1
|
Curcumin Release from Biomaterials for Enhanced Tissue Regeneration Following Injury or Disease. Bioengineering (Basel) 2023; 10:bioengineering10020262. [PMID: 36829756 PMCID: PMC9951943 DOI: 10.3390/bioengineering10020262] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Curcumin, a bioactive phenol derived from turmeric, is an antioxidant, anti-inflammatory, and antibacterial molecule. Although curcumin exhibits beneficial effects in its innate form, it is highly hydrophobic, which leads to poor water solubility and, consequently, low bioavailability. The lack of bioavailability limits curcumin's effectiveness as a treatment and restricts its use in clinical applications. Furthermore, to achieve beneficial, clinically relevant results, high doses of curcumin are required for systemic administration. Many researchers have utilized biomaterial carriers, including electrospun fibers, nanoparticles, hydrogels, and composite scaffolds, to overcome curcumin's principle therapeutic limitation of low bioavailability. By using biomaterials to deliver curcumin directly to injury sites, researchers have harnessed the beneficial natural properties of curcumin while providing scaffolding to support tissue regeneration. This review will provide an in-depth overview of the literature that utilizes biomaterial delivery of curcumin for tissue regeneration in injury and disease models.
Collapse
|
2
|
Mahdy MAA, Akl MA, Madkour FA. Effect of chitosan and curcumin nanoparticles against skeletal muscle fibrosis at early regenerative stage of glycerol-injured rat muscles. BMC Musculoskelet Disord 2022; 23:670. [PMID: 35836166 PMCID: PMC9281067 DOI: 10.1186/s12891-022-05633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Chitosan and curcumin are natural products that have a wide range of beneficial effects including wound healing. However, their high molecular weight and poor water solubility limit their applications. Aims Therefore, the current study aims to evaluate the effects of chitosan (Cs) and curcumin (Cn) nanoparticles (NPs) on fibrosis and regeneration of glycerol-injured muscle. Methods Muscle injury was induced by intramuscular injection of glycerol into the tibialis anterior muscle of rats. Cs-NPs and Cn-NPs were administered at different doses intraperitoneally after injury. Injured muscles were collected at day 7 after injury, and muscle fibrosis and regeneration were assessed. Results The present results revealed that Cs-NPs and Cn-NPs treatment significantly decreased fibrosis index and increased the average myotube diameter with shifting of the distribution of myotube diameters towards larger diameters in a dose-dependent manner. Immunohistochemical analysis revealed that Cs-NPs and Cn-NPs treatment significantly decreased the number of CD-68+ cells and Col-1+ area. Results showed that Cn-NPs had a higher protective effect, in the form of attenuating muscle fibrosis and inflammation, and enhancing muscle regeneration, than that of Cs-NPs. Conclusions To our knowledge, this is the first study to document the effects of Cs-NPs in injured muscles. The results of study might be a novel approach to attenuate muscle fibrosis in humans using curcumin and chitosan nanoparticles.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fatma A Madkour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
El Shahawy M, El Deeb M. Assessment of the possible ameliorative effect of curcumin nanoformulation on the submandibular salivary gland of alloxan-induced diabetes in a rat model (Light microscopic and ultrastructural study). Saudi Dent J 2022; 34:375-384. [PMID: 35814842 PMCID: PMC9263756 DOI: 10.1016/j.sdentj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Nowadays, attention is directed to herbal treatments in an attempt to lessen the adverse effects of diabetes. Nanoformulation of curcumin (NC) was shown to enhance stability and water solubility compared to native curcumin. Objective To examine the effect of different NC concentrations on the histopathological structure of the submandibular salivary gland of diabetic rats. Methods 28 rats were divided equally into 4 groups. Group I: Control group, Group II (diabetic), III (diabetic + nanocurcumin low dose), and IV (diabetic + nanocurcumin high dose): Rats of groups II, III and IV were injected with a single dose of alloxan (140 mg/kg) to induce diabetes. After 7 days, groups III and IV were treated for 6 weeks with NC (100 mg/kg/day) for group III, and (200 mg/kg/day) for group IV. Submandibular salivary glands were assessed histologically, immunohistochemically using α smooth muscle actin (α SMA) and ultrastructurally. Results Diabetic samples showed destruction of parenchymal elements of the gland, with thick fiber bundles encircling the excretory ducts and minimal reaction for α SMA. Amelioration of the gland's architecture was detected in groups III and IV with reduction of collagen deposition and elevation of positive immunoreactivity to α SMA. Conclusion NC profoundly repaired the induced diabetic histopathological and ultrastructural alterations of the gland in a dose dependent manner.
