1
|
The Effect of Supplemental Concentrate Feeding on the Morphological and Functional Development of the Pancreas in Early Weaned Yak Calves. Animals (Basel) 2022; 12:ani12192563. [PMID: 36230305 PMCID: PMC9558514 DOI: 10.3390/ani12192563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study aimed to investigate the nutritional intake deficiency on rearing yak calves. We investigated supplemental concentrate feeding effects on the morphological and functional development of the pancreas in early weaned yak calves. In the study, we determined the apparent digestibility of nutrients by digestion trail, the morphological development of the pancreas in yak calves by tissue sectioning, the activity of main digestive enzymes and hormone levels by ELISA kits, and the content of major small molecule metabolites in the pancreas by non-targeted metabolomics techniques. The morphological and functional development of the pancreas and its small molecule metabolites are mainly presented in graphical form, which had positive regulatory effects on the development of the pancreas in early weaned yak calves. In summary, we found that supplemental concentrate feeding was crucial for the high-quality growth and development of early weaned yak calves and had a positive influence on the intrinsic relationship between the overall development level and physiological functions of the pancreas, which could provide an important reference for scientific rearing of early weaned yak calves. Abstract This experiment was conducted to investigate the effect of supplemental concentrate feeding on the pancreatic development of yak calves. Twenty one-month-old yak calves with healthy body condition and similar body weight were selected as experimental animals and randomly divided into two groups, five replicates in each group. The control group yak calves were fed milk replacer and alfalfa hay, the experimental group yak calves were fed milk replacer, alfalfa hay and concentrate. The pre-feeding period of this experiment was thirty days, the trial period was one hundred days. At the end of feeding trail, five yak calves from each group were selected and slaughtered and the pancreas tissues of yak calves were collected and determined. The results showed that: (1) Dry matter and body weight of yak calves in the test group were significantly higher than those of the control group. (2) The apparent nutrient digestibility of crude protein, crude fat, calcium and phosphorus in the test group of yak calves was significantly higher than that of the control group, while the apparent nutrient digestibility of neutral detergent fiber and acid detergent fiber in the test group was significantly lower than that of the control group. (3) Pancreatic weight, organ index, total ratio of exocrine part area and total ratio of endocrine area of yak calves in the test group were significantly higher than those in the control group, while the ratio of exocrine area was significantly lower in the test group than that of the control group. (4) The activities of the main pancreatic digestive enzymes: pancreatic amylase, pancreatic lipase, pancreatic protease and chymotrypsin were significantly higher in the test group than those of the control group, as were the hormonal contents of glucagon, insulin and pancreatic polypeptide. (5) The main differential metabolites of the pancreas in the test group were significantly higher than those of the control group, such as D-proline, hypoxanthine, acetylcysteine, gamma-glutamylcysteine, thiazolidine-4-carboxylic acid, piperidinic acid, ellagic acid, nicotinamide, tropolone, D-serine, ribulose-5-phosphate, (+/-)5(6)-epoxyeicosatrienoic acid(EET), 2-hydroxycinnamic acid, L-phenylalanine, creatinine, tetrahydrocorticosterone, pyridoxamine, xanthine, 5-oxoproline, asparagine, DL-tryptophan, in-dole-3-acrylic acid, thymine, trehalose, docosapentaenoic acid, docosahexaenoic acid, fatty acid esters of hydroxy fatty acids(FAHFA) (18:1/20:3), fatty acid esters of hydroxy fatty acids(FAHFA) (18:2/20:4), adrenic acid and xanthosine. In conclusion, supplemental concentrate feeding promoted the good development of morphological and functional properties of the pancreas in early weaned yak calves to improve the digestion and absorption of feed nutrients, so as to enhance the growth and development quality of early weaned yak calves.
