1
|
Demir B, Soydal C, Kucuk NO, Celebioglu EC, Bilgic MS, Kuru Oz D, Elhan AH, Kir KM. Voxel-based dosimetry with integrated Y-90 PET/MRI and prediction of response of primary and metastatic liver tumors to radioembolization with Y-90 glass microspheres. Ann Nucl Med 2024:10.1007/s12149-024-01974-w. [PMID: 39207630 DOI: 10.1007/s12149-024-01974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE In this study, we aimed to evaluate the response of the primary and metastatic liver tumors to radioembolization with 90Y glass microspheres and investigate its correlations with dosimetric variables calculated with 90Y PET/MRI. METHODS In this ambispective study, 44 patients treated with 90Y glass microspheres and imaged with 90Y PET/MRI were included for analysis. Dosimetric analysis was performed for every perfused lesion using dose-volume histograms. Response was assessed by comparing pre-treatment and follow-up total lesion glycolysis (TLG) values derived from 18F-FDG PET imaging. The relationship between ΔTLG and log-transformed dosimetric variables was analyzed with linear mixed effects regression models. ROC analyses were performed to compare discriminatory power of the variables in predicting response and complete response. RESULTS Regression and ROC analyses demonstrated that mean tumor dose and almost all D values were statistically significant predictors of treatment response and complete treatment response. Specifically, D60, D70 and D80 values exhibited significantly higher discriminatory power for predicting treatment response compared to the mean dose (Dmean) delivered to tumor. High specificity cut-off values to predict response were determined as 160.75 Gy for Dmean, 95.50 Gy for D60, 89 Gy for D70, and 59.50 Gy for D80. Similarly, high-specificity cut-off values to predict complete response were 262.75 Gy for Dmean, 173 Gy for D70, 140.5 Gy for D80, and 100 Gy for D90. CONCLUSION In this study, we demonstrated that voxel-based dosimetry with post-treatment 90Y PET/MRI can predict response to treatment. D60, D70 and D80 variables also did have greater discriminatory power compared to Dmean in prediction of response. In addition, we present high-specificity cut-offs to predict response (CR + PR) and complete response (CR) for both Dmean and several D variables derived from dose-volume histograms.
Collapse
Affiliation(s)
- Burak Demir
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey.
| | - Cigdem Soydal
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| | - Nuriye Ozlem Kucuk
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| | | | | | - Digdem Kuru Oz
- Department of Radiology, Ankara University Medical School, Ankara, Turkey
| | - Atilla Halil Elhan
- Department of Biostatistics, Ankara University Medical School, Ankara, Turkey
| | - Kemal Metin Kir
- Department of Nuclear Medicine, Ankara University Medical School, Ankara, Turkey
| |
Collapse
|
2
|
Franzè MS, Vigneron P, Sessa A, Saitta C, Chalaye J, Tacher V, Luciani A, Regnault H, Bejan A, Rhaiem R, Sommacale D, Leroy V, Brustia R, Raimondo G, Amaddeo G. Prognostic factors influencing outcomes in hepatocellular carcinoma patients undergoing selective internal radiation therapy. Ann Hepatol 2024; 30:101539. [PMID: 39179159 DOI: 10.1016/j.aohep.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 08/26/2024]
Abstract
Selective internal radiation therapy (SIRT) has emerged as a viable endovascular treatment strategy for hepatocellular carcinoma (HCC). According to the Barcelona Clinic Liver Cancer (BCLC) classification, SIRT is currently recommended for early- and intermediate-stage HCC that is unsuitable for alternative locoregional therapies. Additionally, SIRT remains a recommended treatment for patients with advanced-stage HCC and portal vein thrombosis (PVT) without extrahepatic metastasis. Several studies have shown that SIRT is a versatile and promising treatment with a wide range of applications. Consequently, given its favourable characteristics in various scenarios, SIRT could be an encouraging treatment option for patients with HCC across different BCLC stages. Over the past decade, an increasing number of studies have focused on better understanding the prognostic factors associated with SIRT to identify patients who derive the most benefit from this treatment or to refine the optimal technical procedures of SIRT. Several variables can influence treatment decisions, with a growing emphasis on a personalised approach. This review, based on the literature, will focus on the prognostic factors associated with the effectiveness of radioembolization and related complications. By comprehensively analysing these factors, we aimed to provide a clearer understanding of how to optimise the use of SIRT in managing HCC patients, thereby enhancing outcomes across various clinical scenarios.
Collapse
Affiliation(s)
- Maria Stella Franzè
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paul Vigneron
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Anna Sessa
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Julia Chalaye
- Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Vania Tacher
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Alain Luciani
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Hélène Regnault
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Ancuta Bejan
- Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Rami Rhaiem
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatobiliary, Pancreatic and Digestive Surgery, Robert Debré University Hospital, Reims, France; University Reims Champagne-Ardenne, France
| | - Daniele Sommacale
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Digestive and Hepatobiliary Surgery, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Vincent Leroy
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Raffaele Brustia
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Digestive and Hepatobiliary Surgery, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuliana Amaddeo
- Université Paris-Est Créteil, UPEC, Créteil, France; INSERM, U955, Team "Virus Hépatologie Cancer", Créteil, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Créteil, France.
| |
Collapse
|
3
|
Kim TP, Gandhi RT, Tolakanahalli R, Herrera R, Chuong MD, Gutierrez AN, Alvarez D. Establishing Updated Safety Standards for Independent 99mTc-MAA SPECT/CT Treatment Planning in Radioembolization. Int J Radiat Oncol Biol Phys 2024; 119:1285-1296. [PMID: 38925768 DOI: 10.1016/j.ijrobp.2023.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 06/28/2024]
Abstract
PURPOSE Significant improvements within radioembolization imaging and dosimetry permit the development of an accurate and personalized pretreatment plan using technetium 99m-labeled macroaggregated albumin (99mTc-MAA) and single-photon emission computed tomography (SPECT) combined with anatomical CT (SPECT/CT). Despite these potential advantages, the clinical transition to pretreatment protocols with SPECT/CT is hindered by their unknown safety constraints. This study aimed to address this issue by establishing novel dose limits for 99mTc-MAA SPECT/CT to enable quantitative pretreatment planning. METHODS AND MATERIALS Stratification criteria to determine images most viable for dosimetry analysis were created from a cohort of 85 patients. SPECT/CT, cone beam CT, and activity calculations derived from the local deposition method were used to create an accurate pretreatment protocol. Planar and SPECT/CT images were compared using linear regression and modified Bland-Altman analyses to convert accepted planar dose limits to SPECT/CT. To validate these new dose limits, activity calculations based on SPECT/CT were compared with those calculated with the body surface area and planar methods for three treatment plans. RESULTS A total of 38 of 85 patients were deemed viable for dosimetry analysis. SPECT yielded greater lung shunt fractions (LSFs) than planar imaging when LSFs were <4.89%, whereas SPECT yielded lower LSFs than planar imaging when LSFs were >4.89%. Planar to SPECT/CT dose conversions were 0.76×, 0.70×, and 0.55× for the whole liver, normal liver, and lungs, respectively. Patients with SPECT LSFs ≤4.89% were safely treated with the direct application of planar lung dose limits. Activity calculations with the newly established SPECT/CT dose limits were greater than those of the body surface area method by a median range of 33.1% to 61.9% and were lower than planar-based activity calculations by a median range of 12.5% to 13.7% for the whole liver and by 29.4% to 32.2% for the normal liver. CONCLUSIONS This study demonstrated a safe method for translating dose limits from 99mTc-MAA planar imaging to SPECT/CT. A robust pretreatment protocol was further developed guided by the current knowledge in the field. Established SPECT/CT dose limits safely treated 97.5% of patients and permitted the application of independent pretreatment planning with 99mTc-MAA SPECT/CT.
Collapse
Affiliation(s)
| | - Ripal T Gandhi
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida; Interventional Radiology Department, Miami Cardiac and Vascular Institute, Miami, Florida
| | | | - Robert Herrera
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| | - Michael D Chuong
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| | | | - Diane Alvarez
- Radiation Oncology Department, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
4
|
Topcuoglu OM, Orhan T, Gormez A, Alan N. Are survival outcomes dependent on the tumour dose threshold of 139 Gy in patients with chemorefractory metastatic colorectal cancer treated with yttrium-90 radioembolization using glass particles? A real-world single-centre study. Br J Radiol 2024; 97:1255-1260. [PMID: 38730551 PMCID: PMC11186554 DOI: 10.1093/bjr/tqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To compare the survival and objective response rate (ORR) of the patients receiving estimated tumour absorbed dose (ETAD) <140 Gy versus ETAD ≥140 Gy in patients with advanced chemorefractory colorectal carcinoma liver metastases (CRCLM) treated with yttrium-90 transarterial radioembolization (90Y TARE). METHODS Between August 2016 and August 2023 adult patients with unresectable, chemorefractory CRCLM treated with 90Y TARE using glass particles, were retrospectively enrolled. Primary outcomes were overall survival (OS) and hepatic progression free survival (hPFS). Secondary outcome was ORR. RESULTS A total of 40 patients with a mean age of 66.2 ± 7.8 years met the inclusion criteria. Mean ETAD for group 1 (ETAD <140 Gy) and group 2 (ETAD ≥140) were 131.2 ± 17.4 Gy versus 195 ± 45.6 Gy, respectively. The mean OS and hPFS for group 1 versus group 2 were 12 ± 10.3 months and 8.1 ± 9.3 months versus 9.3 ± 3 months and 7.1 ± 8.4 months, respectively and there were no significant differences (P = .181 and P = .366, respectively). ORR did not show significant difference between the groups (P = .432). CONCLUSION In real-world practice, no significant difference was found in OS, hPFS, and ORR between patients who received ETAD <140 Gy versus ETAD ≥140 Gy in patients with CRCLM, in this series. ADVANCES IN KNOWLEDGE This study demonstrated that increased tumour absorbed doses in radioembolization may not provide additional significant advantage for OS and hPFS for patients with CRCLM.
Collapse
Affiliation(s)
| | - Tolga Orhan
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu 34718, Turkey
| | - Ayşegul Gormez
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu 34718, Turkey
| | - Nalan Alan
- Department of Nuclear Medicine, Yeditepe University Hospitals, Kosuyolu 34718, Turkey
| |
Collapse
|
5
|
Cutrì E, Morel-Corlu E, Rolland Y, Saint-Jalmes H, Eliat PA, Garin E, Bezy-Wendling J. A microscopic model of the dose distribution in hepatocellular carcinoma after selective internal radiation therapy. Phys Med 2024; 122:103384. [PMID: 38824827 DOI: 10.1016/j.ejmp.2024.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The dosimetry evaluation for the selective internal radiation therapy is currently performed assuming a uniform activity distribution, which is in contrast with literature findings. A 2D microscopic model of the perfused liver was developed to evaluate the effect of two different 90Y microspheres distributions: i) homogeneous partitioning with the microspheres equally distributed in the perfused liver, and ii) tumor-clustered partitioning where the microspheres distribution is inferred from the patient specific images. METHODS Two subjects diagnosed with liver cancer were included in this study. For each subject, abdominal CT scans acquired prior to the SIRT and post-treatment 90Y positron emission tomography were considered. Two microspheres partitionings were simulated namely homogeneous and tumor-clustered partitioning. The homogeneous and tumor-clustered partitionings were derived starting from CT images. The microspheres radiation is simulated by means of Russell's law. RESULTS In homogenous simulations, the dose delivery is uniform in the whole liver while in the tumor-clustered simulations a heterogeneous distribution of the delivered dose is visible with higher values in the tumor regions. In addition, in the tumor-clustered simulation, the delivered dose is higher in the viable tumor than in the necrotic tumor, for all patients. In the tumor-clustered case, the dose delivered in the non-tumoral tissue (NTT) was considerably lower than in the perfused liver. CONCLUSIONS The model proposed here represents a proof-of-concept for personalized dosimetry assessment based on preoperative CT images.
