1
|
Alsabhan JF, Almalag HM, Alnuaim LA, Albaker AB, Alaseem MM. Evaluating the Use of Selective Serotonin Reuptake Inhibitors (SSRIs) and Male Infertility: A Critical Retrospective Study. J Clin Med 2024; 13:2129. [PMID: 38610894 PMCID: PMC11012779 DOI: 10.3390/jcm13072129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The use of selective serotonin reuptake inhibitors (SSRIs) has been associated with potential effects on male fertility, although the exact mechanisms are not fully understood. The aim of this study was to understand the relationship between SSRIs and male infertility; Methods: A retrospective chart review of Saudi males who were treated with SSRIs and attended an infertility clinic in KSMC was undertaken. The medical records of men from an infertility clinic were reviewed to screen the quality of the sperm parameters in patients taking SSRIs; Results: In total, 299 men were identified, of whom 29 (9.6%) were exposed to SSRIs, while 270 (90.4%) did not receive SSRIs, defined as the control infertile group. When comparing the mean ages, a notable disparity was observed between the control group of infertile men (34.2 ± 6.9 years) and the infertile group using SSRIs (41.5 ± 3.2 years) (p < 0.001). Regarding the sperm analysis and the use of SSRIs, the impact of SSRIs use showed no significant differences in sperm liquefaction (p = 0.1), motility (p = 0.17), viscosity (p = 0.16), or count (p = 0.069) with escitalopram, fluoxetine, or paroxetine use; Conclusions: Our study showed no significant difference in the sperm analysis between the SSRI and non-SSRI cohorts. However, the relationship between SSRI use and sperm count warrants further investigation and consideration in clinical practice.
Collapse
Affiliation(s)
- Jawza F. Alsabhan
- Department of Clinical Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11149, Saudi Arabia
| | - Haya M. Almalag
- Department of Clinical Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11149, Saudi Arabia
| | - Lulu A. Alnuaim
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Awatif B. Albaker
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11495, Saudi Arabia;
| | - Maryam M. Alaseem
- College of Pharmacy, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Uzunov AV, Meca DC, Secară DC, Munteanu O, Constantin AE, Vasilescu D, Mehedinţu C, Varlas VN, Cîrstoiu MM. Investigaţii actuale în medicina reproductivă – review al literaturii. GINECOLOGIA.RO 2023. [DOI: 10.26416/gine.39.1.2023.7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
3
|
Zańko A, Siewko K, Krętowski AJ, Milewski R. Lifestyle, Insulin Resistance and Semen Quality as Co-Dependent Factors of Male Infertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010732. [PMID: 36613051 PMCID: PMC9819053 DOI: 10.3390/ijerph20010732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 05/11/2023]
Abstract
Infertility is a problem that affects millions of couples around the world. It is known as a disease of couples, not individuals, which makes diagnosis difficult and treatment unclear. Male infertility can have many causes, from mechanical ones to abnormal spermatogenesis or spermiogenesis. Semen quality is determined by a number of factors, including those dependent on men themselves, with the number of infertile men growing every year. These include, e.g., diet, physical activity, sleep quality, stress, among many others. As these factors co-exist with insulin resistance, which is a disease closely related to lifestyle, it has been singled out in the study due to its role in affecting semen quality. In order to examine connections between lifestyle, insulin resistance, and semen quality, a review of literature published from 1989 to 2020 in the following databases PubMed/Medline, EMBASE (Elsevier), Scopus, Web of Science, and Google Scholar was performed. Hence, semen quality, environment, and insulin resistance are interrelated, thus it is difficult to indicate which aspect is the cause and which is the effect in a particular relationship and the nature of possible correlations. Since the influence of lifestyle on semen quality has been extensively studied, it is recommended that more thorough research be done on the relationship between insulin resistance and semen quality, comparing the semen quality of men with and without insulin resistance.
Collapse
Affiliation(s)
- Adrianna Zańko
- Doctoral School, Medical University of Białystok, 15-089 Białystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, 15-276 Białystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, 15-276 Białystok, Poland
| | - Robert Milewski
- Department of Biostatistics and Medical Informatics, Medical University of Białystok, 15-295 Białystok, Poland
- Correspondence:
| |
Collapse
|
4
|
Sperm as a Carrier of Genome Instability in Relation to Paternal Lifestyle and Nutritional Conditions. Nutrients 2022; 14:nu14153155. [PMID: 35956329 PMCID: PMC9370520 DOI: 10.3390/nu14153155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The extent to which men with and without subfertility are exposed to several adverse lifestyle factors and the impact on sperm DNA fragmentation (SDF), sperm chromatin maturity (condensation and decondensation), stability (hypo- and hypercondensation) and sperm aneuploidy are assessed in this study. Standardized assays employing flow cytometry were used to detect genome instability in 556 samples. Semen parameters deteriorated with age, BMI, increased physical activity and smoking. Age and BMI were associated with increased SDF. Increased BMI was associated with increased hypocondensed chromatin and decreased decondensed chromatin. Increase in age also caused an increase in sex chromosome aneuploidy in sperms. Surprisingly, alcohol abuse reduced chromatin hypercondensation and drug abuse reduced SDF. Although genome instability was more pronounced in the subfertile population as compared to the fertile group, the proportion of men with at least one lifestyle risk factor was the same in both the fertile and subfertile groups. While one in three benefited from nutritional supplementation, one in five showed an increase in SDF after supplementation. Whilst the message of ‘no smoking, no alcohol, no drugs, but a healthy diet’ should be offered as good health advice, we are a long way from concluding that nutritional supplementation would be beneficial for male fertility.