Collapse
|
2
|
Wang JTW, Hodgins NO, Al-Jamal WT, Maher J, Sosabowski JK, Al-Jamal KT. Organ Biodistribution of Radiolabelled γδ T Cells Following Liposomal Alendronate Administration in Different Mouse Tumour Models. Nanotheranostics 2020; 4:71-82. [PMID: 32190534 PMCID: PMC7064741 DOI: 10.7150/ntno.32876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/25/2019] [Indexed: 11/05/2022] Open
Abstract
Vγ9Vδ2 T cell immunotherapy has been shown to be effective in delaying tumour growth in both pre-clinical and clinical studies. It has been pointed out the importance of the ability of cells to accumulate within tumours and the association with therapeutic efficacy in clinical studies of adoptive T cell transfer. We have previously reported that alendronate liposomes (L-ALD) increase the efficacy of this therapy after localised or systemic injection of γδ T cells in mice, inoculated with ovarian, melanoma, pancreatic or experimental lung metastasis tumour models, respectively. This study aimed to examine the organ biodistribution and tumour uptake of human γδ T cells in subcutaneous (SC), intraperitoneal (IP) or experimental metastatic lung tumours, established in NOD-SCID gamma (NSG) mice using the melanoma cell line A375Pβ6.luc. pre-injected with L-ALD. Overall, small variations in blood profiles and organ biodistribution of γδ T cells among the different tumour models were observed. Exceptionally, IP-tumour and experimental metastatic lung-tumour bearing mice pre-injected with L-ALD showed a significant decrease in liver accumulation, and highest uptake of γδ T cells in lungs and tumour-bearing lungs, respectively. Lower γδ T cell count was found in the SC and IP tumours.
Collapse
Affiliation(s)
- Julie T-W Wang
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Naomi O Hodgins
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wafa' T Al-Jamal
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jane K Sosabowski
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Khuloud T Al-Jamal
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
3
|
Zheng L, Wang Y, Yang B, Zhang B, Wu Y. Islet Transplantation Imaging in vivo. Diabetes Metab Syndr Obes 2020; 13:3301-3311. [PMID: 33061492 PMCID: PMC7520574 DOI: 10.2147/dmso.s263253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Although islet transplantation plays an effective and powerful role in the treatment of diabetes, a large amount of islet grafts are lost at an early stage due to instant blood-mediated inflammatory reactions, immune rejection, and β-cell toxicity resulting from immunosuppressive agents. Timely intervention based on the viability and function of the transplanted islets at an early stage is crucial. Various islet transplantation imaging techniques are available for monitoring the conditions of post-transplanted islets. Due to the development of various imaging modalities and the continuous study of contrast agents, non-invasive islet transplantation imaging in vivo has made great progress. The tracing and functional evaluation of transplanted islets in vivo have thus become possible. However, most studies on contrast agent and imaging modalities are limited to animal experiments, and long-term toxicity and stability need further evaluation. Accordingly, the clinical application of the current achievements still requires a large amount of effort. In this review, we discuss the contrast agents for MRI, SPECT/PET, BLI/FI, US, MPI, PAI, and multimodal imaging. We further summarize the advantages and limitations of various molecular imaging methods.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Yinghao Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bin Yang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Correspondence: Bo Zhang; Yulian Wu Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China Tel/Fax +86 571 87783563 Email ;
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| |
Collapse
|
4
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Kim D, Jun HS. In Vivo Imaging of Transplanted Pancreatic Islets. Front Endocrinol (Lausanne) 2017; 8:382. [PMID: 29403437 PMCID: PMC5786518 DOI: 10.3389/fendo.2017.00382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/26/2017] [Indexed: 01/08/2023] Open
Abstract
The beta-cells in the islets of Langerhans in the pancreas secrete insulin and play an important role in glucose homeostasis. Diabetes, characterized by hyperglycemia, results from an absolute or a relative deficiency of the pancreatic beta-cell mass. Islet transplantation has been considered to be a useful therapeutic approach, but it is largely unsuccessful because most of the transplanted islets are lost in the early stage of transplantation. To evaluate the efficacy of intervention methods for the improvement of islet survival, monitoring of the functional islet mass is needed. Various techniques to image and track transplanted islets have been investigated to assess islets after transplantation. In this review, recent progresses in imaging methods to visualize islets are discussed.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon, South Korea
- *Correspondence: Hee-Sook Jun,
| |
Collapse
|
6
|
Johnson LC, Ovchinnikov O, Shokouhi S, Peterson TE. Development of a Germanium Small-Animal SPECT System. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2015; 2015:2036-2042. [PMID: 26755832 PMCID: PMC4706230 DOI: 10.1109/tns.2015.2448673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector's excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector's energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction.