Collapse
Affiliation(s)
- Elena Cutrì
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France; Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, 60203 Compiègne Cedex, France; Inria, Saclay Ile-de-France, Palaiseau, 91120, France.
| | - Ewan Morel-Corlu
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Yan Rolland
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Hervé Saint-Jalmes
- Univ Rennes, CLCC Eugène Marquis, Inserm, LTSI - UMR 1099, F-35000, Rennes, France
| | - Pierre-Antoine Eliat
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, St Gilles, Rennes, France; CNRS, INSERM, Biosit UAR 3480 US_S 018, PRISM, Univ Rennes, Rennes, France
| | - Etienne Garin
- INRAE, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, St Gilles, Rennes, France; Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | | |
Collapse
|
6
|
Kesim S, Balaban Genc ZC, Soydemir E, Baltacioglu F, Kissa TN, Ozdemir B, Ozguven S, Filizoglu N, Niftaliyeva K, Engur CO, Kostek O, Akdeniz E, Turoglu HT, Erdil TY, Cimsit C, Ones T. Evaluating therapeutic efficacy of extended shelf-life 90 Y glass microspheres in transarterial radioembolization for colorectal cancer: a quantitative FDG PET/CT analysis. Nucl Med Commun 2024; 45:268-277. [PMID: 38214074 DOI: 10.1097/mnm.0000000000001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVES There is a lack of sufficient evidence regarding the use of extended shelf-life (ExSL) Yttrium-90 ( 90 Y) glass radiomicrospheres in metastatic colorectal cancer (mCRC) patients. We aimed to investigate the efficacy of ExSL 90 Y glass radiomicrospheres with a personalized treatment approach by analyzing 18 F-FDG PET/CT quantitative parameters [metabolic tumor volume (MTV) and total lesion glycolysis (TLG)] separately before and after the treatment. METHODS A total of 93 radioembolization sessions involving 77 patients were included. Simplicit 90 Y software was utilized to perform multicompartmental voxel-based dosimetry. Adverse events were recorded using the CTCAE v5.0 criteria. The survival data were recorded in detail. RESULTS The overall disease control rate was 84.9%, with a median overall survival (OS) of 12.7 months and median progression-free survival (PFS) of 8.3 months. A statistically significant increase in treatment response rate was observed when there was an increase in absorbed tumor dose for pre-treatment unit MTV ( P = 0.005) and TLG ( P = 0.004) values. We didn't observe any additional side effects/vital risks that could be considered clinically significant. CONCLUSION Our study has provided evidence on the therapeutic effectiveness and safety in terms of dose-toxicity profile of ExSL 90 Y glass microspheres in a large cohort of mCRC patients. With a personalized treatment approach, the increase in radiation dose absorbed by the tumor has shown a significant contribution to treatment response rate, as indicated by quantitative measurements obtained through 18 F-FDG PET/CT.
Collapse
Affiliation(s)
- Selin Kesim
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | | | - Efe Soydemir
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Feyyaz Baltacioglu
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Tugba Nergiz Kissa
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Berdan Ozdemir
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Salih Ozguven
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Nuh Filizoglu
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Khanim Niftaliyeva
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Ceren Ozge Engur
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Osman Kostek
- Department of Internal Medicine, Division of Medical Oncology, Pendik Research and Training Hospital, Marmara University and
| | - Esra Akdeniz
- Department of Medical Education, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Halil Turgut Turoglu
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Tanju Yusuf Erdil
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| | - Cagatay Cimsit
- Department of Radiology, Pendik Research and Training Hospital, Marmara University,
| | - Tunc Ones
- Department of Nuclear Medicine, Pendik Research and Training Hospital, Marmara University,
| |
Collapse
|
7
|
Roll W, Masthoff M, Köhler M, Rahbar K, Stegger L, Ventura D, Morgül H, Trebicka J, Schäfers M, Heindel W, Wildgruber M, Schindler P. Radiomics-Based Prediction Model for Outcome of Radioembolization in Metastatic Colorectal Cancer. Cardiovasc Intervent Radiol 2024; 47:462-471. [PMID: 38416178 DOI: 10.1007/s00270-024-03680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE To evaluate the benefit of a contrast-enhanced computed tomography (CT) radiomics-based model for predicting response and survival in patients with colorectal liver metastases treated with transarterial Yttrium-90 radioembolization (TARE). MATERIALS AND METHODS Fifty-one patients who underwent TARE were included in this single-center retrospective study. Response to treatment was assessed using the Response Evaluation Criteria in Solid Tumors (RECIST 1.1) at 3-month follow-up. Patients were stratified as responders (complete/partial response and stable disease, n = 24) or non-responders (progressive disease, n = 27). Radiomic features (RF) were extracted from pre-TARE CT after segmentation of the liver tumor volume. A model was built based on a radiomic signature consisting of reliable RFs that allowed classification of response using multivariate logistic regression. Patients were assigned to high- or low-risk groups for disease progression after TARE according to a cutoff defined in the model. Kaplan-Meier analysis was performed to analyze survival between high- and low-risk groups. RESULTS Two independent RF [Energy, Maximal Correlation Coefficient (MCC)], reflecting tumor heterogeneity, discriminated well between responders and non-responders. In particular, patients with higher magnitude of voxel values in an image (Energy), and texture complexity (MCC), were more likely to fail TARE. For predicting treatment response, the area under the receiver operating characteristic curve of the radiomics-based model was 0.75 (95% CI 0.48-1). The high-risk group had a shorter overall survival than the low-risk group (3.4 vs. 6.4 months, p < 0.001). CONCLUSION Our CT radiomics model may predict the response and survival outcome by quantifying tumor heterogeneity in patients treated with TARE for colorectal liver metastases.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Max Masthoff
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Michael Köhler
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - David Ventura
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Haluk Morgül
- Department for General, Visceral and Transplantation Surgery, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Jonel Trebicka
- Department of Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Walter Heindel
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Department of Radiology, University Hospital LMU, Munich, Munich, Germany
| | - Philipp Schindler
- Clinic for Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
- West German Cancer Centre (WTZ), Münster Site, Münster, Germany.
| |
Collapse
|
8
|
Dieudonné A, Bailly C, Cachin F, Edet-Sanson A, Kraeber-Bodéré F, Hapdey S, Merlin C, Robin P, Salaun PY, Schwartz P, Tonnelet D, Vera P, Courbon F, Carlier T. Dosimetry for targeted radionuclide therapy in routine clinical practice: experts advice vs. clinical evidence. Eur J Nucl Med Mol Imaging 2024; 51:947-950. [PMID: 38110711 PMCID: PMC10881593 DOI: 10.1007/s00259-023-06568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France.
- Service de Médecine Nucléaire, Centre Henri Becquerel, 76000, Rouen, France.
| | - Clément Bailly
- Department of Nuclear Medicine, University Hospital, Nantes, France
| | - Florent Cachin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Agathe Edet-Sanson
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | | | - Sébastien Hapdey
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Charles Merlin
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Philippe Robin
- Department of Nuclear Medicine, University Hospital, Brest, France
| | | | - Paul Schwartz
- Department of Nuclear Medicine, University Hospital, Bordeaux, France
| | - David Tonnelet
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Pierre Vera
- Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France
| | - Frédéric Courbon
- Department of Medical Imaging, Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | - Thomas Carlier
- Department of Nuclear Medicine, University Hospital, Nantes, France
| |
Collapse
|
9
|
Wagemans MEHM, Kunnen B, Stella M, van Rooij R, Smits M, Bruijnen R, Lam MGEH, de Jong HWAM, Braat AJAT. Comparison of 3 Different Therapeutic Particles in Radioembolization of Locally Advanced Intrahepatic Cholangiocarcinoma. J Nucl Med 2024; 65:272-278. [PMID: 38176716 DOI: 10.2967/jnumed.123.265597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
Our objective was to compare 3 different therapeutic particles used for radioembolization in locally advanced intrahepatic cholangiocarcinoma. Methods: 90Y-glass, 90Y-resin, and 166Ho-labeled poly(l-lactic acid) microsphere prescribed activity was calculated as per manufacturer recommendations. Posttreatment quantitative 90Y PET/CT and quantitative 166Ho SPECT/CT were used to determine tumor-absorbed dose, whole-normal-liver-absorbed dose, treated-normal-liver-absorbed dose, tumor-to-nontumor ratio, lung-absorbed dose, and lung shunt fraction. Response was assessed using RECIST 1.1 and the [18F]FDG PET-based change in total lesion glycolysis. Hepatotoxicity was assessed using the radioembolization-induced liver disease classification. Results: Six 90Y-glass, 8 90Y-resin, and 7 166Ho microsphere patients were included for analysis. The mean administered activity was 2.6 GBq for 90Y-glass, 1.5 GBq for 90Y-resin, and 7.0 GBq for 166Ho microspheres. Tumor-absorbed dose and treated-normal-liver-absorbed dose were significantly higher for 90Y-glass than for 90Y-resin and 166Ho microspheres (mean tumor-absorbed dose, 197 Gy for 90Y-glass vs. 73 Gy for 90Y-resin and 50 Gy for 166Ho; mean treated-normal-liver-absorbed dose, 79 Gy for 90Y-glass vs. 37 Gy for 90Y-resin and 31 Gy for 166Ho). The whole-normal-liver-absorbed dose and tumor-to-nontumor ratio did not significantly differ between the particles. All patients had a lung-absorbed dose under 30 Gy and a lung shunt fraction under 20%. The 3 groups showed similar toxicity and response according to RECIST 1.1 and [18F]FDG PET-based total lesion glycolysis changes. Conclusion: The therapeutic particles used for radioembolization differed from each other and showed significant differences in absorbed dose, whereas toxicity and response were similar for all groups. This finding emphasizes the need for separate dose constraints and dose targets for each particle.
Collapse
Affiliation(s)
- Martijn E H M Wagemans
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
- Image Sciences Institute, UMC Utrecht and University Utrecht, Utrecht, The Netherlands
| | - Martina Stella
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Maarten Smits
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Rutger Bruijnen
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
10
|
Garin E, Tselikas L, Guiu B, Chalaye J, Rolland Y, de Baere T, Assenat E, Tacher V, Palard X, Déandreis D, Mariano-Goulart D, Amaddeo G, Boudjema K, Hollebecque A, Meerun MA, Regnault H, Vibert E, Campillo-Gimenez B, Edeline J. Long-Term Overall Survival After Selective Internal Radiation Therapy for Locally Advanced Hepatocellular Carcinomas: Updated Analysis of DOSISPHERE-01 Trial. J Nucl Med 2024; 65:264-269. [PMID: 38212068 PMCID: PMC10858378 DOI: 10.2967/jnumed.123.266211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Interim analysis of the DOSISPHERE-01 study demonstrated a strong improvement in response and overall survival (OS) on using 90Y-loaded glass microspheres with personalized dosimetry compared with standard dosimetry in patients with nonoperable locally advanced hepatocellular carcinoma. This report sought to provide a long-term analysis of OS. Methods: In this phase II study (ClinicalTrials.gov identifier NCT02582034), treatment was randomly assigned (1:1) with the goal to deliver either at least 205 Gy (if possible >250-300 Gy) to the index lesion in the personalized dosimetry approach (PDA) or 120 ± 20 Gy to the treated volume in the standard dosimetry approach (SDA). The 3-mo response of the index lesion was the primary endpoint, with OS being one of the secondary endpoints. This report is a post hoc long-term analysis of OS. Results: Overall, 60 hepatocellular carcinoma patients with at least 1 lesion larger than 7 cm and more than 30% of hepatic reserve were randomized (intent-to-treat population: PDA, n = 31; SDA, n = 29), with 56 actually treated (modified intent-to-treat population: n = 28 in each arm). The median follow-up for long-term analysis was 65.8 mo (range, 2.1-73.1 mo). Median OS was 24.8 mo and 10.7 mo (hazard ratio [HR], 0.51; 95% CI, 0.29-0.9; P = 0.02) for PDA and SDA, respectively, in the modified intent-to-treat population. Median OS was 22.9 mo for patients with a tumor dose of at least 205 Gy, versus 10.3 mo for those with a tumor dose of less than 205 Gy (HR, 0.42; 95% CI, 0.22-0.81; P = 0.0095), and was 22.9 mo for patients with a perfused liver dose of 150 Gy or higher, versus 10.3 mo for those with a perfused liver dose of less than 150 Gy (HR, 0.42; 95% CI, 0.23-0.75; P = 0.0033). Lastly, median OS was not reached in patients who were secondarily resected (n = 11, 10 in the PDA group and 1 in the SDA group), versus 10.8 mo in those without secondary resection (n = 45) (HR, 0.17; 95% CI, 0.065-0.43; P = 0.0002). Only resected patients displayed favorable long-term OS rates, meaning an OS of more than 50% at 5 y. Conclusion: After longer follow-up, personalized dosimetry sustained a meaningful improvement in OS, which was dramatically improved for patients who were accurately downstaged toward resection, including most portal vein thrombosis patients.