Collapse
|
5
|
Garcia-Segura S, del Rey J, Closa L, Garcia-Martínez I, Hobeich C, Castel AB, Vidal F, Benet J, Ribas-Maynou J, Oliver-Bonet M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship With Sperm DNA Integrity. Front Cell Dev Biol 2022; 10:937157. [PMID: 35837328 PMCID: PMC9275566 DOI: 10.3389/fcell.2022.937157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new biomarkers for human male infertility is crucial to improve the diagnosis and the prognosis of this disease. Recently, seminal microbiota was shown to be related to sperm quality parameters, suggesting an effect in human fertility and postulating it as a biomarker candidate. However, its relationship to sperm DNA integrity has not been studied yet. The aim of the present study is to characterize the seminal microbiota of a western Mediterranean population and to evaluate its relationship to sperm chromatin integrity parameters, and oxidative stress. For that purpose, 14 samples from sperm donors and 42 samples from infertile idiopathic patients were obtained and were analyzed to assess the composition of the microbiota through full-length 16S rRNA gene sequencing (Illumina MiSeq platform). Microbial diversity and relative abundances were compared to classic sperm quality parameters (macroscopic semen parameters, motility, morphology and concentration), chromatin integrity (global DNA damage, double-stranded DNA breaks and DNA protamination status) and oxidative stress levels (oxidation-reduction potential). The seminal microbiota observed of these samples belonged to the phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. The most abundant genera were Finegoldia, Peptoniphilus, Anaerococcus, Campylobacter, Streptococcus, Staphylococcus, Moraxella, Prevotella, Ezakiella, Corynebacterium and Lactobacillus. To our knowledge, this is the first detection of Ezakiella genus in seminal samples. Two clusters of microbial profiles were built based on a clustering analysis, and specific genera were found with different frequencies in relation to seminal quality defects. The abundances of several bacteria negatively correlate with the sperm global DNA fragmentation, most notably Moraxella, Brevundimonas and Flavobacterium. The latter two were also associated with higher sperm motility and Brevundimonas additionally with lower oxidative-reduction potential. Actinomycetaceae, Ralstonia and Paenibacillus correlated with reduced chromatin protamination status and increased double-stranded DNA fragmentation. These effects on DNA integrity coincide in many cases with the metabolism or enzymatic activities of these genera. Significant differences between fertile and infertile men were found in the relative presence of the Propionibacteriaceae family and the Cutibacterium, Rhodopseudomonas and Oligotropha genera, which supports its possible involvement in male fertility. Our findings sustain the hypothesis that the seminal microbiome has an effect on male fertility.
Collapse
Affiliation(s)
- Sergio Garcia-Segura
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Javier del Rey
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iris Garcia-Martínez
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Carlos Hobeich
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
| | | | - Francisco Vidal
- Medicina Transfusional, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Grup de Coagulopaties Congènites, Banc de Sang i Teixits (BST), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| | - Jordi Benet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, University of Girona, Girona, Spain
| | - Maria Oliver-Bonet
- Unit of Cell Biology and Medical Genetics, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
6
|
Effect of Malignancy on Semen Parameters. Life (Basel) 2022; 12:life12060922. [PMID: 35743953 PMCID: PMC9228099 DOI: 10.3390/life12060922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: We aimed to examine how various types of cancer, classified histologically, affect semen quality. Methods: The study group included 313 patients who were diagnosed with cancer and reached for a sperm cryopreservation before a gonadotoxic treatment (PG-Tx group). Their semen parameters were compared to those of two control groups: (a) individuals who attended a fertility investigation and were found to be above the limit of the lower reference value of the WHO 2010 manual (ARL group), and (b) fertile men, whose semen parameters were obtained from the dataset of the WHO 2020 manual. Results: Semen quality was significantly poorer in the PG-Tx group than in the ARL group. Differences included a 65.6% decrease in concentration, a 12.1% decrease in volume, a 72.7% decrease in total count, and a 33.0%, 22.2%, and 24.7% decrease in total motility, rapid motility, and progressive motility, respectively. Linear regression models comparing the PG-Tx and ARL groups revealed that the maximum reduction in total motility and concentration was in men with germ-cell tumors, whereas the minimum reduction was in hematological tumors. Similarly, all sperm quality parameters were significantly lower in the PG-Tx group than in the fertile-men group (p < 0.0001). Conclusions: While the effect of malignancy on semen parameters is debatable, we found that all examined types of cancer significantly impaired sperm quality parameters. Although the median of most semen parameters of patients with cancer were still in the normal WHO range, their fifth percentile, represents men with a delayed time to pregnancy.
