1
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Santo G, di Santo G, Cicone F, Virgolini I. Peptide receptor radionuclide therapy with somatostatin analogs beyond gastroenteropancreatic neuroendocrine tumors. J Neuroendocrinol 2025; 37:e70013. [PMID: 40064181 PMCID: PMC11919479 DOI: 10.1111/jne.70013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
First isolated by Brazeau et al. in 1972, somatostatin (SST) is a neuropeptide known for regulating various signaling pathways through its specific cell surface receptors. Somatostatin receptors (SSTRs) comprise a family of five G protein-coupled receptors that are widely distributed across the human body and are expressed by various tumor types. The growing understanding of their clinical potential led to the introduction of both cold and radiolabeled somatostatin analogs (SSAs), which have revolutionized the management of several cancers, especially neuroendocrine tumors. As a direct consequence, advances in peptide receptor radionuclide therapy (PRRT) over the last 30 years led to the approval of 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors (GEPNETs). Theoretically, any cancer patients whose tumors express SSTR, as demonstrated in vivo through SSTR-based molecular imaging, could be candidates for PRRT, especially those with limited treatment options. However, evidence on the efficacy of PRRT in non-GEPNET SSTR-expressing tumors is limited, and mainly derived from small retrospective studies. Given the limited therapeutic options for advanced/metastatic patients, there is a clear need for randomized trials to formally approve PRRT with SSAs for patients who may benefit from this treatment, particularly in certain types of neuroendocrine neoplasms such as lung carcinoids, paragangliomas, and meningiomas, where high rates of disease control (up to 80%) can be achieved. In addition, emerging evidence supports the potential of combination therapies, alpha emitters, and non-SSTR-based radionuclide therapy in tumors beyond GEPNET. This review aims to provide a comprehensive overview of PRRT's role in cancers beyond GEPNET, exploring new possibilities and future directions for most SSTR highly expressing tumors.
Collapse
Affiliation(s)
- Giulia Santo
- Department of Nuclear MedicineMedical University of InnsbruckInnsbruckAustria
- Department of Experimental and Clinical Medicine“Magna Graecia” University of CatanzaroCatanzaroItaly
| | - Gianpaolo di Santo
- Department of Nuclear MedicineMedical University of InnsbruckInnsbruckAustria
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine“Magna Graecia” University of CatanzaroCatanzaroItaly
| | - Irene Virgolini
- Department of Nuclear MedicineMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Mair MJ, Tabouret E, Johnson DR, Sulman EP, Wen PY, Preusser M, Albert NL. Radioligand therapies in meningioma: Evidence and future directions. Neuro Oncol 2024; 26:S215-S228. [PMID: 38702966 PMCID: PMC11631075 DOI: 10.1093/neuonc/noae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 05/06/2024] Open
Abstract
Meningiomas are the most common intracranial neoplasms in adults. While most meningiomas are cured by resection, further treatment by radiotherapy may be needed, particularly in WHO grades 2 and 3 tumors which have an increased risk of recurrence, even after conventional therapies. Still, there is an urgent need for novel therapeutic strategies after the exhaustion of local treatment approaches. Radionuclide therapies combine the specificity of tumor-specific antibodies or ligands with the cytotoxic activity of radioactive emitters. Alongside this, integrated molecular imaging allows for a noninvasive assessment of predictive biomarkers as treatment targets. Whereas the concept of "theranostics" has initially evolved in extracranial tumors such as thyroid diseases, neuroendocrine tumors, and prostate cancer, data from retrospective case series and early phase trials underscore the potential of this strategy in meningioma. This review aims to explore the available evidence of radionuclide treatments and ongoing clinical trial initiatives in meningioma. Moreover, we discuss optimal clinical trial design and future perspectives in the field, including compound- and host-specific determinants of the efficacy of "theranostic" treatment approaches.