Collapse
Affiliation(s)
- Etienne Garin
- Cancer Institute Eugene Marquis, Rennes, France;
- University of Rennes, INSERM, INRAE, Nutrition Métabolismes et Cancer U1317, Rennes, France
| | | | - Boris Guiu
- Montpellier University Hospital, Montpellier, France
| | - Julia Chalaye
- AP-HP, Hopitaux Universitaires Henri Mondor, Creteil, France
| | - Yan Rolland
- Cancer Institute Eugene Marquis, Rennes, France
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, France
| | | | - Eric Assenat
- Montpellier University Hospital, Montpellier, France
| | - Vania Tacher
- AP-HP, Hopitaux Universitaires Henri Mondor, Creteil, France
| | | | | | | | | | - Karim Boudjema
- Department of Hepatobiliary and Digestive Surgery, CHU Rennes, Rennes, France
| | | | | | - Helen Regnault
- AP-HP, Hopitaux Universitaires Henri Mondor, Creteil, France
| | - Eric Vibert
- Centre Hepato-Biliaire, Paul Brousse Hospital, AP-HP, Paris Saclay University, Villejuif, France; and
| | - Boris Campillo-Gimenez
- Cancer Institute Eugene Marquis, Rennes, France
- University of Rennes, INSERM, LTSI-UMR 1099, Rennes, France
| | - Julien Edeline
- Cancer Institute Eugene Marquis, Rennes, France
- University of Rennes, INSERM, COSS-UMR_S 1242, Rennes, France
| |
Collapse
|
11
|
Lam M, Garin E, Palard-Novello X, Mahvash A, Kappadath C, Haste P, Tann M, Herrmann K, Barbato F, Geller B, Schaefer N, Denys A, Dreher M, Fowers KD, Gates V, Salem R. Direct comparison and reproducibility of two segmentation methods for multicompartment dosimetry: round robin study on radioembolization treatment planning in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 51:245-257. [PMID: 37698645 PMCID: PMC10684706 DOI: 10.1007/s00259-023-06416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Investigate reproducibility of two segmentation methods for multicompartment dosimetry, including normal tissue absorbed dose (NTAD) and tumour absorbed dose (TAD), in hepatocellular carcinoma patients treated with yttrium-90 (90Y) glass microspheres. METHODS TARGET was a retrospective investigation in 209 patients with < 10 tumours per lobe and at least one tumour ≥ 3 cm ± portal vein thrombosis. Dosimetry was compared using two distinct segmentation methods: anatomic (CT/MRI-based) and count threshold-based on pre-procedural 99mTc-MAA SPECT. In a round robin substudy in 20 patients with ≤ 5 unilobar tumours, the inter-observer reproducibility of eight reviewers was evaluated by computing reproducibility coefficient (RDC) of volume and absorbed dose for whole liver, whole liver normal tissue, perfused normal tissue, perfused liver, total perfused tumour, and target lesion. Intra-observer reproducibility was based on second assessments in 10 patients ≥ 2 weeks later. RESULTS 99mTc-MAA segmentation calculated higher absorbed doses compared to anatomic segmentation (n = 209), 43.9% higher for TAD (95% limits of agreement [LoA]: - 49.0%, 306.2%) and 21.3% for NTAD (95% LoA: - 67.6%, 354.0%). For the round robin substudy (n = 20), inter-observer reproducibility was better for anatomic (RDC range: 1.17 to 3.53) than 99mTc-MAA SPECT segmentation (1.29 to 7.00) and similar between anatomic imaging modalities (CT: 1.09 to 3.56; MRI: 1.24 to 3.50). Inter-observer reproducibility was better for larger volumes. Perfused normal tissue volume RDC was 1.95 by anatomic and 3.19 by 99mTc-MAA SPECT, with corresponding absorbed dose RDC 1.46 and 1.75. Total perfused tumour volume RDC was higher, 2.92 for anatomic and 7.0 by 99mTc-MAA SPECT with corresponding absorbed dose RDC of 1.84 and 2.78. Intra-observer variability was lower for perfused NTAD (range: 14.3 to 19.7 Gy) than total perfused TAD (range: 42.8 to 121.4 Gy). CONCLUSION Anatomic segmentation-based dosimetry, versus 99mTc-MAA segmentation, results in lower absorbed doses with superior reproducibility. Higher volume compartments, such as normal tissue versus tumour, exhibit improved reproducibility. TRIAL REGISTRATION NCT03295006.
Collapse
Affiliation(s)
- Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Etienne Garin
- Nuclear Medicine Department, Eugene Marquis Center, Rennes, France
| | | | - Armeen Mahvash
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheenu Kappadath
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Haste
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Tann
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Brian Geller
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | | | | - Vanessa Gates
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Pham TP, Presles B, Popoff R, Alberini JL, Vrigneaud JM. Pre-treatment dosimetry in 90Y-SIRT: Is it possible to optimise SPECT reconstruction parameters and calculation methods for accurate dosimetry? Phys Med 2023; 115:103145. [PMID: 37852020 DOI: 10.1016/j.ejmp.2023.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE The aim of this study was (a) to optimise the99mTc-SPECT reconstruction parameters for the pre-treatment dosimetry of90Y-selective internal radiation therapy (SIRT) and (b) to compare the accuracy of clinical dosimetry methods with full Monte-Carlo dosimetry (fMCD) performed with Gate. METHODS To optimise the reconstruction parameters, two hundred reconstructions with different parameters were performed on a NEMA phantom, varying the number of iterations, subsets, and post-filtering. The accuracy of the dosimetric methods was then investigated using an anthropomorphic phantom. Absorbed dose maps were generated using (1) the Partition Model (PM), (2) the Dose Voxel Kernel (DVK) convolution, and (3) the Local Deposition Method (LDM) with known activity restricted to the whole phantom (WP) or to the liver and lungs (LL). The dose to the lungs was calculated using the "multiple DVK" and "multiple LDM" methods. RESULTS Optimal OSEM reconstruction parameters were found to depend on object size and dosimetric criterion chosen (Dmean or DVH-derived metric). The Dmean of all three dosimetric methods was close (≤ 10%) to the Dmean of fMCD simulations when considering large segmented volumes (whole liver, normal liver). In contrast, the Dmean to the small volume (∅=31) was systemically underestimated (12%-25%). For lungs, the "multiple DVK" and "multiple LDM" methods yielded a Dmean within 20% for the WP method and within 10% for the LL method. CONCLUSIONS All three methods showed a substantial degradation of the dose-volume histograms (DVHs) compared to fMCD simulations. The DVK and LDM methods performed almost equally well, with the "multiple DVK" method being more accurate in the lungs.
Collapse
Affiliation(s)
- Tien-Phong Pham
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| | - Benoit Presles
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France
| | - Romain Popoff
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Louis Alberini
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France
| | - Jean-Marc Vrigneaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) - UMR CNRS 6302, University of Burgundy, Dijon, France; Department of Nuclear Medicine, Georges-François Leclerc Cancer Centre, Dijon, France.
| |
Collapse
|
13
|
Lee YB, Nam JY, Cho EJ, Lee JH, Yu SJ, Kim HC, Paeng JC, Yoon JH, Kim YJ. A Phase I/IIa Trial of Yttrium-90 Radioembolization in Combination with Durvalumab for Locally Advanced Unresectable Hepatocellular Carcinoma. Clin Cancer Res 2023; 29:3650-3658. [PMID: 37459133 DOI: 10.1158/1078-0432.ccr-23-0581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Synergistic effect of radiotherapy and immunotherapy for the treatment of hepatocellular carcinoma (HCC) has been reported. This phase I/IIa pilot trial evaluated preliminary efficacy and safety of combination of radioembolization with yttrium-90 microspheres (Y90-radioembolization) and durvalumab in patients with locally advanced unresectable HCC. PATIENTS AND METHODS Patients with Child-Pugh score ≤ 7 and locally advanced HCC, defined as Barcelona Clinic Liver Cancer (BCLC) stage B HCC or BCLC-C disease without extrahepatic metastases, received Y90-radioembolization followed by intravenous durvalumab 1,500 mg 7 to 14 days after Y90-radioembolization and every 4 weeks thereafter. Primary endpoint was time to progression (TTP) assessed by modified RECIST (mRECIST). Secondary endpoints included overall survival (OS), progression-free survival (PFS), objective response rate (ORR) determined by mRECIST, and safety. RESULTS All 24 patients enrolled received Y90-radioembolization and 23 received at least one dose of durvalumab. Median follow-up duration was 19.0 months (range, 2.2-24.2). Median TTP was 15.2 months [95% confidence interval (CI), 6.1-not estimated]. Median OS was not reached and 18-month OS rate was 58.3% (95% CI, 36.4-75.0). Median PFS was 6.9 months (95% CI, 5.4-15.2). Seven (29.2%) patients had a complete response and 13 (54.2%) had a partial response; ORR was 83.3% (95% CI, 62.6-95.3). Eleven (47.8%) patients experienced any-grade treatment-related adverse events. Two (8.7%) patients had grade 3 treatment-related adverse events (neutropenia and fever). None experienced any treatment-related serious adverse events. CONCLUSIONS In patients with locally advanced unresectable HCC, the combination of Y90-radioembolization and durvalumab demonstrated promising efficacy and safety, warranting further evaluation in large-scale controlled trials.
Collapse
Affiliation(s)
- Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeul Nam
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Jeschke M, Ludwig JM, Leyh C, Pabst KM, Weber M, Theysohn JM, Lange CM, Herrmann K, Schmidt HHJ, Jochheim LS. Bilobar Radioembolization Carries the Risk of Radioembolization-Induced Liver Disease in the Treatment of Advanced Hepatocellular Carcinoma: Safety and Efficacy Comparison to Systemic Therapy with Atezolizumab/Bevacizumab. Cancers (Basel) 2023; 15:4274. [PMID: 37686549 PMCID: PMC10486761 DOI: 10.3390/cancers15174274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Recommended treatment options for advanced-stage hepatocellular carcinoma (HCC) include systemic therapy (ST) and trans-arterial radioembolization (TARE) with Yttrium-90 (Y90). Before the approval of immune-checkpoint inhibitors, a similar safety profile was reported for TARE and ST with tyrosine kinase inhibitors (TKI). However, whole-liver treatment and underlying cirrhosis were identified as risk factors for potentially lethal radioembolization-induced liver disease (REILD). Therefore, the safety and efficacy of TARE and ST with atezolizumab/bevacizumab were compared in patients with advanced HCC involving at least both liver lobes in a retrospective real-world cohort. In total, 74 patients with new or recurrent advanced-stage HCC (BCLC stage B/C) were included if treated with either bilobar TARE (n = 33) or systemic combination therapy with atezolizumab plus bevacizumab (n = 41). Most patients had compensated liver function (90.5% were classified as Child-Pugh Score A, 73% as ALBI Grade 1) at baseline. Although not significant, patients treated with ST showed a more prolonged overall survival than those treated with Y90 TARE (7.1 months vs. 13.0 months, p = 0.07). While a similar disease control rate could be achieved with bilobar TARE and atezolizumab/bevacizumab, in the TARE group, overall survival was curtailed by the occurrence of REILD. In patients with underlying liver cirrhosis, the liver function at baseline was a predictor for REILD.
Collapse
Affiliation(s)
- Matthias Jeschke
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johannes M. Ludwig
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Catherine Leyh
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Kim M. Pabst
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, 45147 Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, 45147 Essen, Germany
| | - Jens M. Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian M. Lange
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), University Hospital Essen, 45147 Essen, Germany
| | - Hartmut H. -J. Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Leonie S. Jochheim
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
15
|
Doppler M, Reincke M, Bettinger D, Vogt K, Weiss J, Schultheiss M, Uller W, Verloh N, Goetz C. Predictive Value of [ 99mTc]-MAA-Based Dosimetry in Hepatocellular Carcinoma Patients Treated with [ 90Y]-TARE: A Single-Center Experience. Diagnostics (Basel) 2023; 13:2432. [PMID: 37510175 PMCID: PMC10378141 DOI: 10.3390/diagnostics13142432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Transarterial radioembolization is a well-established method for the treatment of hepatocellular carcinoma. The tolerability and incidence of hepatic decompensation are related to the doses delivered to the tumor and healthy liver. This retrospective study was performed at our center to evaluate whether tumor- and healthy-liver-absorbed dose levels in TARE are predictive of tumor response according to the mRECIST 1.1 criteria and overall survival. One hundred and six patients with hepatocellular carcinoma were treated with [90Y]-loaded resin microspheres and completed the follow-up. The dose delivered to each compartment was calculated using a compartmental model. The model was based on [99mTc]-labelled albumin aggregate images obtained before the start of therapy. Tumor response was assessed after three months of treatment. Kaplan-Meier analysis was used to assess survival. The mean age of our population was 66 ± 13 years with a majority being BCLC B tumors. Forty-two patients presented with portal vein thrombosis. The response rate was 57% in the overall population and 59% in patients with thrombosis. Target-to-background (TBR) values measured on initial [99mTc]MAA-SPECT-imaging and tumor model dosimetric values were associated with tumor response (p < 0.001 and p = 0.009, respectively). A dosimetric threshold of 136.5 Gy was predictive of tumor response with a sensitivity of 84.2% and specificity of 89.4%. Overall survival was 24.1 months [IQR 13.1-36.4] for patients who responded to treatment compared to 10.4 months [IQR 6.3-15.9] for the remaining patients (p = 0.022). In this cohort, the initial [99mTc]MAA imaging is predictive of response and survival. The dosimetry prior to the application of TARE can be used for treatment planning and our results also suggest that the therapy is well-tolerated. In particular, hepatic decompensation can be predicted even in the presence of PVT.