Collapse
|
7
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
8
|
Torki A, Amirmozafari N, Talebi M, Talebi A. Using the PCR and Blood Agar in Diagnosis of Semen Bacterial Contamination of Fertile and Infertile Men. Rep Biochem Mol Biol 2021; 10:402-411. [PMID: 34981017 PMCID: PMC8718771 DOI: 10.52547/rbmb.10.3.402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND One of the causes of male infertility is Genital tract infections (GTI). Considering the importance of GTI, widespread recognition of them seems necessary. we aimed to characterize and compare semen microbial populations in fertile and infertile men who referred to an infertility clinic in Yazd, Iran. METHODS Semen samples were collected from two groups of fertile (268) and infertile (210) men. Sperm analysis (concentration, morphology, viability and motility parameters) were performed according to the World Health Organization (WHO) 2010 guidelines laboratory manual. Bacterial isolation was performed in Sheep Blood Agar and Eosin Methylene Blue (EMB) agar plates. For PCR, samples were analyzed with genus specific primers. RESULTS All semen characteristics were poor in the infertile group compared to those in the fertile men (p-value< 0.05). Enterococcus spp. (18.7%, 17.1%; p= 0.814), E. coli (7.9%, 11.4%; p= 0.486), Staphylococcus aureus (6.4%, 2.9%; p= 0.398) and Proteus mirabilis (0%, 2.9%; p= 0.002) were the most common agents, respectively. Also, the results obtained from PCR were confirmed using culture-base method. CONCLUSION Proteus mirabilis contamination was identified in the infertile group. While no significant association was observed between male infertility and semen microbial populations, p. mirabilis may be the leading cause of reproduction impairment in men.
Collapse
Affiliation(s)
- Alireza Torki
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Talebi
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
9
|
Oral Antioxidant Treatment of Men Significantly Improves the Reproductive Outcome of IVF Cycles. J Clin Med 2021; 10:jcm10153254. [PMID: 34362038 PMCID: PMC8347466 DOI: 10.3390/jcm10153254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Some 30% to 80% of male sub-fertility may be associated with oxidative stress that damages spermatozoa and can decrease success of in vitro fertilization (IVF) techniques. This multicenter, longitudinal, prospective study aimed to investigate whether oral antioxidant supplementation improved the reproductive competence of men who had had low fertilization rates in their previous intracytoplasmic sperm injection (ICSI) cycles without azoospermia or severe oligozoospermia or any identifiable andrological disease. Seventy-seven men from couples who had an ICSI attempt with unexplained <60% fertilization rate took an antioxidant mix of myo-inositol, alpha-lipoic acid, folic acid, coenzyme Q10, zinc, selenium, and vitamins B2, B6, and B12. Semen parameters were analyzed before (T0) and after 90 days (T90) of treatment, and outcomes of the paired T0 and T90 cycles were compared. After the treatment there was an increase in sperm concentration (p = 0.027), total motile sperm count (p = 0.003), progressive motility (p < 0.0001), and a decreasing trend of DNA-fragmented spermatozoa. Embryological outcomes (fertilization, embryo quality, blastocyst development) were significantly higher in T90 than T0 cycles. No T0 cycle resulted in an evolutive pregnancy. Conversely, in T90 cycles 29 singleton clinical pregnancies were obtained. No negative neonatal outcomes were recorded in newborns after antioxidant treatment. Diet supplementation of men who have had low fertilization rates in their previous ICSI cycles with a combination of myo-inositol, alpha-lipoic acid, folic acid, coenzyme Q10, zinc, selenium, betaine, and vitamins may improve semen reproductive potential and ICSI clinical outcome.
Collapse
|
10
|
Oral Antioxidant Treatment of Men Significantly Improves the Reproductive Outcome of IVF Cycles. J Clin Med 2021. [PMID: 34362038 DOI: 10.3390/jcm10153254)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Some 30% to 80% of male sub-fertility may be associated with oxidative stress that damages spermatozoa and can decrease success of in vitro fertilization (IVF) techniques. This multicenter, longitudinal, prospective study aimed to investigate whether oral antioxidant supplementation improved the reproductive competence of men who had had low fertilization rates in their previous intracytoplasmic sperm injection (ICSI) cycles without azoospermia or severe oligozoospermia or any identifiable andrological disease. Seventy-seven men from couples who had an ICSI attempt with unexplained <60% fertilization rate took an antioxidant mix of myo-inositol, alpha-lipoic acid, folic acid, coenzyme Q10, zinc, selenium, and vitamins B2, B6, and B12. Semen parameters were analyzed before (T0) and after 90 days (T90) of treatment, and outcomes of the paired T0 and T90 cycles were compared. After the treatment there was an increase in sperm concentration (p = 0.027), total motile sperm count (p = 0.003), progressive motility (p < 0.0001), and a decreasing trend of DNA-fragmented spermatozoa. Embryological outcomes (fertilization, embryo quality, blastocyst development) were significantly higher in T90 than T0 cycles. No T0 cycle resulted in an evolutive pregnancy. Conversely, in T90 cycles 29 singleton clinical pregnancies were obtained. No negative neonatal outcomes were recorded in newborns after antioxidant treatment. Diet supplementation of men who have had low fertilization rates in their previous ICSI cycles with a combination of myo-inositol, alpha-lipoic acid, folic acid, coenzyme Q10, zinc, selenium, betaine, and vitamins may improve semen reproductive potential and ICSI clinical outcome.