Collapse
Affiliation(s)
- Lindsay C. Johnson
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA and is now with the University of Pennsylvania Department of Radiology, Philadelphia PA 19104 USA
| | - Oleg Ovchinnikov
- Vanderbilt University Institute of Imaging Science and the Department of Physics, Nashville, TN 37232 USA
| | - Sepideh Shokouhi
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging Science, the Department of Physics and Astronomy, and the Department of Radiology and Radiological Sciences Nashville, TN 37232 USA
| |
Collapse
|
7
|
Kojima A, Gotoh K, Shimamoto M, Hasegawa K, Okada S. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection. Ann Nucl Med 2015; 30:169-75. [PMID: 26395374 DOI: 10.1007/s12149-015-1028-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/11/2015] [Indexed: 01/28/2023]
|
8
|
Timmins R, Ruddy TD, Wells RG. Patient position alters attenuation effects in multipinhole cardiac SPECT. Med Phys 2015; 42:1233-40. [DOI: 10.1118/1.4908015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014; 30:619-34. [PMID: 24974176 PMCID: PMC4138257 DOI: 10.1016/j.ejmp.2014.05.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Micron-scale computed tomography (micro-CT) is an essential tool for phenotyping and for elucidating diseases and their therapies. This work is focused on preclinical micro-CT imaging, reviewing relevant principles, technologies, and applications. Commonly, micro-CT provides high-resolution anatomic information, either on its own or in conjunction with lower-resolution functional imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). More recently, however, advanced applications of micro-CT produce functional information by translating clinical applications to model systems (e.g., measuring cardiac functional metrics) and by pioneering new ones (e.g. measuring tumor vascular permeability with nanoparticle contrast agents). The primary limitations of micro-CT imaging are the associated radiation dose and relatively poor soft tissue contrast. We review several image reconstruction strategies based on iterative, statistical, and gradient sparsity regularization, demonstrating that high image quality is achievable with low radiation dose given ever more powerful computational resources. We also review two contrast mechanisms under intense development. The first is spectral contrast for quantitative material discrimination in combination with passive or actively targeted nanoparticle contrast agents. The second is phase contrast which measures refraction in biological tissues for improved contrast and potentially reduced radiation dose relative to standard absorption imaging. These technological advancements promise to develop micro-CT into a commonplace, functional and even molecular imaging modality.
Collapse
Affiliation(s)
- D P Clark
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA
| | - C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
11
|
Ransohoff JD, Wu JC. Imaging stem cell therapy for the treatment of peripheral arterial disease. Curr Vasc Pharmacol 2012; 10:361-73. [PMID: 22239638 PMCID: PMC3683543 DOI: 10.2174/157016112799959404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
Arteriosclerotic cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Therapeutic angiogenesis aims to treat ischemic myocardial and peripheral tissues by delivery of recombinant proteins, genes, or cells to promote neoangiogenesis. Concerns regarding the safety, side effects, and efficacy of protein and gene transfer studies have led to the development of cell-based therapies as alternative approaches to induce vascular regeneration and to improve function of damaged tissue. Cell-based therapies may be improved by the application of imaging technologies that allow investigators to track the location, engraftment, and survival of the administered cell population. The past decade of investigations has produced promising clinical data regarding cell therapy, but design of trials and evaluation of treatments stand to be improved by emerging insight from imaging studies. Here, we provide an overview of pre-clinical and clinical experience using cell-based therapies to promote vascular regeneration in the treatment of peripheral arterial disease. We also review four major imaging modalities and underscore the importance of in vivo analysis of cell fate for a full understanding of functional outcomes.