Collapse
Affiliation(s)
- Michael Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Marlene Reincke
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Katharina Vogt
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Christian Goetz
- Department of Nuclear Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| |
Collapse
|
16
|
Abstract
During the past 30 years, several advances have been made allowing for safer and more effective treatment of patients with liver cancer. This report reviews recent advances in radiation therapy for primary liver cancers including hepatocellular carcinoma and intrahepatic cholangiocarcinoma. First, studies focusing on liver stereotactic body radiation therapy (SBRT) are reviewed focusing on lessons learned and knowledge gained from early pioneering trials. Then, new technologies to enhance SBRT treatments are explored including adaptive therapy and MRI-guided and biology-guided radiation therapy. Finally, treatment with Y-90 transarterial radioembolization is reviewed with a focus on novel approaches focused on personalized therapy.
Collapse
|
17
|
Patel MV, McNiel D, Brunson C, Kuo PH, Hennemeyer CT, Woodhead G, McGregor H. Prior ablation and progression of disease correlate with higher tumor-to-normal liver 99mTc-MAA uptake ratio in hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:752-757. [PMID: 36344658 DOI: 10.1007/s00261-022-03718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Factors affecting tumor-to-normal tissue ratio (T:N) have implications for patient selection, dosimetry, and outcomes when considering radioembolization for HCC. This study sought to evaluate patient, disease specific, and technical parameters that predict T:N as measured on planning pre-90Y radioembolization 99mTc-MAA scintigraphy for hepatocellular carcinoma (HCC). METHODS 99mTc-MAA hepatic angiography procedures with SPECT/CT over a 4-year period were reviewed. Data recorded included patient demographics, details of underlying liver disease, tumor size, history of prior treatments for HCC and technical parameters from angiography. Anatomic-based segmentation was performed in 93 cases for measurement of tumor and perfused liver volumes and SPECT counts. T:N were calculated and correlated with collected variables. RESULTS Mean calculated T:N was 2.52. History of prior ablation was significantly correlated with higher T:N (mean 3.39 vs 2.24, p = 0.003). Cases in which mapping was being performed for treatment of disease progression was significantly correlated with higher T:N (mean 3.35 vs 2.14, p = 0.001). Larger tumor size trended toward lower T:N (p = 0.052). CONCLUSION Patients with history of ablation and those undergoing treatment for disease progression have higher T:N and, therefore, could be considered for radioembolization preferentially over alternative treatments.
Collapse
Affiliation(s)
- Mikin V Patel
- Department of Radiology, University of Chicago Medical Center, 5841 S Maryland Ave, MC 2026, Chicago, IL, 60637, USA.
| | - David McNiel
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Christopher Brunson
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Phillip H Kuo
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Hugh McGregor
- Department of Radiology, University of Washington Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Oliván-Sasot P, Pérez-Enguix D, Bello-Arques P, Torres-Espallardo I, Falgás-Lacueva M, Yepes-Agudelo AM, Olivas-Arroyo C. Radioembolization in patients with hepatocellular carcinoma: a series of 53 cases. RADIOLOGIA 2023; 65:12-21. [PMID: 36842781 DOI: 10.1016/j.rxeng.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/30/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To contribute our results to increase the scientific evidence about the use of radioembolization in the management of patients with hepatocellular carcinoma. MATERIAL AND METHODS This retrospective review included 53 patients with hepatocellular carcinoma treated with radioembolization at our center. Patients were classified according to the BCLC algorithm in detail according to their Child-Pugh functional status. We analyzed survival using the Kaplan-Meier method. We used Cox regression analysis to determine clinically significant parameters, including the doses administered in the parameters studied. RESULTS Patients ranged in age from 28 to 86 years (mean, 60 years). A total of 61 procedures were done. The mean activity administered was 2.8GBq (0.7-6.4GBq), with a mean dose of 229.9Gy (74-425.9Gy) administered in the tumor. Progression-free survival was 6.7 months and overall survival was 12.8 months. Differences in disease-free survival according to BCLC and Child-Pugh classification were not significant (p=0.848 and p=0.252, respectively). The clinical parameters that were significantly different with respect to overall survival were bilirubin levels (p<0.001), pretreatment transaminase levels (AST) (p=0.022), Child-Pugh subclassification (p=0.003), and dose administered in the tumor (p=0.001). Only one patient had a severe adverse reaction, developing posttreatment liver failure resulting in death. CONCLUSIONS Radioembolization is safe and efficacious in the treatment of patients with hepatocellular carcinoma. Liver function and the doses received by the tumor are key parameters for the efficacy of treatment. The increase in the scientific evidence supports the inclusion of this technique in treatment guidelines.
Collapse
Affiliation(s)
- P Oliván-Sasot
- Medicina Nuclear, Hospital de La Ribera, Alzira, Valencia, Spain.
| | - D Pérez-Enguix
- Radiología Intervencionista, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - P Bello-Arques
- Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - M Falgás-Lacueva
- Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A M Yepes-Agudelo
- Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - C Olivas-Arroyo
- Radiofarmacia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
19
|
A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. J Clin Med 2022; 11:jcm11237245. [PMID: 36498819 PMCID: PMC9736029 DOI: 10.3390/jcm11237245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Selective internal radiation therapy (SIRT) is one of the treatment options for liver tumors. Microspheres labelled with a therapeutic radionuclide (90Y or 166Ho) are injected into the liver artery feeding the tumor(s), usually achieving a high tumor absorbed dose and a high tumor control rate. This treatment adopts a theranostic approach with a mandatory simulation phase, using a surrogate to radioactive microspheres (99mTc-macroaggregated albumin, MAA) or a scout dose of 166Ho microspheres, imaged by SPECT/CT. This pre-therapy imaging aims to evaluate the tumor targeting and detect potential contraindications to SIRT, i.e., digestive extrahepatic uptake or excessive lung shunt. Moreover, the absorbed doses to the tumor(s) and the healthy liver can be estimated and used for planning the therapeutic activity for SIRT optimization. The aim of this review is to evaluate the accuracy of this theranostic approach using pre-therapy imaging for simulating the biodistribution of the microspheres. This review synthesizes the recent publications demonstrating the advantages and limitations of pre-therapy imaging in SIRT, particularly for activity planning.
Collapse
|
20
|
Trotta N, Collette B, Mathey C, Vierasu I, Bucalau AM, Verset G, Moreno-Reyes R, Goldman S. Comparison of PMT-based TF64 and SiPM-based Vereos PET/CT systems for 90 Y imaging and dosimetry optimization: A quantitative study. Med Phys 2022; 49:7567-7582. [PMID: 35894818 DOI: 10.1002/mp.15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Selective internal radiotherapy based on transarterial radioembolization (TARE) with yttrium-90 (90 Y) microspheres is an established treatment for primary or metastatic liver disease. PURPOSE The objective of this work is to optimize the dosimetry of patients treated with 90 Y TARE, using positron emission tomography (PET) images. METHODS The NEMA 2012 PET phantom was filled with nearly 3.9 GBq of 90 Y activity and acquired at days 0, 3, 5, 7, and 9 on a classic time-of-flight PET/computed tomography (CT) scanner (Philips TF64) and on a silicon photomultiplier (SiPM)-based PET/CT scanner (Philips Vereos). Acquisitions were carried on following the guidelines proposed in a previously published multicentric trial and images were reconstructed by varying and combining the available parameters. Comparisons were performed to identify the best set(s) of parameters leading to the most accurate 90 Y-PET image(s), in terms of activity distribution. Then, for both scanners, the best images were analyzed with Simplicit90 Y, a personalized dosimetry software using multicompartmental Medical Internal Radiation Dose model. The comparison between measured and true doses allowed to identify the image granting the most consistent dose estimations and, therefore, to designate the set of parameters to be applied on patients' data for the reconstruction of optimized clinical images. Posttreatment dosimetry of four patients was then realized with Simplicit90 Y using optimized imaging datasets. RESULTS Based on activity distribution comparisons and dose estimations over phantom and patients data, the SiPM-based PET/CT system appeared more suitable than the photomultiplier tube-based TF64 for 90 Y-PET imaging. With the SiPM-based PET/CT system, reconstructed images with a 2-mm voxel size combined with the application of the point spread function correction led to the most accurate results for quantitative 90 Y measures. CONCLUSIONS For the SiPM-based PET/CT scanner, an optimized set of reconstruction parameters has been identified and applied on patients' data in order to generate the most accurate image to be used for an improved personalized 90 Y-PET dosimetry, ensuring a reliable evaluation of the delivered doses.
Collapse
Affiliation(s)
- Nicola Trotta
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Benoît Collette
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Céline Mathey
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Irina Vierasu
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana-Maria Bucalau
- Department of Gastroenterology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gontran Verset
- Department of Gastroenterology, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Moreno-Reyes
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Department, of Nuclear Medicine, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Dieudonné A, Sanchez-Garcia M, Bando-Delaunay A, Lebtahi R. Concepts and methods for the dosimetry of radioembolisation of the liver with Y-90-loaded microspheres. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:998793. [PMID: 39390993 PMCID: PMC11464973 DOI: 10.3389/fnume.2022.998793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 10/12/2024]
Abstract
This article aims at presenting in a didactic way, dosimetry concepts and methods that are relevant for radio-embolization of the liver with 90Y-microspheres. The application of the medical internal radiation dose formalism to radio-embolization is introduced. This formalism enables a simplified dosimetry, where the absorbed dose in a given tissue depends on only its mass and initial activity. This is applied in the single-compartment method, partition model, for the liver, tumour and lung dosimetry, and multi-compartment method, allowing identification of multiple tumours. Voxel-based dosimetry approaches are also discussed. This allows taking into account the non-uniform uptake within a compartment, which translates into a non-uniform dose distribution, represented as a dose-volume histogram. For this purpose, dose-kernel convolution allows propagating the energy deposition around voxel-sources in a computationally efficient manner. Alternatively, local-energy deposition is preferable when the spatial resolution is comparable or larger than the beta-particle path. Statistical tools may be relevant in establishing dose-effect relationships in a given population. These include tools such as the logistic regression or receiver operator characteristic analysis. Examples are given for illustration purpose. Moreover, tumour control probability modelling can be assessed through the linear-quadratic model of Lea and Catcheside and its counterpart, the normal-tissue complication probability model of Lyman, which is suitable to the parallel structure of the liver. The selectivity of microsphere administration allows tissue sparing, which can be considered with the concept of equivalent uniform dose, for which examples are also given. The implication of microscopic deposition of microspheres is also illustrated through a liver toxicity model, even though it is not clinically validated. Finally, we propose a reflection around the concept of therapeutic index (TI), which could help tailor treatment planning by determining the treatment safety through the evaluation of TI based on treatment-specific parameters.
Collapse
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
- Department of Nuclear Medicine, Henri Becquerel Center, Rouen, France
| | - Manuel Sanchez-Garcia
- Servicio de Radiofisica y Proteccion Radiologica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurélie Bando-Delaunay
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| |
Collapse
|
22
|
Kim E, Sher A, Abboud G, Schwartz M, Facciuto M, Tabrizian P, Knešaurek K, Fischman A, Patel R, Nowakowski S, Llovet J, Taouli B, Lookstein R. Radiation segmentectomy for curative intent of unresectable very early to early stage hepatocellular carcinoma (RASER): a single-centre, single-arm study. Lancet Gastroenterol Hepatol 2022; 7:843-850. [PMID: 35617978 DOI: 10.1016/s2468-1253(22)00091-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Unresectable solitary very early to early stage hepatocellular carcinoma is managed with ablation for curative intent. Radiation segmentectomy is a treatment option that delivers radioactive 90yttrium (90Y)-bound microspheres transarterially to a segment of liver. The aim of this study was to assess the safety and efficacy of radiation segmentectomy in patients with unresectable hepatocellular carcinoma deemed unfavourable for ablation. METHODS RASER was a single-centre, single-arm study that included adults (>18 years) with solitary hepatocellular carcinoma with unfavourable location for ablation, without metastasis or macrovascular invasion. Eligibility criteria included measurable disease 3 cm or less in diameter, Child-Pugh score A-B7, an Eastern Cooperative Oncology Group score of 0, and adequate haematological and organ function. The primary endpoint was target tumour response measured by mRECIST. Patients were followed up with imaging and office visits for up to 24 months. The trial is registered with ClinicalTrials.gov (NCT03248375), and is completed. FINDINGS Individuals were enrolled between Aug 3, 2016, and April 4, 2019, and the last patient follow-up occurred on March 31, 2021. Of the 44 individuals assessed for eligibility, 29 patients were included in the study. Initial target lesion complete response was observed in 24 (83%) of 29 patients, and partial response was observed in five (17%) of patients. All patients had an initial objective response and 26 (90%) individuals had a sustained complete response. Four (14%) patients had grade 3 leukopenia and two (7%) had grade 3 thrombocytopenia. There were two (7%) non-laboratory-related grade 3 adverse events (one arterial injury and one ascites). The most frequent (>10% patients) grade 1 or 2 adverse events were fatigue (nine [31%]); nausea, vomiting, or anorexia (seven [24%]); abdominal discomfort (six [21%]), leukopenia (nine [31%]), thrombocytopenia (four [14%]), increased alkaline phosphatase (four [14%]), increased alanine or aspartate aminotransferase (four [14%]), increased bilirubin (four [14%]), and decreased albumin (six [21%]). There was one death that was not treatment related. INTERPRETATION Radiation segmentectomy was efficacious, with a low proportion of high-grade adverse events in patients with unresectable very early to early stage hepatocellular carcinoma with suboptimal location for ablation. These results suggest that radiation segmentectomy should be further investigated as a potential curative treatment option for well selected patients. FUNDING Boston Scientific.