Collapse
|
11
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
12
|
Chen G, Zheng B. Effect of macrophages in semen on sperm quality. Reprod Biol Endocrinol 2021; 19:38. [PMID: 33663557 PMCID: PMC7931606 DOI: 10.1186/s12958-021-00724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This was a cross-sectional study in China which analyzed the levels of macrophages (Mφ) in semen and evaluated the influence of Mφ levels in semen on sperm quality. METHODS The subjects involves 78 males, 25- to 35-year old. The samples were divided into a low group (Mφ < 6 × 105/ml) and a high group (Mφ > 6 × 105/ml). Evaluation included consideration of the influencing factors of male semen quality, macrophage concentration, sperm motility, morphology, membrane integrity DNA fragmentation index (DFI), anti-sperm antibodies (AsAb), IL-10, and IL-12 in semen. RESULTS There was no difference in the physical or chemical indices of the semen, sperm concentration, AsAb, IL-10, or IL-12 between the two groups (P > 0.05). The percentage of sperm forward motility (PR%), the rate of normal sperm shape, and the integrity of cell membranes in the low group were higher than those in the high group (P < 0.05), while the percentage of sperm inactivity (IM%), the rate of sperm head deformity, the rate of deformity in the neck and middle segment, the sperm deformity index (SDI), the teratozoospermia index (TZI), and the sperm DFI in the low group were lower than those in the high group (P < 0.05). The concentration of Mφ in the semen was linearly correlated with sperm concentration, sperm PR%, IM%, sperm normal shape rate, head deformity rate, neck and middle deformity rate, SDI, TZI, sperm DFI, and sperm cell membrane integrity (P < 0.05), but there was no linear correlation with IL-10 or IL-12 (P > 0.05). CONCLUSIONS The Mφ concentration in semen is not significantly correlated with semen volume or sperm concentration, but negatively correlated with sperm motility, morphology, cell membrane integrity, and DNA damage rate. There is no significant correlation between the macrophages and the concentration of IL-10 or IL-12.
Collapse
Affiliation(s)
- Gangxin Chen
- Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Daoshan Road 18, Fuzhou, Fujian, 350001, China.
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Daoshan Road 18, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
13
|
Qasemi M, Mahdian R, Amidi F. Cell-free DNA discoveries in human reproductive medicine: providing a new tool for biomarker and genetic assays in ART. J Assist Reprod Genet 2021; 38:277-288. [PMID: 33421023 PMCID: PMC7884523 DOI: 10.1007/s10815-020-02038-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 02/02/2023] Open
Abstract
Cell-free DNAs (cfDNAs) are fragmented forms of DNA that are released into extracellular environments. Analyzing them, regarding either concentration or genetic/epigenetic status can provide helpful information about disorders, response to treatments, estimation of success rates, etc. Moreover, since they are presented in body fluids, evaluation of the aforementioned items would be achieved by less/non-invasive methods. In human reproduction field, it is required to have biomarkers for prediction of assisted reproduction techniques (ART) outcome, as well as some non-invasive procedures for genetic/epigenetic assessments. cfDNA is an appropriate candidate for providing the both approaches in ART. Recently, scientists attempted to investigate its application in distinct fields of reproductive medicine that resulted in discovering its applicability for biomarker and genetic/epigenetic analyses. However, due to some limitations, it has not reached to clinical administration yet. In this article, we have reviewed the current reported data with respect to advantages and limitations of cfDNA utilization in three fields of ART, reproduction of male and female, as well as in vitro developed embryos.
Collapse
Affiliation(s)
- Maryam Qasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Ozer C. Antioxidant treatment of increased sperm DNA fragmentation: Complex combinations are not more successful. Arch Ital Urol Androl 2020; 92. [PMID: 33348968 DOI: 10.4081/aiua.2020.4.362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Oral antioxidant supplementation is part of the treatment of infertility associated with oxidative stress-related sperm damage. It is possible to assume that the combined use of antioxidants will be better than single agent use. The purpose of this study was to compare the effectiveness of different antioxidant combinations in infertile men with increased sperm DNA fragmentation. MATERIALS AND METHODS We retrospectively reviewed the records of 637 patients who underwent antioxidant support therapy for increased sperm DNA damage between 2014 and 2019. Patients with DNA damage of 30% or more were included study. RESULT A total of 163 patients with follow-up data and who fulfilled the study criteria were included in the study. There were four different treatment groups. No statistically significant differences were found between the groups. After 3 months of antioxidant treatment, there was a statistically significant decrease in sperm DNA damage in all treatment groups. However, there was no statistically significant difference between the treatment groups. CONCLUSIONS The complexity of the antioxidant combination may not contribute to the success of the treatment or may cause possible side effects, increase the cost of treatment and decrease patient compliance.
