Ciani M, Comitini F, Marini E, Taskin E, Puglisi E. Sub-Lethal Effects of Pesticides on the DNA of Soil Organisms as Early Ecotoxicological Biomarkers. Front Microbiol 2020; 11:1892. [PMID: 33013727 PMCID: PMC7461845 DOI: 10.3389/fmicb.2020.01892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
This review describes the researches performed in the last years to assess the impact of pesticide sub-lethal doses on soil microorganisms and non-target organisms in agricultural soil ecosystems. The overview was developed through the careful description and a critical analysis of three methodologies based on culture-independent approaches involving DNA extraction and sequencing (denaturing gradient gel electrophoresis, DGGE; next-generation sequencing, NGS) to characterize the microbial population and DNA damage assessment (comet assay) to determine the effect on soil invertebrates. The examination of the related published articles showed a continuous improvement of the possibility to detect the detrimental effect of the pesticides on soil microorganisms and non-target organisms at sub-lethal doses, i.e., doses which have no lethal effect on the organisms. Considering the overall critical discussion on microbial soil monitoring in the function of pesticide treatments, we can confirm the usefulness of PCR-DGGE as a screening technique to assess the genetic diversity of microbial communities. Nowadays, DGGE remains a preliminary technique to highlight rapidly the main differences in microbial community composition, which is able to give further information if coupled with culture-dependent microbiological approaches, while thorough assessments must be gained by high-throughput techniques such as NGS. The comet assay represents an elective technique for assessing genotoxicity in environmental biomonitoring, being mature after decades of implementation and widely used worldwide for its direct, simple, and affordable implementation. Nonetheless, in order to promote the consistency and reliability of results, regulatory bodies should provide guidelines on the optimal use of this tool, strongly indicating the most reliable indicators of DNA damage. This review may help the European Regulation Authority in deriving new ecotoxicological endpoints to be included in the Registration Procedure of new pesticides.
Collapse
Affiliation(s)
- Costantino Vischetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Cristiano Casucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Arianna De Bernardi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Elga Monaci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Enrica Marini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Catholic University of Sacred Heart, Piacenza, Italy
| |
Collapse
|
5
|
Storck V, Nikolaki S, Perruchon C, Chabanis C, Sacchi A, Pertile G, Baguelin C, Karas PA, Spor A, Devers-Lamrani M, Papadopoulou ES, Sibourg O, Malandain C, Trevisan M, Ferrari F, Karpouzas DG, Tsiamis G, Martin-Laurent F. Lab to Field Assessment of the Ecotoxicological Impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the Diversity and Composition of the Soil Bacterial Community. Front Microbiol 2018; 9:1412. [PMID: 30008705 PMCID: PMC6034002 DOI: 10.3389/fmicb.2018.01412] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 06/08/2018] [Indexed: 01/03/2023] Open
Abstract
Pesticides are intentionally applied to agricultural fields for crop protection. They can harm non-target organisms such as soil microorganisms involved in important ecosystem functions with impacts at the global scale. Within the frame of the pesticide registration process, the ecotoxicological impact of pesticides on soil microorganisms is still based on carbon and nitrogen mineralization tests, despite the availability of more extensive approaches analyzing the abundance, activity or diversity of soil microorganisms. In this study, we used a high-density DNA microarray (PhyloChip) and 16S rDNA amplicon next-generation sequencing (NGS) to analyze the impact of the organophosphate insecticide chlorpyrifos (CHL), the phenyl-urea herbicide isoproturon (IPU), or the triazole fungicide tebuconazole (TCZ) on the diversity and composition of the soil bacterial community. To our knowledge, it is the first time that the combination of these approaches are applied to assess the impact of these three pesticides in a lab-to-field experimental design. The PhyloChip analysis revealed that although no significant changes in the composition of the bacterial community were observed in soil microcosms exposed to the pesticides, significant differences in detected operational taxonomic units (OTUs) were observed in the field experiment between pesticide treatments and control for all three tested pesticides after 70 days of exposure. NGS revealed that the bacterial diversity and composition varied over time. This trend was more marked in the microcosm than in the field study. Only slight but significant transient effects of CHL or TCZ were observed in the microcosm and the field study, respectively. IPU was not found to significantly modify the soil bacterial diversity or composition. Our results are in accordance with conclusions of the Environmental Food Safety Authority (EFSA), which concluded that these three pesticides may have a low risk toward soil microorganisms.