Collapse
Affiliation(s)
- Edward Kim
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alex Sher
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghadi Abboud
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- Mount Sinai Liver Cancer Program, Recanati-Miller Transplantation Institute and Department of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo Facciuto
- Mount Sinai Liver Cancer Program, Recanati-Miller Transplantation Institute and Department of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parissa Tabrizian
- Mount Sinai Liver Cancer Program, Recanati-Miller Transplantation Institute and Department of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karin Knešaurek
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron Fischman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rahul Patel
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott Nowakowski
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josep Llovet
- Mount Sinai Liver Cancer Program, Recanati-Miller Transplantation Institute and Department of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Lookstein
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Rognoni C, Barcellona MR, Bargellini I, Bavetta MG, Bellò M, Brunetto M, Carucci P, Cioni R, Crocetti L, D’Amato F, D’Amico M, Deagostini S, Deandreis D, De Simone P, Doriguzzi A, Finessi M, Fonio P, Grimaldi S, Ialuna S, Lagattuta F, Masi G, Moreci A, Scalisi D, Virdone R, Tarricone R. Cost-effectiveness analysis of personalised versus standard dosimetry for selective internal radiation therapy with TheraSphere in patients with hepatocellular carcinoma. Front Oncol 2022; 12:920073. [PMID: 36106105 PMCID: PMC9464985 DOI: 10.3389/fonc.2022.920073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Aims To perform a cost-effectiveness analysis (CEA) comparing personalised dosimetry with standard dosimetry in the context of selective internal radiation therapy (SIRT) with TheraSphere for the management of adult patients with locally advanced hepatocellular carcinoma (HCC) from the Italian Healthcare Service perspective. Materials and methods A partition survival model was developed to project costs and the quality-adjusted life years (QALYs) over a lifetime horizon. Clinical inputs were retrieved from a published randomised controlled trial. Health resource utilisation inputs were extracted from the questionnaires administered to clinicians in three oncology centres in Italy, respectively. Cost parameters were based on Italian official tariffs. Results Over a lifetime horizon, the model estimated the average QALYs of 1.292 and 0.578, respectively, for patients undergoing personalised and standard dosimetry approaches. The estimated mean costs per patient were €23,487 and €19,877, respectively. The incremental cost-utility ratio (ICUR) of personalised versus standard dosimetry approaches was €5,056/QALY. Conclusions Personalised dosimetry may be considered a cost-effective option compared to standard dosimetry for patients undergoing SIRT for HCC in Italy. These findings provide evidence for clinicians and payers on the value of personalised dosimetry as a treatment option for patients with HCC.
Collapse
Affiliation(s)
- Carla Rognoni
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Bocconi University, Milan, Italy
- *Correspondence: Carla Rognoni,
| | | | | | | | - Marilena Bellò
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | | | - Patrizia Carucci
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Roberto Cioni
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | | | - Fabio D’Amato
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Mario D’Amico
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Simona Deagostini
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Désirée Deandreis
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | | | - Andrea Doriguzzi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Monica Finessi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Paolo Fonio
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Serena Grimaldi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Salvatore Ialuna
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Fabio Lagattuta
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Gianluca Masi
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Antonio Moreci
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Daniele Scalisi
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Roberto Virdone
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Rosanna Tarricone
- Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Bocconi University, Milan, Italy
- Department of Policy Analysis and Public Management, Bocconi University, Milan, Italy
| |
Collapse
|
24
|
Trans-arterial Radioembolization Dosimetry in 2022. Cardiovasc Intervent Radiol 2022; 45:1608-1621. [PMID: 35982334 DOI: 10.1007/s00270-022-03215-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Trans-arterial radioembolization is currently performed using 90Y-loaded glass or resin microspheres and also using 166Ho-loaded microspheres. The goal of this review is to present dosimetry and radiobiology concepts, the different dosimetry approaches available (simulation-based dosimetry and post-treatment dosimetry), main confounding factors as main clinical dosimetry results provided during the last decade for both hepatocellular carcinoma (HCC) and metastases of colorectal carcinoma (mCRC). Based on the different number of microspheres or different isotope used, radiobiology of the three devices is different, meaning that tumouricidal doses and maximal tolerated doses are different. Tumouricidal doses described for HCCs were 100-120 grays (Gy) with 90Y resin microspheres and 205 Gy with 90Y glass microspheres. For mCRC, it is 39-60 with 90Y resin microspheres, 139 Gy with 90Y glass microspheres and 90 Gy with 166Ho microspheres. An impact of tumoural doses with overall survival has also been reported. Personalised dosimetry has been developed and is now recommended by several international expert groups. Level-one evidence of the major impact of personalised dosimetry on response and overall survival in HCC is now available, bringing a new standard approach for TARE in clinical practice as well as for trial design.
Collapse
|
25
|
Piwowarska-Bilska H, Kurkowska S, Birkenfeld B. Individualization of Radionuclide Therapies: Challenges and Prospects. Cancers (Basel) 2022; 14:cancers14143418. [PMID: 35884478 PMCID: PMC9316481 DOI: 10.3390/cancers14143418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Currently, patient-specific treatment plans and dosimetry calculations are not routinely performed for radionuclide therapies. In external beam radiotherapy, it is quite the opposite. As a result, a small fraction of patients receives optimal radioactivity. This conservative approach provides “radiation safety” to healthy tissues but delivers a lower than indicated absorbed dose to the tumors, resulting in a lower response rate and a higher disease relapse rate. Evidence shows that better and more predictable outcomes can be achieved with patient-individualized dose assessment. Therefore, the incorporation of individual planning into radionuclide therapies is a high priority for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor therapy to optimize the absorbed dose to the target tissue. The main reasons for the difficulties in incorporating patients’ internal dosimetry into routine clinical practice are discussed. The article presents the prospects for the routine implementation of personalized radionuclide therapies. Abstract The article presents the problems of clinical implementation of personalized radioisotope therapy. The use of radioactive drugs in the treatment of malignant and benign diseases is rapidly expanding. Currently, in the majority of nuclear medicine departments worldwide, patients receive standard activities of therapeutic radiopharmaceuticals. Intensively conducted clinical trials constantly provide more evidence of a close relationship between the dose of radiopharmaceutical absorbed in pathological tissues and the therapeutic effect of radioisotope therapy. Due to the lack of individual internal dosimetry (based on the quantitative analysis of a series of diagnostic images) before or during the treatment, only a small fraction of patients receives optimal radioactivity. The vast majority of patients receive too-low doses of ionizing radiation to the target tissues. This conservative approach provides “radiation safety” to healthy tissues, but also delivers lower radiopharmaceutical activity to the neoplastic tissue, resulting in a low level of response and a higher relapse rate. The article presents information on the currently used radionuclides in individual radioisotope therapies and on radionuclides newly introduced to the therapeutic market. It discusses the causes of difficulties with the implementation of individualized radioisotope therapies as well as possible changes in the current clinical situation.
Collapse
|
26
|
Costa G, Spencer B, Omidvari N, Foster C, Rusnak M, Hunt H, Caudle DT, Pillai RT, Vu CT, Roncali E. Radioembolization Dosimetry with Total-Body 90Y PET. J Nucl Med 2022; 63:1101-1107. [PMID: 34795015 PMCID: PMC9258581 DOI: 10.2967/jnumed.121.263145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Indexed: 01/26/2023] Open
Abstract
Transarterial radioembolization (TARE) is a locoregional radiopharmaceutical therapy based on the delivery of radioactive 90Y microspheres to liver tumors. The importance of personalized dosimetry to make TARE safer and more effective has been demonstrated in recent clinical studies, stressing the need for quantification of the dose-response relationship to ultimately optimize the administered activity before treatment and image it after treatment. 90Y dosimetric studies are challenging because of the lack of accurate and precise methods but are best realized with PET combined with Monte Carlo simulations and other image modalities to calculate a segmental dose distribution. The aim of this study was to assess the suitability of imaging 90Y PET patients with the total-body PET/CT uEXPLORER and to investigate possible improvements in TARE 90Y PET-based dosimetry. The uEXPLORER is the first commercially available ultra-high-resolution (171 cps/kBq) total-body digital PET/CT device with a 194-cm axial PET field of view that enables the whole body to be scanned at a single bed position. Methods: Two PET/CT scanners were evaluated in this study: the Biograph mCT and the total-body uEXPLORER. Images of a National Electrical Manufacturers Association (NEMA) image-quality phantom and 2 patients were reconstructed using our standard clinical oncology protocol. A late portal phase contrast-enhanced CT scan was used to contour the liver segments and create corresponding volumes of interest. To calculate the absorbed dose, Monte Carlo simulations were performed using Geant4 Application for Tomographic Emission (GATE). The absorbed dose and dose-volume histograms were calculated for all 6 spheres (diameters ranging from 10 to 37 mm) of the NEMA phantom, the liver segments, and the entire liver. Differences between the phantom doses and an analytic ground truth were quantified through the root mean squared error. Results: The uEXPLORER showed a higher signal-to-noise ratio at 10- and 13-mm diameters, consistent with its high spatial resolution and system sensitivity. The total liver-absorbed dose showed excellent agreement between the uEXPLORER and the mCT for both patients, with differences lower than 0.2%. Larger differences of up to 60% were observed when comparing the liver segment doses. All dose-volume histograms were in good agreement, with narrower tails for the uEXPLORER in all segments, indicating lower image noise. Conclusion: This patient study is compelling for the use of total-body 90Y PET for liver dosimetry. The uEXPLORER scanner showed a better signal-to-noise ratio than mCT, especially in lower-count regions of interest, which is expected to improve dose quantification and tumor dosimetry.
Collapse
Affiliation(s)
- Gustavo Costa
- Department of Biomedical Engineering, University of California–Davis, Davis, California; and
| | - Benjamin Spencer
- Department of Biomedical Engineering, University of California–Davis, Davis, California; and
| | - Negar Omidvari
- Department of Biomedical Engineering, University of California–Davis, Davis, California; and
| | - Cameron Foster
- Department of Radiology, University of California–Davis, Davis, California
| | - Michael Rusnak
- Department of Radiology, University of California–Davis, Davis, California
| | - Heather Hunt
- Department of Radiology, University of California–Davis, Davis, California
| | - Denise T. Caudle
- Department of Radiology, University of California–Davis, Davis, California
| | - Rex T. Pillai
- Department of Radiology, University of California–Davis, Davis, California
| | - Catherine Tram Vu
- Department of Radiology, University of California–Davis, Davis, California
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California–Davis, Davis, California; and,Department of Radiology, University of California–Davis, Davis, California
| |
Collapse
|
27
|
Hosseini Shabanan S, Nezami N, Abdelsalam ME, Sheth RA, Odisio BC, Mahvash A, Habibollahi P. Selective Internal Radiation Therapy with Yttrium-90 for Intrahepatic Cholangiocarcinoma: A Systematic Review on Post-Treatment Dosimetry and Concomitant Chemotherapy. Curr Oncol 2022; 29:3825-3848. [PMID: 35735415 PMCID: PMC9222092 DOI: 10.3390/curroncol29060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Selective internal radiation therapy (SIRT) with yttrium-90 (90Y)-loaded microspheres is increasingly used for the treatment of Intrahepatic Cholangiocarcinoma (ICC). Dosimetry verifications post-treatment are required for a valid assessment of any dose-response relationship. We performed a systematic review of the literature to determine how often clinics conducted post-treatment dosimetry verification to measure the actual radiation doses delivered to the tumor and to the normal liver in patients who underwent SIRT for ICC, and also to explore the corresponding dose-response relationship. We also investigated other factors that potentially affect treatment outcomes, including the type of microspheres used and concomitant chemotherapy. Out of the final 47 studies that entered our study, only four papers included post-treatment dosimetry studies after SIRT to quantitatively assess the radiation doses delivered. No study showed that one microsphere type provided a benefit over another, one study demonstrated better imaging-based response rates associated with the use of glass-based TheraSpheres, and two studies found similar toxicity profiles for different types of microspheres. Gemcitabine and cisplatin were the most common chemotherapeutic drugs for concomitant administration with SIRT. Future studies of SIRT for ICC should include dosimetry to optimize treatment planning and post-treatment radiation dosage measurements in order to reliably predict patient responses and liver toxicity.