Collapse
Affiliation(s)
- Cevahir Ozer
- Department of Urology, Baskent University, Adana.
| |
Collapse
|
15
|
Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J Mens Health 2020; 38:412-471. [PMID: 32777871 PMCID: PMC7502318 DOI: 10.5534/wjmh.200128] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations. This article provides an overview of SDF types, origin and comparative analysis of various SDF assays while primarily focusing on the clinical indications of SDF testing. Importantly, we report four clinical cases where SDF testing had played a significant role in improving fertility outcome. In light of these clinical case reports and recent scientific evidence, this review provides expert recommendations on SDF testing and examines the advantages and drawbacks of the clinical utility of SDF testing using Strength-Weaknesses-Opportunities-Threats (SWOT) analysis.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Hong Kong
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Catalina Barbarosie
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology & Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Edmund Ko
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University, Giza, Egypt
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Rafael Ambar
- Urology Department of Centro Universitario em Saude do ABC, Santo André, Brazil
| | | | - Kathy Amy Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
16
|
Hanson BM, Kim JG, Osman EK, Tiegs AW, Lathi RB, Cheng PJ, Scott RT, Franasiak JM. Impact of paternal age on embryology and pregnancy outcomes in the setting of a euploid single-embryo transfer with ejaculated sperm: retrospective cohort study. F S Rep 2020; 1:99-105. [PMID: 34223225 PMCID: PMC8244285 DOI: 10.1016/j.xfre.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/24/2023] Open
Abstract
Objective To evaluate the impact of paternal age on embryology and pregnancy outcomes in the setting of a euploid single-embryo transfer. Design Retrospective cohort study. Setting Not applicable. Patient(s) Couples undergoing a first in vitro fertilization cycle with fresh ejaculated sperm who used intracytoplasmic sperm injection for fertilization followed by preimplantation genetic testing for aneuploidy and single-embryo transfer of a euploid embryo between January 2012 and December 2018. Intervention(s) Not applicable. Main Outcome Measure(s) Embryology outcomes assessed were fertilization rate, blastulation rate, and euploid rate. Pregnancy outcomes assessed included positive human chorionic gonadotropin rate, delivery rate, biochemical loss rate, and clinical loss rate. Results A total of 4,058 patients were assessed. After adjusting for female age, increased paternal age in the setting of fresh ejaculated sperm use was associated with decreased blastulation and decreased euploid rate using 40 years as an age cutoff. Conclusion(s) In this study, advancing paternal age appears to have a detrimental impact on rates of blastocyst formation and euploid status. However, if a euploid embryo is achieved, older paternal age does not appear to affect negatively pregnancy outcomes.
Collapse
Affiliation(s)
- Brent M Hanson
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Julia G Kim
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Emily K Osman
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ashley W Tiegs
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth B Lathi
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Stanford Fertility & Reproductive Health Center, Sunnyvale, California
| | - Philip J Cheng
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey
| | - Richard T Scott
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jason M Franasiak
- Department of Reproductive Endocrinology & Infertility, IVI-Reproductive Medicine Associates of New Jersey, Basking Ridge, New Jersey.,Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Impact of body mass index and metabolic syndrome on sperm DNA fragmentation in males from infertile couples: A cross-sectional study from Vietnam. Metabol Open 2020; 7:100054. [PMID: 32924004 PMCID: PMC7473997 DOI: 10.1016/j.metop.2020.100054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Objectives This study investigated the relationship between body mass index (BMI) and metabolic syndrome on sperm DNA fragmentation (SDF) in males from infertile couples. Methods This cross-sectional study was performed from September 2018 to September 2019 at the Hue Center for Reproductive Endocrinology and Infertility (HUECREI), Vietnam. The study included men from couples with at least one year of infertility, who were subjected to semen analysis and SDF assay (Halosperm). We also performed a 2-h oral glucose tolerance test and measured lipidemia. Metabolic syndrome (MetS) was defined based on the NHLBI/AHA-ATP III guidelines. Results The mean age of the patients was 35.26 ± 5.87 years and 53.8% of them had a BMI ≥23.0 kg/m2. The DNA fragmentation index was significantly associated with overweight (p = 0.024). Men without MetS had a higher rate of big halos and a lower rate of small halos, no halos, and degraded semen compared to that in men with MetS, but the differences were not significant (p > 0.05). By performing multivariable analysis, we found that the SDF value was significantly different among the two groups with either overweight or normal weight. Conclusion In males from infertile couples with a relatively young mean age, BMI can be an independent indicator for SDF. MetS thus has a significant role in the development of sperm DNA fragmentation, at least in overweight individuals; it should thus be assessed under the scope of BMI, for better/earlier detection of increased SDF. Sperm DNA fragmentation recently appears to be a good marker for male reproductive potential. BMI can be an independent indicator for increasing SDF. MetS has a significant role in the development of SDF, at least in overweight individuals.