Collapse
Affiliation(s)
- Veronika Storck
- AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Sofia Nikolaki
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Chiara Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | - Angela Sacchi
- Aeiforia srl, Spinoff Università Cattolica del Sacro Cuore, Fidenza, Italy
| | - Giorgia Pertile
- Aeiforia srl, Spinoff Università Cattolica del Sacro Cuore, Fidenza, Italy
| | | | - Panagiotis A. Karas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aymé Spor
- AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Marion Devers-Lamrani
- AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Evangelia S. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | - Marco Trevisan
- Department of Agronomy and Environmental and Chemistry, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Federico Ferrari
- Aeiforia srl, Spinoff Università Cattolica del Sacro Cuore, Fidenza, Italy
| | - Dimitrios G. Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Fabrice Martin-Laurent
- AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne Franche-Comté, Agroécologie, Dijon, France
| |
Collapse
|
6
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Craig P, de Jong F, Manachini B, Sousa P, Swarowsky K, Auteri D, Arena M, Rob S. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 2017; 15:e04690. [PMID: 32625401 PMCID: PMC7009882 DOI: 10.2903/j.efsa.2017.4690] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science behind the risk assessment of plant protection products for in-soil organisms. The current risk assessment scheme is reviewed, taking into account new regulatory frameworks and scientific developments. Proposals are made for specific protection goals for in-soil organisms being key drivers for relevant ecosystem services in agricultural landscapes such as nutrient cycling, soil structure, pest control and biodiversity. Considering the time-scales and biological processes related to the dispersal of the majority of in-soil organisms compared to terrestrial non-target arthropods living above soil, the Panel proposes that in-soil environmental risk assessments are made at in- and off-field scale considering field boundary levels. A new testing strategy which takes into account the relevant exposure routes for in-soil organisms and the potential direct and indirect effects is proposed. In order to address species recovery and long-term impacts of PPPs, the use of population models is also proposed.
Collapse
|
7
|
Sułowicz S, Cycoń M, Piotrowska-Seget Z. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1047-60. [PMID: 27106012 PMCID: PMC4921116 DOI: 10.1007/s10646-016-1661-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 05/27/2023]
Abstract
Effect of the fungicide tetraconazole on microbial community in silt loam soils from orchard with long history of triazole application and from grassland with no known history of fungicide usage was investigated. Triazole tetraconazole that had never been used on these soils before was applied at the field rate and at tenfold the FR. Response of microbial communities to tetraconazole was investigated during 28-day laboratory experiment by determination of changes in their biomass and structure (phospholipid fatty acids method-PLFA), activity (fluorescein diacetate hydrolysis-FDA) as well as changes in genetic (DGGE) and functional (Biolog) diversity. Obtained results indicated that the response of soil microorganisms to tetraconazole depended on the management of the soils. DGGE patterns revealed that both dosages of fungicide affected the structure of bacterial community and the impact on genetic diversity and richness was more prominent in orchard soil. Values of stress indices-the saturated/monounsaturated PLFAs ratio and the cyclo/monounsaturated precursors ratio, were almost twice as high and the Gram-negative/Gram-positive ratio was significantly lower in the orchard soil compared with the grassland soil. Results of principal component analysis of PLFA and Biolog profiles revealed significant impact of tetraconazole in orchard soil on day 28, whereas changes in these profiles obtained for grassland soil were insignificant or transient. Obtained results indicated that orchards soil seems to be more vulnerable to tetraconazole application compared to grassland soil. History of pesticide application and agricultural management should be taken into account in assessing of environmental impact of studied pesticides.
Collapse
Affiliation(s)
- Sławomir Sułowicz
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
8
|
Scientific Opinion on the effect assessment for pesticides on sediment organisms in edge‐of‐field surface water. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Joly P, Misson B, Perrière F, Bonnemoy F, Joly M, Donnadieu-Bernard F, Aguer JP, Bohatier J, Mallet C. Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1648-1658. [PMID: 25129149 DOI: 10.1007/s10646-014-1304-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Soil phototrophic microorganisms, contributors to soil health and food webs, share their particular metabolism with plants. Current agricultural practices employ mixtures of pesticides to ensure the crops yields and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of phototrophic microorganisms to pesticide mixtures are scarce. We designed a 3 months microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur(®)), mesotrione (Callisto(®)) and nicosulfuron (Milagro(®)) on phototrophic communities of two soils (Limagne vertisol and Versailles luvisol). The soils presented different colonizing communities, with diatoms and chlorophyceae dominating communities in Limagne soil and cyanobacteria and bryophyta communities in Versailles soil. The results highlighted the strong impairment of Dual Gold Safeneur(®) treated microcosms on the biomass and the composition of both soil phototrophic communities, with no resilience after a delay of 3 months. This study also excluded any significant mixture effect on these organisms for Callisto(®) and Milagro(®) herbicides. We strongly recommend carrying on extensive soil studies on S-metolachlor and its commercial formulations, in order to reconsider its use from an ecotoxicological point of view.
Collapse
Affiliation(s)
- Pierre Joly
- Clermont Université, Université Blaise Pascal, LMGE, 63000, Clermont Ferrand, France,
| | | | | | | | | | | | | | | | | |
Collapse
|