Collapse
Affiliation(s)
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Mohamed E. Abdelsalam
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.E.A.); (R.A.S.); (B.C.O.); (A.M.)
| | - Rahul Anil Sheth
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.E.A.); (R.A.S.); (B.C.O.); (A.M.)
| | - Bruno C. Odisio
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.E.A.); (R.A.S.); (B.C.O.); (A.M.)
| | - Armeen Mahvash
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.E.A.); (R.A.S.); (B.C.O.); (A.M.)
| | - Peiman Habibollahi
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.E.A.); (R.A.S.); (B.C.O.); (A.M.)
| |
Collapse
|
28
|
Claxton L, Walton M, Sharif-Hurst S, Wade R, Eastwood A, Hodgson R. The Cost-Effectiveness of Selective Internal Radiation Therapies Compared With Sorafenib for Treating Advanced Unresectable Hepatocellular Carcinoma in the United Kingdom. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:787-795. [PMID: 35500948 DOI: 10.1016/j.jval.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To assess the cost-effectiveness of selective internal radiation therapy (SIRT) compared with sorafenib for the treatment of patients with advanced hepatocellular carcinoma in the United Kingdom, including a selected subgroup of patients who have been identified as benefiting from treatment with SIRT. METHODS A de novo economic model was developed comparing SIRT with sorafenib using data from two large randomized controlled trials. The model structure comprised a decision tree representing the outcome of the work-up procedure, transitioning into a 3-state partitioned survival model to project long-term survival outcomes. Cost-effectiveness in a post hoc defined subgroup with low tumor burden and good liver function was explored. RESULTS At list price, SIRT was predicted to be less costly but less effective than sorafenib with an estimated saving of £156 089 per quality-adjusted life-year forgone, with cost savings of £4589 and 0.029 fewer quality-adjusted life-years than sorafenib. Accounting for existing confidential discounts for sorafenib, two SIRTs were cost-effective at a £30 000 willingness-to-pay threshold compared with sorafenib when a discount for the technologies was introduced. In the subgroup with low tumor burden and good liver function, SIRT may be associated with greater survival benefits and cost savings. CONCLUSIONS Accounting for confidential discounts, on average, SIRT technologies represent value for money in the whole advanced hepatocellular carcinoma population, being less effective but less costly than sorafenib. Results from a subgroup with low tumor burden and good liver function suggest that the cost-effectiveness of SIRTs may be maximized in this group, but further research is required to demonstrate the validity of effectiveness benefits.
Collapse
Affiliation(s)
- Lindsay Claxton
- Centre for Reviews and Dissemination, University of York, York, England, UK
| | - Matthew Walton
- Centre for Reviews and Dissemination, University of York, York, England, UK
| | - Sahar Sharif-Hurst
- Centre for Reviews and Dissemination, University of York, York, England, UK
| | - Ros Wade
- Centre for Reviews and Dissemination, University of York, York, England, UK
| | - Alison Eastwood
- Centre for Reviews and Dissemination, University of York, York, England, UK
| | - Robert Hodgson
- Centre for Reviews and Dissemination, University of York, York, England, UK.
| |
Collapse
|
29
|
Stella M, Braat AJAT, Lam MGEH, de Jong HWAM, van Rooij R. 166Holmium- 99mTechnetium dual-isotope imaging: scatter compensation and automatic healthy-liver segmentation for 166Holmium radioembolization dosimetry. EJNMMI Phys 2022; 9:30. [PMID: 35445948 PMCID: PMC9023629 DOI: 10.1186/s40658-022-00459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Partition modeling allows personalized activity calculation for holmium-166 (166Ho) radioembolization. However, it requires the definition of tumor and non-tumorous liver, by segmentation and registration of a separately acquired CT, which is time-consuming and prone to error. A protocol including 166Ho-scout, for treatment simulation, and technetium-99m (99mTc) stannous phytate for healthy-liver delineation was proposed. This study assessed the accuracy of automatic healthy-liver segmentation using 99mTc images derived from a phantom experiment. In addition, together with data from a patient study, the effect of different 99mTc activities on the 166Ho-scout images was investigated. To reproduce a typical scout procedure, the liver compartment, including two tumors, of an anthropomorphic phantom was filled with 250 MBq of 166Ho-chloride, with a tumor to non-tumorous liver activity concentration ratio of 10. Eight SPECT/CT scans were acquired, with varying levels of 99mTc added to the non-tumorous liver compartment (ranging from 25 to 126 MBq). For comparison, forty-two scans were performed in presence of only 99mTc from 8 to 240 MBq. 99mTc image quality was assessed by cold-sphere (tumor) contrast recovery coefficients. Automatic healthy-liver segmentation, obtained by thresholding 99mTc images, was evaluated by recovered volume and Sørensen–Dice index. The impact of 99mTc on 166Ho images and the role of the downscatter correction were evaluated on phantom scans and twenty-six patients’ scans by considering the reconstructed 166Ho count density in the healthy-liver. Results All 99mTc image reconstructions were found to be independent of the 166Ho activity present during the acquisition. In addition, cold-sphere contrast recovery coefficients were independent of 99mTc activity. The segmented healthy-liver volume was recovered fully, independent of 99mTc activity as well. The reconstructed 166Ho count density was not influenced by 99mTc activity, as long as an adequate downscatter correction was applied. Conclusion The 99mTc image reconstructions of the phantom scans all performed equally well for the purpose of automatic healthy-liver segmentation, for activities down to 8 MBq. Furthermore, 99mTc could be injected up to at least 126 MBq without compromising 166Ho image quality. Clinical trials The clinical study mentioned is registered with Clinicaltrials.gov (NCT02067988) on February 20, 2014.
Collapse
Affiliation(s)
- Martina Stella
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
30
|
Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, Gnesin S, Bodei L, Kracmerova T, Luster M, Garin E, Herrmann K. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49:1682-1699. [PMID: 35146577 PMCID: PMC8940802 DOI: 10.1007/s00259-021-05600-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Primary liver tumours (i.e. hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC)) are among the most frequent cancers worldwide. However, only 10-20% of patients are amenable to curative treatment, such as resection or transplant. Liver metastases are most frequently caused by colorectal cancer, which accounts for the second most cancer-related deaths in Europe. In both primary and secondary tumours, radioembolization has been shown to be a safe and effective treatment option. The vast potential of personalized dosimetry has also been shown, resulting in markedly increased response rates and overall survival. In a rapidly evolving therapeutic landscape, the role of radioembolization will be subject to changes. Therefore, the decision for radioembolization should be taken by a multidisciplinary tumour board in accordance with the current clinical guidelines. The purpose of this procedure guideline is to assist the nuclear medicine physician in treating and managing patients undergoing radioembolization treatment. PREAMBLE: The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide among individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. These guidelines are intended to assist practitioners in providing appropriate nuclear medicine care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set out in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine involves not only the science but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognised that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- M Weber
- Department of Nuclear medicine, University clinic Essen, Essen, Germany.
| | - M Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - C Chiesa
- Nuclear Medicine, Foundation IRCCS National Tumour Institute, Milan, Italy
| | - M Konijnenberg
- Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - M Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - P Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - S Gnesin
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - L Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - T Kracmerova
- Department of Medical Physics, Motol University Hospital, Prague, Czech Republic
| | - M Luster
- Department of Nuclear medicine, University hospital Marburg, Marburg, Germany
| | - E Garin
- Department of Nuclear Medicine, Cancer, Institute Eugène Marquis, Rennes, France
| | - K Herrmann
- Department of Nuclear medicine, University clinic Essen, Essen, Germany
| |
Collapse
|
31
|
d’Abadie P, Walrand S, Lhommel R, Hesse M, Borbath I, Jamar F. Optimization of the Clinical Effectiveness of Radioembolization in Hepatocellular Carcinoma with Dosimetry and Patient-Selection Criteria. Curr Oncol 2022; 29:2422-2434. [PMID: 35448170 PMCID: PMC9024927 DOI: 10.3390/curroncol29040196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Selective internal radiation therapy (SIRT) is part of the treatment strategy for hepatocellular carcinoma (HCC). Strong clinical data demonstrated the effectiveness of this therapy in HCC with a significant improvement in patient outcomes. Recent studies demonstrated a strong correlation between the tumor response and the patient outcome when the tumor-absorbed dose was assessed by nuclear medicine imaging. Dosimetry plays a key role in predicting the clinical response and can be optimized using a personalized method of activity planning (multi-compartmental dosimetry). This paper reviews the main clinical results of SIRT in HCC and emphasizes the central role of dosimetry for improving it effectiveness. Moreover, some patient and tumor characteristics predict a worse outcome, and toxicity related to SIRT treatment of advanced HCC patient selection based on the performance status, liver function, tumor characteristics, and tumor targeting using technetium-99m macro-aggregated albumin scintigraphy can significantly improve the clinical performance of SIRT.
Collapse
Affiliation(s)
- Philippe d’Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
- Correspondence: ; Tel.: +32-2764-7944
| | - Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Renaud Lhommel
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Michel Hesse
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Ivan Borbath
- Department of Gastroenterology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| |
Collapse
|
32
|
Guiu B, Garin E, Allimant C, Edeline J, Salem R. TARE in Hepatocellular Carcinoma: From the Right to the Left of BCLC. Cardiovasc Intervent Radiol 2022; 45:1599-1607. [PMID: 35149884 DOI: 10.1007/s00270-022-03072-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
The Barcelona Clinic Liver Cancer (BCLC) system is the most commonly used staging system for hepatocellular carcinoma (HCC) in Western countries. BCLC aims to categorize patients into five stages with different prognoses and to allocate treatment according to these stages based on the best possible contemporary evidence. Transarterial radioembolization (TARE) has recently entered at the left of the BCLC algorithm (i.e., BCLC 0-A), mainly because of negative phase III trials in BCLC C stage. TARE has shown a steady increase in nationwide studies over the past 20 years and has even been adopted in some tertiary centers as the primary HCC treatment across all BCLC stages. We aimed to review the history of TARE in HCC, starting from advanced HCC and gradually expanding to earlier stages at the left of the BCLC system.
Collapse
Affiliation(s)
- Boris Guiu
- Department of Radiology, St-Eloi University Hospital, 80 Avenue Augustin Fliche, 34295, Montpellier, France.
| | - Etienne Garin
- Department of Nuclear Medicine, Centre de Lutte Contre le Cancer Eugène Marquis, 35000, Rennes, France
| | - Carole Allimant
- Department of Radiology, St-Eloi University Hospital, 80 Avenue Augustin Fliche, 34295, Montpellier, France
| | - Julien Edeline
- Department of Oncology, Centre de Lutte Contre le Cancer Eugène Marquis, 35000, Rennes, France
| | - Riad Salem
- Section of Interventional Radiology, Department of Radiology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
33
|
Danieli R, Milano A, Gallo S, Veronese I, Lascialfari A, Indovina L, Botta F, Ferrari M, Cicchetti A, Raspanti D, Cremonesi M. Personalized Dosimetry in Targeted Radiation Therapy: A Look to Methods, Tools and Critical Aspects. J Pers Med 2022; 12:205. [PMID: 35207693 PMCID: PMC8874397 DOI: 10.3390/jpm12020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Targeted radiation therapy (TRT) is a strategy increasingly adopted for the treatment of different types of cancer. The urge for optimization, as stated by the European Council Directive (2013/59/EURATOM), requires the implementation of a personalized dosimetric approach, similar to what already happens in external beam radiation therapy (EBRT). The purpose of this paper is to provide a thorough introduction to the field of personalized dosimetry in TRT, explaining its rationale in the context of optimization and describing the currently available methodologies. After listing the main therapies currently employed, the clinical workflow for the absorbed dose calculation is described, based on works of the most experienced authors in the literature and recent guidelines. Moreover, the widespread software packages for internal dosimetry are presented and critical aspects discussed. Overall, a selection of the most important and recent articles about this topic is provided.
Collapse
Affiliation(s)
- Rachele Danieli
- Dipartimento di Fisica, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Alessia Milano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | - Salvatore Gallo
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Ivan Veronese
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (S.G.); (I.V.)
- INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Alessandro Lascialfari
- INFN-Pavia Unit, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Luca Indovina
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Roma, Italy;
| | - Francesca Botta
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Mahila Ferrari
- Medical Physics Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy; (F.B.); (M.F.)