Collapse
|
18
|
Martinez M, Majzoub A. Best laboratory practices and therapeutic interventions to reduce sperm DNA damage. Andrologia 2020; 53:e13736. [PMID: 32662555 DOI: 10.1111/and.13736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022] Open
Abstract
Conventional semen analysis is considered the cornerstone investigation for infertile men. Nonetheless, this routine test does not provide information on important sperm functions like sperm DNA fragmentation (SDF). Abnormalities of human spermatozoal nucleus and chromatin have a detrimental impact on both natural and assisted reproductive outcomes. In vivo, SDF results from abnormalities in chromatin compaction, abortive apoptosis and oxidative stress, while in vitro, a number of factors may be implicated. Various SDF testing methods are available, and the most commonly utilised assays include terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), sperm chromatin dispersion (SCD) test, sperm chromatin structure assay (SCSA) and Comet assay. SDF testing has shown beneficial effects on treatment decision-making; however, its routine use in the initial evaluation of infertile men is still not recommended. One of the treatment options to reduce sperm DNA damage is the use of antioxidants. Despite the documented improvement in semen parameters and sperm DNA integrity following antioxidant therapy, no definitive recommendation is reached due to lack of large, well-designed, randomised, placebo-controlled trials assessing their exact role in male factor infertility. The objectives of this review article are to illustrate the aetiologies of SDF, to describe the effects of SDF on male factor fertility, to explore the common techniques utilised in SDF testing, to review the clinical indications for SDF testing and to review the effect of antioxidant therapy as a method to alleviate SDF.
Collapse
Affiliation(s)
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar.,Department of Clinical Urology, Weill Cornel Medicine -Qatar, Doha, Qatar
| |
Collapse
|
19
|
Ajuogu PK, Al-Aqbi MAK, Hart RA, McFarlane JR, Smart NA. A low protein maternal diet during gestation has negative effects on male fertility markers in rats - A Systematic Review and Meta-analysis. J Anim Physiol Anim Nutr (Berl) 2020; 105:157-166. [PMID: 32654274 DOI: 10.1111/jpn.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/20/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Research indicates that some adult diseases including reproductive pathologies are programmed in utero during foetal development. In particular, maternal low dietary protein, during the most critical developmental periods of male foetal development, may have a detrimental impact on male fertility through direct and epigenetic mechanisms. The aim of our study was to evaluate the impact of a gestational low protein diet on fertility markers in male offspring in rats through a systematic review and meta-analysis. A systematic search using PubMed, and EMBASE databases was performed and two investigators independently screened the 1,703 prospective articles. Eleven articles met the eligibility criteria. Outcome measures were pooled using random-effects models and expressed as mean differences (MDs) at 95% CIs for each study. The results reveal significant reduction in testis weight (MD (mean difference) -0.08 g; -0.12, -0.42; p = .0001), epididymal sperm count (MD -35.34 × 106 cells; -52.15, -18.53; p = .0001), number of Sertoli cells (MD -7.27 × 106 (-13.92, -0.62; p = .03), testosterone (T) concentration (MD -0.29 ng/ml; -0.48, -0.09; p = .004) and luteinising hormone (LH) concentration (MD of -0.24 ng/ml; -0.45, 0.04; p = .02) in comparison with controls. In contrast, follicle-stimulating hormone (FSH) concentration (MD of 0.07 ng/ml; -0.16, 0.29; p = .56) was not significantly different from controls. We conclude that low gestational dietary protein maternal intake potentially negatively impacts fertility in male progeny later in life. The mechanisms of action responsible for these phenomena remain unclear.
Collapse
Affiliation(s)
- Peter K Ajuogu
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammed A K Al-Aqbi
- School of Science and Technology, University of New England, Armidale, NSW, Australia.,College of Agriculture, Wasit University, Wasit, Iraq
| | - Robert A Hart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - James R McFarlane
- Centre for Bioactive Discovery in Heath and Ageing, University of New England, Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
20
|
Panner Selvam MK, Ambar RF, Agarwal A, Henkel R. Etiologies of sperm DNA damage and its impact on male infertility. Andrologia 2020; 53:e13706. [PMID: 32559347 DOI: 10.1111/and.13706] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor is responsible for up to 50% of infertility cases in the world. Semen analysis is considered the cornerstone of laboratory evaluation of male infertility, but it has its own drawbacks and fails to predict the male fertility potential with high sensitivity and specificity. Different etiologies have been linked with male infertility, of which sperm DNA damage has gained significant attention with extensive research on sperm function tests. The associations between sperm DNA damage and a variety of disorders such as varicocele, obesity, cancer, radiation and lifestyle factors are explored in this review. Furthermore, we discuss the mechanisms of DNA damage as well as its impact in different scenarios of male infertility, associated with spontaneous and assisted reproduction. Finally, we review the clinical applicability of sperm DNA fragmentation testing in the management of male infertility.
