1
|
Stammes MA, Bugby SL, Porta T, Pierzchalski K, Devling T, Otto C, Dijkstra J, Vahrmeijer AL, de Geus-Oei LF, Mieog JSD. Modalities for image- and molecular-guided cancer surgery. Br J Surg 2018; 105:e69-e83. [PMID: 29341161 DOI: 10.1002/bjs.10789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Surgery is the cornerstone of treatment for many solid tumours. A wide variety of imaging modalities are available before surgery for staging, although surgeons still rely primarily on visual and haptic cues in the operating environment. Image and molecular guidance might improve the adequacy of resection through enhanced tumour definition and detection of aberrant deposits. Intraoperative modalities available for image- and molecular-guided cancer surgery are reviewed here. METHODS Intraoperative cancer detection techniques were identified through a systematic literature search, with selection of peer-reviewed publications from January 2012 to January 2017. Modalities were reviewed, described and compared according to 25 predefined characteristics. To summarize the data in a comparable way, a three-point rating scale was applied to quantitative characteristics. RESULTS The search identified ten image- and molecular-guided surgery techniques, which can be divided into four groups: conventional, optical, nuclear and endogenous reflectance modalities. Conventional techniques are the most well known imaging modalities, but unfortunately have the drawback of a defined resolution and long acquisition time. Optical imaging is a real-time modality; however, the penetration depth is limited. Nuclear modalities have excellent penetration depth, but their intraoperative use is limited by the use of radioactivity. Endogenous reflectance modalities provide high resolution, although with a narrow field of view. CONCLUSION Each modality has its strengths and weaknesses; no single technique will be suitable for all surgical procedures. Strict selection of modalities per cancer type and surgical requirements is required as well as combining techniques to find the optimal balance.
Collapse
Affiliation(s)
- M A Stammes
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Percuros, Enschede, The Netherlands
| | - S L Bugby
- Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester, UK
| | - T Porta
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - K Pierzchalski
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | | | - C Otto
- Medical Cell Bio Physics, University of Twente, Enschede, The Netherlands
| | - J Dijkstra
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - L-F de Geus-Oei
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
Background Mesenchymal–epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. Results In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. Conclusions Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
6
|
Jagoda EM, Bhattacharyya S, Kalen J, Riffle L, Leeder A, Histed S, Williams M, Wong KJ, Xu B, Szajek LP, Elbuluk O, Cecchi F, Raffensperger K, Golla M, Bottaro DP, Choyke P. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [
99m
Tc] (AH-113018) or CY 5** (AH-112543) Labeled Peptide. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elaine M. Jagoda
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Sibaprasad Bhattacharyya
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Joseph Kalen
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lisa Riffle
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Avrum Leeder
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Stephanie Histed
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Mark Williams
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Karen J. Wong
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Biying Xu
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Lawrence P. Szajek
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Osama Elbuluk
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Fabiola Cecchi
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Kristen Raffensperger
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Meghana Golla
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Donald P. Bottaro
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| | - Peter Choyke
- From the Molecular Imaging Program, National Cancer Institute (NCI), Bethesda, MD; ADRD, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Small Animal Imaging Program, NCI, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick, MD; Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Rockville, MD; PET Department, Clinical Center, NIH,
| |
Collapse
|
12
|
Garcia-Allende PB, Glatz J, Koch M, Tjalma JJ, Hartmans E, Terwisscha van Scheltinga AG, Symvoulidis P, van Dam GM, Nagengast WB, Ntziachristos V. Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy. BIOMEDICAL OPTICS EXPRESS 2013; 5:78-92. [PMID: 24466478 PMCID: PMC3891347 DOI: 10.1364/boe.5.000078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 05/22/2023]
Abstract
White-light surveillance colonoscopy is the standard of care for the detection and removal of premalignant lesions to prevent colorectal cancer, and the main screening recommendation following treatment for recurrence detection. However, it lacks sufficient diagnostic yield, exhibits unacceptable adenoma miss-rates and is not capable of revealing functional and morphological information of the detected lesions. Fluorescence molecular guidance in the near-infrared (NIR) is expected to have outstanding relevance regarding early lesion detection and heterogeneity characterization within and among lesions in these interventional procedures. Thereby, superficial and sub-surface tissue biomarkers can be optimally visualized due to a minimization of tissue attenuation and autofluorescence by comparison with the visible, which simultaneously enhance tissue penetration and assure minimal background. At present, this potential is challenged by the difficulty associated with the clinical propagation of disease-specific contrast agents and the absence of a commercially available endoscope that is capable of acquiring wide-field, NIR fluorescence at video-rates. We propose two alternative flexible endoscopic fluorescence imaging methods, each based on a CE certified commercial, clinical grade endoscope, and the employment of an approved monoclonal antibody labeled with a clinically applicable NIR fluorophore. Pre-clinical validation of these two strategies that aim at bridging NIR fluorescence molecular guidance to clinical translation is demonstrated in this study.
Collapse
Affiliation(s)
- P. Beatriz Garcia-Allende
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Trogerstr. 9 D-81675, München, Germany
| | - Jürgen Glatz
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Trogerstr. 9 D-81675, München, Germany
| | - Maximilian Koch
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Trogerstr. 9 D-81675, München, Germany
| | - Jolien J. Tjalma
- Dept. of Gastroenterology and Hepatology, UMCG, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Elmire Hartmans
- Dept. of Gastroenterology and Hepatology, UMCG, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | | | - Panagiotis Symvoulidis
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Trogerstr. 9 D-81675, München, Germany
| | - Gooitzen M. van Dam
- Dept. of Gastroenterology and Hepatology, UMCG, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Wouter B. Nagengast
- Dept. of Gastroenterology and Hepatology, UMCG, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Vasilis Ntziachristos
- Chair for Biological Imaging & Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Trogerstr. 9 D-81675, München, Germany
| |
Collapse
|