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy;
| | - Davide Raspanti
- Temasinergie S.p.A., Via Marcello Malpighi 120, 48018 Faenza, Italy;
| | - Marta Cremonesi
- Radiation Research Unit, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milano, Italy;
| |
Collapse
|
34
|
Realized tumor to normal ratios in hepatocellular carcinoma patients undergoing transarterial radioembolization: a retrospective evaluation. Eur Radiol 2022; 32:4160-4167. [PMID: 35032212 DOI: 10.1007/s00330-021-08501-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine the realized tumor to normal ratios (TNRs) in patients undergoing radiation segmentectomies (RS); determine the relationship between TNRs and particle load in transarterial radioembolization (TARE). METHODS In total, 148 patients who underwent 184 TARE procedures for hepatocellular carcinoma were evaluated. Post treatment SPECT CT bremsstrahlung imaging was analyzed utilizing Simplicit90y™ to determine realized TNR. A model which normalized activity across all RS treatments to a level that would achieve 400 Gy by unicompartmental dosing was created to determine the affect realized TNR would have on tumor absorbed dose. RESULTS The mean TNR in the setting of RS was 2.88 ± 1.60 and was higher for glass as compared to resin microspheres (3.07 ± 1.68 vs 2.24 ± 1.21, p = 0.01). The TNR was significantly greater in the RS as compared to the lobar deliveries (2.88 ± 1.60 vs 2.16 ± 1.12, p < 0.01). When normalizing the activity of RS treatments to the level required to achieve 400 Gy by unicompartmental calculations, there was found to be significant differences in the predicted tumor absorbed dose when separated by the median tumor dose (601.2 ± 133.3 vs 1146.9 ± 297.5, p < 0.01) or median realized TNR (1119.2 ± 341 Gy vs 635.7 ± 160.2 Gy, p < 0.01). Particle load was found to be associated with TNR on univariate (p < 0.01) and multivariate (p < 0.01) analysis. CONCLUSION Significant TNRs are seen in RS and perhaps argue for the use of multi-compartmental dosimetry techniques in this setting and particle load may affect TNR. KEY POINTS • Tumor to normal ratios were significantly higher in radiation segmentectomies than lobar deliveries. • Tumor to normal ratios were significantly higher when utilizing glass, as compared to resin microspheres. • When creating a model that prescribed the activity required to reach 400 Gy by MIRD, realized tumor dose varied significantly in radiation segmentectomies.
Collapse
|
35
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
36
|
Nuclear Medicine Therapy in primary liver cancers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Tong VJW, Shelat VG, Chao YK. Clinical application of advances and innovation in radiation treatment of hepatocellular carcinoma. J Clin Transl Res 2021; 7:811-833. [PMID: 34988334 PMCID: PMC8715712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) management has evolved over the past two decades, with the development of newer treatment modalities. While various options are available, unmet needs are reflected through the mixed treatment outcome for intermediate-stage HCC. As HCC is radiosensitive, radiation therapies have a significant role in management. Radiation therapies offer local control for unresectable lesions and for patients who are not surgical candidates. Radiotherapy also provides palliation in metastatic disease, and acts as a bridge to resection and transplantation in selected patients. Advancements in radiotherapy modalities offer improved dose planning and targeted delivery, allowing for better tumor response and safer dose escalations while minimizing the risks of radiation-induced liver damage. Radiotherapy modalities are broadly classified into external beam radiation therapy and selective internal radiation therapy. With emerging modalities, radiotherapy plays a complementary role in the multidisciplinary care of HCC patients. Aim We aim to provide an overview of the role and clinical application of radiation therapies in HCC management. Relevance for Patients The continuous evolution of radiotherapy techniques allows for improved therapeutic outcomes while mitigating unwanted adverse effects, making it an attractive modality in HCC management. Rigorous clinical studies, quality research and comprehensive datasets will further its application in the present era of evidence-based practice in Medicine.
Collapse
Affiliation(s)
- Valerie J. W. Tong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, 308433, Singapore
| | - Yew Kuo Chao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, 308433, Singapore
| |
Collapse
|
38
|
De la Garza-Ramos C, Toskich BB. Radioembolization for the Treatment of Hepatocellular Carcinoma: The Road to Personalized Dosimetry and Ablative Practice. Semin Intervent Radiol 2021; 38:466-471. [PMID: 34629715 DOI: 10.1055/s-0041-1735571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radioembolization dosimetry for the treatment of hepatocellular carcinoma has evolved alongside our understanding of best practice for this therapy. At the core of advances in dosimetry are personalized and ablative applications of radioembolization, which have generated paradigm shifts in both safety and efficacy. This review provides a summary of fundamental radioembolization dosimetry concepts and narrates how our approach to treating patients has shifted from conventional to tailored and definitive therapy.
Collapse
Affiliation(s)
| | - Beau B Toskich
- Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Florida
| |
Collapse
|
39
|
Sivananthan G, Tabori NE. Principles of Radioembolization. Semin Intervent Radiol 2021; 38:393-396. [PMID: 34629704 DOI: 10.1055/s-0041-1735606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Radioembolization has become a mainstay therapy in the treatment of primary and secondary liver cancers. This article will specifically discuss a brief history of yttrium treatment as well as an overview of the physical properties of the currently available devices. A discussion of the mechanism of action will be followed by a discussion on patient selection for this treatment.
Collapse
Affiliation(s)
- Gajan Sivananthan
- Division of Interventional Radiology, Department of Radiology, Georgetown Medical School, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Nora E Tabori
- Division of Interventional Radiology, Department of Radiology, Georgetown Medical School, MedStar Washington Hospital Center, Washington, District of Columbia
| |
Collapse
|
40
|
Kobe A, Zgraggen J, Messmer F, Puippe G, Sartoretti T, Alkadhi H, Pfammatter T, Mannil M. Prediction of treatment response to transarterial radioembolization of liver metastases: Radiomics analysis of pre-treatment cone-beam CT: A proof of concept study. Eur J Radiol Open 2021; 8:100375. [PMID: 34485629 PMCID: PMC8408624 DOI: 10.1016/j.ejro.2021.100375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To investigate the potential of texture analysis and machine learning to predict treatment response to transarterial radioembolization (TARE) on pre-interventional cone-beam computed tomography (CBCT) images in patients with liver metastases. Materials and Methods In this IRB-approved retrospective single-center study 36 patients with a total of 104 liver metastases (56 % male, mean age 61.1 ± 13 years) underwent CBCT prior to TARE and follow-up imaging 6 months after therapy. Treatment response was evaluated according to RECIST version 1.1 and dichotomized into disease control (partial response/stable disease) versus disease progression (progressive disease). After target lesion segmentation, 104 radiomics features corresponding to seven different feature classes were extracted with the pyRadiomics package. After dimension reduction machine learning classifications were performed on a custom artificial neural network (ANN). Ten-fold cross validation on a previously unseen test data set was performed. Results The average administered cumulative activity from TARE was 1.6 Gbq (± 0.5 Gbq). At a mean follow-up of 5.9 ± 0.8 months disease control was achieved in 82 % of metastases. After dimension reduction, 15 of 104 (15 %) texture analysis features remained for further analysis. On a previously unseen set of liver metastases the Multilayer Perceptron ANN yielded a sensitivity of 94.2 %, specificity of 67.7 % and an area-under-the receiver operating characteristics curve of 0.85. Conclusion Our study indicates that texture analysis-based machine learning may has potential to predict treatment response to TARE using pre-treatment CBCT images of patients with liver metastases with high accuracy.
Collapse
Key Words
- 90Y-microspheres, Yttrium-90-microspheres
- 99mTc-MAA, 99mtechnetium labelled macroaggregated albumin
- ANN, Artificial neural network
- CBCT, Cone-beam Computed Tomography
- CR, Complete response
- CT, Computed tomography
- Cone-Beam CT
- DICOM, Digital Imaging and Communications in Medicine
- GLCM, Gray-level co-occurrence matrix
- GLDM, Gray-level dependence matrix
- GLRLM, Gray-level run length matrix
- GLSZM, Gray-level size zone matrix
- ICC, Intraclass-correlation coefficient
- MR, Magnetic resonance
- Machine learning
- NGTDM, Neighboring gray tone difference matrix
- PD, Progressive disease
- PET, Positron emission tomography
- PR, Partial response
- Radiomics
- SD, Stable disease
- TACE, Transarterial chemoembolization
- TARE, Transarterial radioembolization
- Transarterial radioembolization
Collapse
Affiliation(s)
- Adrian Kobe
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Corresponding author at: Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
| | - Juliana Zgraggen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian Messmer
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gilbert Puippe
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Sartoretti
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Pfammatter
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manoj Mannil
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Clinic of Radiology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Craig AJ, Murray I, Denis-Bacelar AM, Rojas B, Gear JI, Hossen L, Maenhout A, Khan N, Flux GD. Comparison of 90Y SIRT predicted and delivered absorbed doses using a PSF conversion method. Phys Med 2021; 89:1-10. [PMID: 34339928 PMCID: PMC8501309 DOI: 10.1016/j.ejmp.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aims of this study were to develop and apply a method to correct for the differences in partial volume effects of pre-therapy Technetium-99 m (99mTc)-MAA SPECT and post-therapy Yttrium-90 (90Y) bremsstrahlung SPECT imaging in selective internal radiation therapy, and to use this method to improve quantitative comparison of predicted and delivered 90Y absorbed doses. METHODS The spatial resolution of 99mTc SPECT data was converted to that of 90Y SPECT data using a function calculated from 99mTc and 90Y point spread functions. This resolution conversion method (RCM) was first applied to 99mTc and 90Y SPECT phantom data to validate the method, and then to clinical data to assess the power of 99mTc SPECT imaging to predict the therapeutic absorbed dose. RESULTS The maximum difference between absorbed doses to phantom spheres was 178%. This was reduced to 27% after the RCM was applied. The clinical data demonstrated differences within 38% for mean absorbed doses delivered to the normal liver, which were reduced to 20% after application of the RCM. Analysis of clinical data showed that therapeutic absorbed doses delivered to tumours greater than 100 cm3 were predicted to within 52%, although there were differences of up to 210% for smaller tumours, even after the RCM was applied. CONCLUSIONS The RCM was successfully verified using phantom data. Analysis of the clinical data established that the 99mTc pre-therapy imaging was predictive of the 90Y absorbed dose to the normal liver to within 20%, but had poor predictability for tumours smaller than 100 cm3.
Collapse
Affiliation(s)
- Allison J. Craig
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom,Corresponding author.
| | - Iain Murray
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | | | - Bruno Rojas
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Jonathan I. Gear
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Lucy Hossen
- Royal Brompton & Harefield NHSFT, London, United Kingdom
| | | | - Nasir Khan
- Chelsea & Westminster NHSFT, London, United Kingdom
| | - Glenn D. Flux
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
42
|
Noninvasive Imaging for Assessment of the Efficacy of Therapeutic Agents for Hepatocellular Carcinoma. Mol Imaging Biol 2021; 22:1455-1468. [PMID: 31834570 DOI: 10.1007/s11307-019-01431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Morphological imaging techniques are typically used in the anti-cancer drug efficacy evaluation process. However, these techniques can evaluate the therapeutic efficacy only when the tumor shows anatomic changes-usually at later stages, when the therapeutic effects are poor. In contrast, molecular imaging allows noninvasive monitoring of tumor growth, assessment of drug metabolism, and evaluation of therapeutic efficacy at the molecular and cellular levels. Multimodality molecular imaging, which combines the advantages of various imaging modalities, provides even more comprehensive therapeutic efficacy assessment in preclinical and clinical studies. This review provides an overview of molecular imaging evaluation of therapeutic efficacy of the anti-tumor drugs in hepatocellular carcinoma (HCC) both in preclinical and clinical research, which holds great promise in guiding HCC treatment into the era of precision medicine.
Collapse
|
43
|
Schatka I, Tschernig M, Rogasch JMM, Bluemel S, Graef J, Furth C, Sehouli J, Blohmer JU, Gebauer B, Fehrenbach U, Amthauer H. Selective Internal Radiation Therapy in Breast Cancer Liver Metastases: Outcome Assessment Applying a Prognostic Score. Cancers (Basel) 2021; 13:cancers13153777. [PMID: 34359677 PMCID: PMC8345060 DOI: 10.3390/cancers13153777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Selective internal radiation therapy (SIRT) is a therapy option in patients with breast cancer liver metastasis (BCLM). This analysis aimed at identifying a prognostic score regarding overall survival (OS) after SIRT using routine pretherapeutic parameters. Retrospective analysis of 38 patients (age, 59 (39-84) years) with BCLM and 42 SIRT procedures. Cox regression for OS included clinical factors (age, ECOG and prior treatments), laboratory parameters, hepatic tumor load and dose reduction due to hepatopulmonary shunt. Elevated baseline ALT and/or AST was present if CTCAE grade ≥ 2 was fulfilled (>3 times the upper limit of normal). Median OS after SIRT was 6.4 months. In univariable Cox, ECOG ≥ 1 (hazard ratio (HR), 3.8), presence of elevated baseline ALT/AST (HR, 3.8), prior liver surgery (HR, 10.2), and dose reduction of 40% (HR, 8.1) predicted shorter OS (each p < 0.05). Multivariable Cox confirmed ECOG ≥ 1 (HR, 2.34; p = 0.012) and elevated baseline ALT/AST (HR, 4.16; p < 0.001). Combining both factors, median OS decreased from 19.2 months (0 risk factors; n = 14 procedures) to 5.9 months (1 factor; n = 20) or 2.2 months (2 factors; n = 8; p < 0.001). The proposed score may facilitate pretherapeutic identification of patients with unfavorable OS after SIRT. This may help to balance potential life prolongation with the hazards of invasive treatment and hospitalization.