Collapse
Affiliation(s)
| | - Rafael F Ambar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Sexual and Reproductive Medicine - Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
21
|
Barbăroșie C, Agarwal A, Henkel R. Diagnostic value of advanced semen analysis in evaluation of male infertility. Andrologia 2020; 53:e13625. [PMID: 32458468 DOI: 10.1111/and.13625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Conventional semen analysis is the standard of care to initially evaluate the fertility status of a male patient. However, it has some limitations and among these are failure to correctly identify the aetiology underlying fertility problems, intra- and inter-observer variability and incomplete information about sperm function. Considering these drawbacks, advanced semen tests have been developed to assess male infertility, including sperm function tests, oxidative stress (OS) and sperm DNA fragmentation (SDF) tests. This review illustrates the commonly utilised sperm function techniques, along with the assays used to assess SDF and OS and their diagnostic value.
Collapse
Affiliation(s)
- Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
22
|
Babaei A, Kheradmand N, Baazm M, Nejati N, Khalatbari M. Protective effect of vitamin E on sperm parameters in rats infected with Candida albicans. Andrologia 2020; 52:e13593. [PMID: 32400037 DOI: 10.1111/and.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
Candida albicans is one of the most frequent pathogens present in the reproductive system. The negative in vitro effects of C. albicans on sperm functions have previously been studied. The current study was undertaken to investigate the effects of C. albicans infection in vivo on sperm quality and to evaluate the efficacy of vitamin E administration in rats infected with C. albicans. In this study, 5 days after infection induction, animals were treated with vitamin E for 5 weeks. Thereafter, sperm parameters, lipid peroxidation (LPO), total antioxidant capacity (TAC), hormonal analysis and testis histology were evaluated. Based on the results, sperm parameters and TAC significantly reduced, while LPO and tissue damage increased (p ≤ .05) following the infection. Hormone analysis showed low LH and testosterone levels in serum of the infected rats. Treatment with vitamin E significantly (p ≤ .05) improved sperm quality and testis histology, increased TAC and reduced LPO. In addition, vitamin E administration significantly increased (p ≤ .05) serum LH and testosterone levels. These results clearly indicate that vitamin E is effective in attenuating the adverse effects of C. albicans infection on male fertility and could be used as a complementary treatment for patients who suffer from fertility disorders following C. albicans infection.
Collapse
Affiliation(s)
- Arash Babaei
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Nasrin Kheradmand
- Department of Nursing, Malayer Branch, Islamic Azad University, Malayer, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Negin Nejati
- Department of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Khalatbari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
23
|
Abstract
Sperm DNA damage reduces pregnancy rates in couples undergoing in vitro fertilization (IVF). Because it has been shown that testicular sperm have lower DNA damage than ejaculated sperm, it is an attractive idea to consider using testicular sperm for IVF for men with high sperm DNA damage. In fact, there are multiple centers throughout the world now offering sperm retrieval for IVF to manage this condition. However, there is insufficient evidence to conclude that testicular sperm improves pregnancy/live birth rates. Further studies are required before offering sperm retrieval as a standard of care to manage high sperm DNA damage.
Collapse
|
24
|
Tesarik J. Acquired Sperm DNA Modifications: Causes, Consequences, and Potential Solutions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA of human spermatozoa can be subject to various kinds of modifications acquired throughout life. Put simply, two basic types of acquired sperm DNA modifications can be distinguished: genetic and epigenetic. Genetic modifications cause alterations of the DNA sequence and mainly result from the formation of breakpoints leading to sperm DNA fragmentation. Epigenetic modifications include a vast spectrum of events that influence the expression of different genes without altering their DNA sequence. Both the genetic and the epigenetic modifications of sperm DNA can negatively influence embryonic development, cause miscarriages, and be the origin of different health problems for the offspring. As to sperm DNA fragmentation, reliable diagnostic methods are currently available. On the other hand, the detection of potentially harmful epigenetic modifications in spermatozoa is a much more complicated issue. Different treatment options can be chosen to solve problems associated with sperm DNA fragmentation. Some are relatively simple and noninvasive, based on oral treatments with antioxidants and other agents, depending on the underlying cause. In other cases, the recourse to different micromanipulation-assisted in vitro fertilisation techniques is necessary to select spermatozoa with minimal DNA damage to be injected into oocytes. The treatment of cases with epigenetic DNA modifications is still under investigation. Preliminary data suggest that some of the techniques used in cases of extensive DNA fragmentation can also be of help in those of epigenetic modifications; however, further progress will depend on the availability of more reliable diagnostic methods with which it will be possible to evaluate the effects of different therapeutic interventions.