Collapse
Key Words
- DM, diabetes mellitus
- Diabetes
- H&E, Hematoxylin and Eosin
- Masson trichrome
- NC, nanocurcumin
- NHD, nanocurcumin high dose
- NLD, nanocurcumin low dose
- Nanocurcumin
- RER, rough endoplasmic reticulum
- ROS, reactive oxygen species
- SD, standard deviation
- Submandibular salivary glands
- TEM, transmission electron microscope
- α SMA
- α SMA, α Smooth Muscle Actin
Collapse
Affiliation(s)
- Maha El Shahawy
- Associate Professor, Oral Biology Department, Faculty of Dentistry, Minia University, Egypt
| | - Mona El Deeb
- Professor, Oral Biology Department, Faculty of Oral & Dental Medicine, Future University in Egypt (FUE), Egypt
| |
Collapse
|
4
|
Kushwaha AD, Saraswat D. A Nanocurcumin and Pyrroloquinoline Quinone Formulation Prevents Hypobaric Hypoxia-Induced Skeletal Muscle Atrophy by Modulating NF-κB Signaling Pathway. High Alt Med Biol 2022; 23:249-263. [PMID: 35384739 DOI: 10.1089/ham.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kushwaha, Asha D., and Deepika Saraswat. A nanocurcumin and pyrroloquinoline quinone formulation prevents hypobaric hypoxia-induced skeletal muscle atrophy by modulating NF-κB signaling pathway. High Alt Med Biol 00:000-000, 2022. Background: Hypobaric hypoxia (HH)-induced deleterious skeletal muscle damage depends on exposure time and availability of oxygen at cellular level, which eventually can limit human work performance at high altitude (HA). Despite the advancements made in pharmacological (performance enhancer, antioxidants) and nonpharmacological therapeutics (acclimatization strategies), only partial success has been achieved in improving physical performance at HA. A distinctive combination of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) has been formulated (named NCF [nanocurcumin formulation], Indian patent No. 302877) in our laboratory, and has proven very promising in improving cardiomyocyte adaptation to chronic HH. We hypothesized that NCF might improve skeletal muscle adaptation and could be a performance enhancer at HA. Material and Methods: Adult Sprague-Dawley rats (220 ± 10 g) were divided into five groups (n = 6/group): normoxia vehicle control, hypoxia vehicle control, hypoxia NCF, hypoxia NC, and hypoxia PQQ. All the animals (except those in normoxia) were exposed to simulated HH in a chamber at temperature 22°C ± 2°C, humidity 50% ± 5%, altitude 25,000 ft for 1, 3, or 7 days. After completion of the stipulated exposure time, gastrocnemius and soleus muscles were excised from animals for further analysis. Results: Greater lengths of hypoxic exposure caused progressively increased muscle ring finger-1 (MuRF-1; p < 0.01) expression and calpain activation (0.56 ± 0.05 vs. 0.13 ± 0.02 and 0.44 ± 0.03 vs. 0.12 ± 0.021) by day 7, respectively in the gastrocnemius and soleus muscles. Myosin heavy chain type I (slow oxidative) fibers significantly (p > 0.01) decreased in gastrocnemius (>50%) and soleus (>46%) muscles by the seventh day of exposure. NCF supplementation showed (p ≤ 0.05) tremendous improvement in skeletal muscle acclimatization through effective alleviation of oxidative damage, and changes in calpain activity and atrophic markers at HA compared with hypoxia control or treatment alone with NC/PQQ. Conclusion: Thus, NCF-mediated anti-oxidative, anti-inflammatory effects lead to decreased proteolysis resulting in mitigated skeletal muscle atrophy under HH.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Deepika Saraswat
- Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| |
Collapse
|
5
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
6
|
Identification of the Molecular Basis of Nanocurcumin-Induced Telocyte Preservation within the Colon of Ulcerative Colitis Rat Model. Mediators Inflamm 2021; 2021:7534601. [PMID: 34373677 PMCID: PMC8349286 DOI: 10.1155/2021/7534601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background Telocytes (TCs) are a distinct type of interstitial cells that play a vital role in the pathogenesis of ulcerative colitis and colonic tissue hemostasis. The aim of this study was to examine the effect of nanocurcumin (NC) on the morphometric and immunohistochemical characterization of TCs in the ulcerative colitis (UC) rat model. Methods Forty rats were randomly divided into control, NC, UC, and UC+NC groups. At the end of the experiment, the colon was dissected and prepared for histopathological and immunohistochemical assessment. Tissue homogenates were prepared for real-time PCR assessment of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β) gene expression. Our results revealed extensive mucosal damage with inflammatory cell infiltration, significant reduction of CD34, and vimentin immunostained TCs in the colon of the UC group with significant elevation of expression of IL-6, TNF-α, and TGF-β. The UC+NC-treated group revealed significant elevation of TC count compared to the UC group besides, a significant reduction of the three gene expression. Conclusion NC successfully targeted the colonic tissue, improved the mucosal lesion, preserve TCs distribution, and count through its anti-inflammatory and fibrinolytic properties.
Collapse
|
7
|
Aguilar-Rabiela AE, Leal-Egaña A, Nawaz Q, Boccaccini AR. Integration of Mesoporous Bioactive Glass Nanoparticles and Curcumin into PHBV Microspheres as Biocompatible Composite for Drug Delivery Applications. Molecules 2021; 26:molecules26113177. [PMID: 34073377 PMCID: PMC8198669 DOI: 10.3390/molecules26113177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive glasses (BGs) are being increasingly considered for biomedical applications. One convenient approach to utilize BGs in tissue engineering and drug delivery involves their combination with organic biomaterials in order to form composites with enhanced biocompatibility and biodegradability. In this work, mesoporous bioactive glass nanoparticles (MBGN) have been merged with polyhydroxyalkanoate microspheres with the purpose to develop drug carriers. The composite carriers (microspheres) were loaded with curcumin as a model drug. The toxicity and delivery rate of composite microspheres were tested in vitro, reaching a curcumin loading efficiency of over 90% and an improving of biocompatibility of different concentrations of MBGN due to its administrations through the composite. The composite microspheres were tested in terms of controlled release, biocompatibility and bioactivity. Our results demonstrate that the composite microspheres can be potentially used in biomedicine due to their dual effects: bioactivity (due to the presence of MBGN) and curcumin release capability.
Collapse
Affiliation(s)
- Arturo E. Aguilar-Rabiela
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; (A.L.-E.); (Q.N.)
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Carretera Lago de Guadalupe Km 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Estado de México, Mexico
- Correspondence: (A.E.A.-R.); (A.R.B.)
| | - Aldo Leal-Egaña
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; (A.L.-E.); (Q.N.)
| | - Qaisar Nawaz
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; (A.L.-E.); (Q.N.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; (A.L.-E.); (Q.N.)
- Correspondence: (A.E.A.-R.); (A.R.B.)
| |
Collapse
|