Collapse
Affiliation(s)
- Julia D. Ransohoff
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Regenerative Medicine and Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Abstract
PURPOSE We have generated transgenic mouse lines expressing the positron emission tomography (PET) reporter gene, sr39tk, under the control of the mouse insulin I promoter (MIP-sr39tk) to image endogenous islets using PET. PROCEDURES The MIP-sr39tk transgene was constructed using the 8.3 kb fragment of the mouse insulin I promoter and the sr39tk coding sequence from the mrfp-hrl-ttk trifusion construct. Expression of sr39TK in beta cells was confirmed by fluorescence immunohistochemistry of pancreatic sections. Histological sections were used to determine beta cell mass, islet area and islet number. Beta cell function was determined using intraperitoneal glucose tolerance tests. For ex vivo biodistrubution, mice were injected i.v. with 9.25 MBq [(18)F]fluorohydroxymethyl-butyl-guanine (FHBG), euthanized 1 h later and pancreata and other organs were collected and counted. For PET scans, mice were injected i.v. with 9.25 MBq [(18)F]FHBG, and dynamic scans were conducted for 1 h, followed by a 30 min static acquisition. To induce type 1 diabetes-like symptoms, MIP-sr39tk mice were injected i.p. with 40 mg/kg streptozotocin (STZ) once per day for five consecutive days, and biodistribution and PET scans were conducted thereafter. RESULTS Ex vivo quantification of [(18)F]FHBG uptake in the pancreas showed a 4.5-fold difference in transgenic vs. non-transgenics, confirming that expression of sr39TK results in the retention of the PET tracer. In STZ-treated MIP-sr39tk mice, impairments in glucose tolerance and decreases in beta cell mass correlated significantly with a diminishment in [(18)F]FHBG uptake before fasting hyperglycemia became apparent. CONCLUSIONS The MIP-sr39tk mouse demonstrates that PET imaging can detect changes in beta cell mass that precede the onset of diabetes.
Collapse
|
13
|
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62:1125-38. [PMID: 20854861 DOI: 10.1016/j.addr.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed.
Collapse
|
14
|
Chuang KH, Wang HE, Cheng TC, Tzou SC, Tseng WL, Hung WC, Tai MH, Chang TK, Roffler SR, Cheng TL. Development of a universal anti-polyethylene glycol reporter gene for noninvasive imaging of PEGylated probes. J Nucl Med 2010; 51:933-41. [PMID: 20484433 DOI: 10.2967/jnumed.109.071977] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED A reporter gene can provide important information regarding the specificity and efficacy of gene or cell therapies. Although reporter genes are increasingly used in experimental and clinical studies, a highly specific yet nonimmunogenic reporter that can track genes and cells in vivo by multiple imaging technologies still awaits development. In this study, we constructed a versatile and nonimmunogenic reporter gene to noninvasively image gene expression or cell delivery by optical imaging, MRI, and small-animal PET. METHODS We cloned and expressed a membrane-anchored anti-polyethylene glycol (PEG) reporter that consists of the Fab fragment of a mouse anti-PEG monoclonal antibody, AGP3, fused to the C-like extracellular-transmembrane-cytosolic domains of the mouse B7-1 receptor. Binding of PEGylated probes (PEG-NIR797 for optical imaging, PEG-superparamagnetic iron oxide for MRI, and (124)I-PEG for small-animal PET) were examined in vitro and in vivo. In addition, we compared the specificity, immunogenicity, and probe toxicity of the anti-PEG reporter with the gold standard reporter gene, type 1 herpes simplex virus thymidine kinase (HSV-tk). Finally, we derived a humanized anti-PEG reporter and evaluated its imaging function in vivo with subcutaneous and metastatic tumor models in mice. RESULTS The cells or tumors that stably expressed anti-PEG reporters selectively accumulated various PEGylated imaging probes and could be detected by optical imaging, MRI, and small-animal PET. Importantly, the anti-PEG reporter displayed an imaging specificity comparable to the HSV-tk reporter but did not provoke immune responses or cause toxicity to the host. Furthermore, the humanized anti-PEG reporter retained high imaging specificity in vivo. CONCLUSION The highly specific and nonimmunogenic anti-PEG reporter may be paired with PEGylated probes to provide a valuable system to image gene expression or cell delivery in experimental and clinical studies.