Collapse
Affiliation(s)
- Imke Schatka
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
- Correspondence: ; Tel.: +49-(0)30-450-627-045
| | - Monique Tschernig
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
| | - Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
| | - Josefine Graef
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
| | - Christian Furth
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
| | - Jalid Sehouli
- Department of Gynecology and Breast Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (J.S.); (J.-U.B.)
| | - Jens-Uwe Blohmer
- Department of Gynecology and Breast Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (J.S.); (J.-U.B.)
| | - Bernhard Gebauer
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (B.G.); (U.F.)
| | - Uli Fehrenbach
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (B.G.); (U.F.)
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (M.T.); (J.M.M.R.); (S.B.); (J.G.); (C.F.); (H.A.)
| |
Collapse
|
44
|
d'Abadie P, Walrand S, Hesse M, Annet L, Borbath I, Van den Eynde M, Lhommel R, Jamar F. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl Med Commun 2021; 42:747-754. [PMID: 33741864 DOI: 10.1097/mnm.0000000000001395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM 90Y-radioembolization using glass or resin microspheres is increasingly used for the treatment of hepatocellular carcinoma (HCC). The aim of this retrospective study is to determine the prognostic relevance of dosimetric parameters defined with 90Y-PET-CT obtained immediately after radioembolization. METHODS Forty-five HCC patients, mostly with multiple lesions, were treated by radioembolization between 2011 and 2017. After treatment, all underwent a 90Y PET-CT with time of flight reconstruction (90Y-TOF-PET-CT). Tumor absorbed dose and cumulative tumor dose-volume histogram were calculated using a dose point Kernel convolution algorithm. The radiological tumor response was assessed using modified (m)-RECIST criteria. Progression-free-survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS Twenty-six patients were treated with glass microspheres (73 lesions) and nineteen with resin microspheres (60 lesions). Thresholds of 118 and 61 Gy for glass and resin microspheres respectively correlate well with radiological response with a positive predictive value (PPV) of 98 and 80% and discriminate patient outcome with regard to PFS (P = 0.03 and 0.005) and OS (P = 0.003 and 0.007). Using dose volume histogram, a minimal absorbed dose of 40 Gy in 66% of the tumor volume (defined as D66) was highly predictive of radiological response (PPV = 94%), PFS (P < 0.001) and OS (P = 0. 008), for either device. CONCLUSION Dosimetric parameters obtained using 90Y-PET-CT are predictive of tumor response, PFS and OS. In clinical practice, a systematic dosimetric evaluation using 90Y PET should be implemented to help predicting patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Borbath
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marc Van den Eynde
- Gastroenterology and Oncology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
45
|
Van BJ, Dewaraja YK, Sangogo ML, Mikell JK. Y-90 SIRT: evaluation of TCP variation across dosimetric models. EJNMMI Phys 2021; 8:45. [PMID: 34114115 PMCID: PMC8192668 DOI: 10.1186/s40658-021-00391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00391-6.
Collapse
Affiliation(s)
- Benjamin J Van
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mamadou L Sangogo
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
46
|
Elsayed M, Loya M, Galt J, Schuster DM, Bercu ZL, Newsome J, Brandon D, Benenati S, Behbahani K, Duszak R, Sethi I, Kokabi N. Same day yttrium-90 radioembolization with single photon emission computed tomography/computed tomography: An opportunity to improve care during the COVID-19 pandemic and beyond. World J Gastrointest Oncol 2021; 13:440-452. [PMID: 34040704 PMCID: PMC8131908 DOI: 10.4251/wjgo.v13.i5.440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/21/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has made it more challenging for patients to undergo yttrium-90 (Y-90) radioembolization (RE). Same day Y-90 RE provides an opportunity to minimize logistical challenges and infection risk associated with COVID-19, thus improving patient access.
AIM To describe the use of same day Y-90 RE with routine single photon emission computed tomography/computed tomography (SPECT/CT) in order to optimize therapy.
METHODS All patients were selected for Y-90 RE through a multidisciplinary tumor board, and were screened and tested for COVID-19 infection per institutional protocol. A same day procedure was developed, consisting of angiography, imaging, and Y-90 resin particle delivery. Routine SPECT/CT after technetium-99m macroaggregated albumin (Tc-99m MAA) administration was performed for assessment of arterial supply, personalized dosimetry, and extrahepatic activity. Post-treatment Y-90 bremsstrahlung SPECT/CT was performed for confirmation of particle delivery, by utilization of energy windowing to limit signal from previously administered Tc-99m MAA particles.
RESULTS A total of 14 patients underwent same day Y-90 RE between March and June 2020. Mean lung shunt fraction was 6.13% (range 3.5%-13.1%). Y-90 RE was performed for a single lesion in 7 patients, while the remaining 7 patients had treatment of multifocal lesions. The largest lesion measured 8.3 cm. All patients tolerated the procedure well and were discharged the same day.
CONCLUSION Same day Y-90 RE with resin-based microspheres is feasible, and provides an opportunity to mitigate infection risk and logistical challenges associated with the COVID-19 pandemic and beyond. We recommend consideration of SPECT/CT, especially among patients with complex malignancies, for the potential to improve outcomes and eligibility of patients to undergo same day Y-90 RE.
Collapse
Affiliation(s)
- Mohammad Elsayed
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Mohammad Loya
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Galt
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zachary L Bercu
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Janice Newsome
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David Brandon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Sonia Benenati
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Keywan Behbahani
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard Duszak
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Ila Sethi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
47
|
166Ho microsphere scout dose for more accurate radioembolization treatment planning. Eur J Nucl Med Mol Imaging 2021; 47:744-747. [PMID: 31875243 DOI: 10.1007/s00259-019-04617-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Henry EC, Strugari M, Mawko G, Brewer KD, Abraham R, Kappadath SC, Syme A. Post-administration dosimetry in yttrium-90 radioembolization through micro-CT imaging of radiopaque microspheres in a porcine renal model. Phys Med Biol 2021; 66. [PMID: 33784639 DOI: 10.1088/1361-6560/abf38a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
The purpose of this study is to perform post-administration dosimetry in yttrium-90 radioembolization through micro-CT imaging of radiopaque microsphere distributions in a porcine renal model and explore the impact of spatial resolution of an imaging system on the extraction of specific dose metrics. Following the administration of radiopaque microspheres to the kidney of a hybrid farm pig, the kidney was explanted and imaged with micro-CT. To produce an activity distribution, 400 MBq of yttrium-90 activity was distributed throughout segmented voxels of the embolized vasculature based on an established linear relationship between microsphere concentration and CT voxel value. This distribution was down-sampled to coarser isotropic grids ranging in voxel size from 2.5 to 15 mm to emulate nominal resolutions comparable to those found in yttrium-90 PET and Bremsstrahlung SPECT imaging. Dose distributions were calculated through the convolution of activity distributions with dose-voxel kernels generated using the GATE Monte Carlo toolkit. Contours were computed to represent normal tissue and target volumes. Dose-volume histograms, dose metrics, and dose profiles were compared to a ground truth dose distribution computed with GATE. The mean dose to the target for all studied voxel sizes was found to be within 5.7% of the ground truth mean dose.D70was shown to be strongly correlated with image voxel size of the dose distribution (r2 = 0.90).D70is cited in the literature as an important dose metric and its dependence on voxel size suggests higher resolution dose distributions may provide new perspectives on dose-response relationships in yttrium-90 radioembolization. This study demonstrates that dose distributions with large voxels incorrectly homogenize the dose by attributing escalated doses to normal tissues and reduced doses in high-dose target regions. High-resolution micro-CT imaging of radiopaque microsphere distributions can provide increased confidence in characterizing the absorbed dose heterogeneity in yttrium-90 radioembolization.
Collapse
Affiliation(s)
- E Courtney Henry
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - Matthew Strugari
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Biomedical Translational Imaging Centre, Halifax, Canada
| | - George Mawko
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.,Department of Medical Physics, Nova Scotia Health Authority, Halifax, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Canada
| | - Kimberly D Brewer
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Biomedical Translational Imaging Centre, Halifax, Canada.,Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.,Department of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Robert Abraham
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.,ABK Biomedical Inc., Halifax, Canada
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Centre, Houston, United States of America
| | - Alasdair Syme
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Department of Medical Physics, Nova Scotia Health Authority, Halifax, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, Canada
| |
Collapse
|
49
|
Roosen J, Klaassen NJM, Westlund Gotby LEL, Overduin CG, Verheij M, Konijnenberg MW, Nijsen JFW. To 1000 Gy and back again: a systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur J Nucl Med Mol Imaging 2021; 48:3776-3790. [PMID: 33839892 PMCID: PMC8484215 DOI: 10.1007/s00259-021-05340-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Purpose To systematically review all current evidence into the dose-response relation of yttrium-90 and holmium-166 selective internal radiation therapy (SIRT) in primary and secondary liver cancer. Methods A standardized search was performed in PubMed (MEDLINE), Embase, and the Cochrane Library in order to identify all published articles on dose-response evaluation in SIRT. In order to limit the results, all articles that investigated SIRT in combination with other therapy modalities (such as chemotherapy) were excluded. Results A total of 3038 records were identified of which 487 were screened based on the full text. Ultimately, 37 studies were included for narrative analysis. Meta-analysis could not be performed due to the large heterogeneity in study and reporting designs. Out of 37 studies, 30 reported a ‘mean dose threshold’ that needs to be achieved in order to expect a response. This threshold appears to be higher for hepatocellular carcinoma (HCC, 100–250 Gy) than for colorectal cancer metastases (CRC, 40–60 Gy). Reported thresholds tend to be lower for resin microspheres than when glass microspheres are used. Conclusion Although the existing evidence demonstrates a dose-response relationship in SIRT for both primary liver tumours and liver metastases, many pieces of the puzzle are still missing, hampering the definition of standardized dose thresholds. Nonetheless, most current evidence points towards a target mean dose of 100–250 Gy for HCC and 40–60 Gy for CRC. The field would greatly benefit from a reporting standard and prospective studies designed to elucidate the dose-response relation in different tumour types. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05340-0.
Collapse
Affiliation(s)
- Joey Roosen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke J M Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Ahmed A, Stauffer JA, LeGout JD, Burns J, Croome K, Paz-Fumagalli R, Frey G, Toskich B. The use of neoadjuvant lobar radioembolization prior to major hepatic resection for malignancy results in a low rate of post hepatectomy liver failure. J Gastrointest Oncol 2021; 12:751-761. [PMID: 34012663 DOI: 10.21037/jgo-20-507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Neoadjuvant yttrium-90 transarterial radioembolization (TARE) is increasingly being used as a strategy to facilitate resection of otherwise unresectable tumors due to its ability to generate both tumor response and remnant liver hypertrophy. Perioperative outcomes after the use of neoadjuvant lobar TARE remain underinvestigated. Methods A single center retrospective review of patients who underwent lobar TARE prior to major hepatectomy for primary or metastatic liver cancer between 2007 and 2018 was conducted. Baseline demographics, radioembolization parameters, pre- and post-radioembolization volumetrics, intra-operative surgical data, adverse events, and post-operative outcomes were analyzed. Results Twenty-six patients underwent major hepatectomy after neoadjuvant lobar TARE. The mean age was 58.3 years (17-88 years). 62% of patients (n=16) had primary liver malignancies while the remainder had metastatic disease. Liver resection included right hepatectomy or trisegmentectomy, left or extended left hepatectomy, and sectorectomy/segmentectomy in 77% (n=20), 8% (n=2), and 15% (n=4) of patients, respectively. The mean length of stay was 8.3 days (range, 3-33 days) and there were no grade IV morbidities or 90-day mortalities. The incidence of post hepatectomy liver failure (PHLF) was 3.8% (n=1). The median time to progression after resection was 4.5 months (range, 3.3-10 months). Twenty-three percent (n=6) of patients had no recurrence. The median survival was 28.9 months (range, 16.9-46.8 months) from major hepatectomy and 37.6 months (range, 25.2-53.1 months) from TARE. Conclusions Major hepatectomy after neoadjuvant lobar radioembolization is safe with a low incidence of PHLF.
Collapse
Affiliation(s)
- Altan Ahmed
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.,Department of Radiology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Justin Burns
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Gregory Frey
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Beau Toskich
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|