Collapse
|
25
|
Arzuaga X, Smith MT, Gibbons CF, Skakkebæk NE, Yost EE, Beverly BEJ, Hotchkiss AK, Hauser R, Pagani RL, Schrader SM, Zeise L, Prins GS. Proposed Key Characteristics of Male Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Evidence in Human Health Hazard Assessments. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:65001. [PMID: 31199676 PMCID: PMC6792367 DOI: 10.1289/ehp5045] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Assessing chemicals for their potential to cause male reproductive toxicity involves the evaluation of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in hazard identification and evidence integration, the process of identifying, screening and analyzing mechanistic studies and outcomes is a challenging exercise due to the diversity of research models and methods and the variety of known and proposed pathways for chemical-induced toxicity. Ten key characteristics of carcinogens provide a valuable tool for organizing and assessing chemical-specific data by potential mechanisms for cancer-causing agents. However, such an approach has not yet been developed for noncancer adverse outcomes. OBJECTIVES The objective in this study was to identify a set of key characteristics that are frequently exhibited by exogenous agents that cause male reproductive toxicity and that could be applied for identifying, organizing, and summarizing mechanistic evidence related to this outcome. DISCUSSION The identification of eight key characteristics of male reproductive toxicants was based on a survey of known male reproductive toxicants and established mechanisms and pathways of toxicity. The eight key characteristics can provide a basis for the systematic, transparent, and objective organization of mechanistic evidence relevant to chemical-induced effects on the male reproductive system. https://doi.org/10.1289/EHP5045.
Collapse
Affiliation(s)
- Xabier Arzuaga
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Martyn T. Smith
- University of California, Berkeley, School of Public Health, Berkeley, California, USA
| | - Catherine F. Gibbons
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Niels E. Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erin E. Yost
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brandiese E. J. Beverly
- Office of Health Assessment and Translation, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Andrew K. Hotchkiss
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russ Hauser
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rodrigo L. Pagani
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven M. Schrader
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA (retired)
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Gail S. Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois, USA
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Agarwal A, Panner Selvam MK, Baskaran S, Cho CL. Sperm DNA damage and its impact on male reproductive health: a critical review for clinicians, reproductive professionals and researchers. Expert Rev Mol Diagn 2019; 19:443-457. [DOI: 10.1080/14737159.2019.1614916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- Department of Surgery, Union Hospital, Sha Tin, Hong Kong
| |
Collapse
|
27
|
Polysaccharide from Ostrea rivularis attenuates reproductive oxidative stress damage via activating Keap1-Nrf2/ARE pathway. Carbohydr Polym 2018; 186:321-331. [PMID: 29455993 DOI: 10.1016/j.carbpol.2018.01.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to investigate the effects of Ostrea rivularis polysaccharide (ORP) against testicular oxidative stress injury via kelch-like ECH-associated protein 1-nuclear erythroid 2-related factor 2/antioxidant response element (Keap1-Nrf2/ARE) pathway. In pharmacological experiments in vivo, ORP administration could dose-dependently inhibit body and testicular weight loss, ameliorate epididymal sperm quality and protect reproductive impairment in cyclophosphamide-induced male Balb/c mice. Moreover, the mechanism in vivo might be elucidated that ORP could increase expression level of Nrf2 and its downstream ARE gene battery in the testis, promote production of corresponding antioxidative enzymes and protein, and enhance Keap1-Nrf2/ARE signaling pathway to avoid male reproductive dysfunction. In addition, ORP treatment could improve survival capacity of H2O2-induced TM4 cells and its antioxidant mechanism in vitro also had been verified to activate Keap1-Nrf2/ARE signaling pathway. Overall, these results showed that ORP as a potent antioxidant could reduce reproductive oxidative stress damage related to Keap1-Nrf2/ARE pathway.
Collapse
|
28
|
Paoli D, Pallotti F, Lenzi A, Lombardo F. Fatherhood and Sperm DNA Damage in Testicular Cancer Patients. Front Endocrinol (Lausanne) 2018; 9:506. [PMID: 30271379 PMCID: PMC6146098 DOI: 10.3389/fendo.2018.00506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023] Open
Abstract
Testicular cancer (TC) is one of the most treatable of all malignancies and the management of the quality of life of these patients is increasingly important, especially with regard to their sexuality and fertility. Survivors must overcome anxiety and fears about reduced fertility and possible pregnancy-related risks as well as health effects in offspring. There is thus a growing awareness of the need for reproductive counseling of cancer survivors. Studies found a high level of sperm DNA damage in TC patients in comparison with healthy, fertile controls, but no significant difference between these patients and infertile patients. Sperm DNA alterations due to cancer treatment persist from 2 to 5 years after the end of the treatment and may be influenced by both the type of therapy and the stage of the disease. Population studies reported a slightly reduced overall fertility of TC survivors and a more frequent use of ART than the general population, with a success rate of around 50%. Paternity after a diagnosis of cancer is an important issue and reproductive potential is becoming a major quality of life factor. Sperm chromatin instability associated with genome instability is the most important reproductive side effect related to the malignancy or its treatment. Studies investigating the magnitude of this damage could have a considerable translational importance in the management of cancer patients, as they could identify the time needed for the germ cell line to repair nuclear damage and thus produce gametes with a reduced risk for the offspring.
Collapse
|