Collapse
Affiliation(s)
- Kuo-Hsiang Chuang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Goorden MC, Beekman FJ. High-resolution tomography of positron emitters with clustered pinhole SPECT. Phys Med Biol 2010; 55:1265-77. [DOI: 10.1088/0031-9155/55/5/001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
|
17
|
Kraitchman DL, Bulte JWM. In vivo imaging of stem cells and Beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 2009; 29:1025-30. [PMID: 19359666 DOI: 10.1161/atvbaha.108.165571] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular transplantation therapy offers a means to stimulate cardiovascular repair either by direct (graft-induced) or indirect (host-induced) tissue regeneration or angiogenesis. Typically, autologous or donor cells of specific subpopulations are expanded exogenously before administration to enrich the cells most likely to participate in tissue repair. In animal models of cardiovascular disease, the fate of these exogenous cells can be determined using histopathology. Recently, methods to label cells with contrast agents or transduce cells with reporter genes to produce imaging beacons has enabled the serial and dynamic assessment of the survival, fate, and engraftment of these cells with noninvasive imaging. Although cell tracking methods for cardiovascular applications have been most studied in stem or progenitor cells, research in tracking of whole islet transplants and particularly insulin producing beta cells has implications to the cardiovascular community attributable to the vascular changes associated with diabetes mellitus. In this review article, we will explore some of the state-of-the art methods for stem, progenitor, and beta cell tracking.
Collapse
Affiliation(s)
- Dara L Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Baltimore, MD, USA.
| | | |
Collapse
|
18
|
Abstract
Diabetes mellitus results in impaired insulin production by pancreatic beta-cells due to their death and/or dysfunction. There is a growing unmet need among diabetes researches and clinicians to assess the level of surviving beta-cells non-invasively. This review will focus on employment of state-of-the-art in vivo imaging methods to estimate and evaluate beta-cell mass in animal models of diabetes.
Collapse
Affiliation(s)
- Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
19
|
Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging 2009; 5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Personalized treatment using stem, modified or genetically engineered, cells is becoming a reality in the field of medicine, in which allogenic or autologous cells can be used for treatment and possibly for early diagnosis of diseases. Hematopoietic, stromal and organ specific stem cells are under evaluation for cell-based therapies for cardiac, neurological, autoimmune and other disorders. Cytotoxic or genetically altered T-cells are under clinical trial for the treatment of hematopoietic or other malignant diseases. Before using stem cells in clinical trials, translational research in experimental animal models are essential, with a critical emphasis on developing noninvasive methods for tracking the temporal and spatial homing of these cells to target tissues. Moreover, it is necessary to determine the transplanted cell's engraftment efficiency and functional capability. Various in vivo imaging modalities are in use to track the movement and incorporation of administered cells. Tagging cells with reporter genes, fluorescent dyes or different contrast agents transforms them into cellular probes or imaging agents. Recent reports have shown that magnetically labeled cells can be used as cellular magnetic resonance imaging (MRI) probes, demonstrating the cell trafficking to target tissues. In this review, we will discuss the methods to transform cells into probes for in vivo imaging, along with their advantages and disadvantages as well as the future clinical applicability of cellular imaging method and corresponding imaging modality.
Collapse
Affiliation(s)
- Ali S Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | |
Collapse
|
20
|
Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 2008; 53:R319-50. [PMID: 18758005 DOI: 10.1088/0031-9155/53/19/r01] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small-animal imaging has a critical role in phenotyping, drug discovery and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo x-ray based small-animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging.
Collapse
Affiliation(s)
- C T Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|