Collapse
Affiliation(s)
- Maximilian J Mair
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, GlioME Team, plateforme PETRA, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone, New York, New York, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Cicone F, Gnesin S, Santo G, Stokke C, Bartolomei M, Cascini GL, Minniti G, Paganelli G, Verger A, Cremonesi M. Do we need dosimetry for the optimization of theranostics in CNS tumors? Neuro Oncol 2024; 26:S242-S258. [PMID: 39351795 PMCID: PMC11631076 DOI: 10.1093/neuonc/noae200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Radiopharmaceutical theranostic treatments have grown exponentially worldwide, and internal dosimetry has attracted attention and resources. Despite some similarities with chemotherapy, radiopharmaceutical treatments are essentially radiotherapy treatments, as the release of radiation into tissues is the determinant of the observed clinical effects. Therefore, absorbed dose calculations are key to explaining dose-effect correlations and individualizing radiopharmaceutical treatments. The present article introduces the basic principles of internal dosimetry and provides an overview of available loco-regional and systemic radiopharmaceutical treatments for central nervous system (CNS) tumors. The specific characteristics of dosimetry as applied to these treatments are highlighted, along with their limitations and most relevant results. Dosimetry is performed with higher precision and better reproducibility than in the past, and dosimetric data should be systematically collected, as treatment planning and verification may help exploit the full potential of theranostic of CNS tumors.
Collapse
Affiliation(s)
- Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giulia Santo
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Caroline Stokke
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Diagnostic Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Minniti
- IRCCS Neuromed, Pozzilli (IS), Italy
- Radiation Oncology Unit, Department of Radiological Sciences, Oncology and Anatomical Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Paganelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”Meldola, Italy
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, IADI, INSERM, UMR 1254, Université de Lorraine, Nancy, France
| | - Marta Cremonesi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
5
|
Albert NL, Preusser M, Traub-Weidinger T, Tolboom N, Law I, Palmer JD, Guedj E, Furtner J, Fraioli F, Huang RY, Johnson DR, Deroose CM, Herrmann K, Vogelbaum M, Chang S, Tonn JC, Weller M, Wen PY, van den Bent MJ, Verger A, Ivanidze J, Galldiks N. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: version 1.0. Eur J Nucl Med Mol Imaging 2024; 51:3662-3679. [PMID: 38898354 PMCID: PMC11445317 DOI: 10.1007/s00259-024-06783-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To provide practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor (SSTR) ligands. METHODS This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). RESULTS Positron emission tomography (PET) using somatostatin receptor (SSTR) ligands can detect meningioma tissue with high sensitivity and specificity and may provide clinically relevant information beyond that obtained from structural magnetic resonance imaging (MRI) or computed tomography (CT) imaging alone. SSTR-directed PET imaging can be particularly useful for differential diagnosis, delineation of meningioma extent, detection of osseous involvement, and the differentiation between posttherapeutic scar tissue and tumour recurrence. Moreover, SSTR-peptide receptor radionuclide therapy (PRRT) is an emerging investigational treatment approach for meningioma. CONCLUSION These practice guidelines will define procedure standards for the application of PET imaging in patients with meningiomas and related SSTR-targeted PRRTs in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers, facilitate comparability of studies, and to collect larger databases. The current document provides additional information to the evidence-based recommendations from the PET/RANO Working Group regarding the utilization of PET imaging in meningiomas Galldiks (Neuro Oncol. 2017;19(12):1576-87). The information provided should be considered in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Nelleke Tolboom
- Princess Máxima Centre for Paediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Division Imaging & Oncology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Guedj
- Institut Fresnel, Nuclear Medicine Department, APHM, CNRS, Timone Hospital, CERIMED, Aix Marseille Univ, Marseille, France
| | - Julia Furtner
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK) - University Hospital Essen, Essen, Germany
| | | | - Susan Chang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM UMR 1254, Université de Lorraine, Nancy, France
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
6
|
Severi S, Grassi I, Bongiovanni A, Nicolini S, Marini I, Arpa D, Ranallo N, Azzali I, Di Iorio V, Sarnelli A, Manuela M, Amadori E, Fabbri L, Bartolini D, Tosatto L, Di Meco F, Gurrieri L, Riva N, Calabro L, Matteucci F, Paganelli G, Sansovini M. Peptide Receptor Radionuclide Therapy in Advanced Refractory Meningiomas: Efficacy and Toxicity in a Long Follow-up. J Nucl Med 2024; 65:1409-1415. [PMID: 39142827 PMCID: PMC11372258 DOI: 10.2967/jnumed.123.266956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Recurrence of meningiomas after surgery and radiotherapy deserves specific attention because of the lack of active third-line therapies. Somatostatin receptors are usually overexpressed on the cell membrane of meningiomas, and this has led the way to a radionuclide theranostic approach. Diagnoses with 68Ga-DOTA-octreotide and peptide receptor radionuclide therapy (PRRT) with 90Y/177Lu-DOTA-octreotide are currently possible options within experimental protocols or as compassionate use in small patient groups. Methods: From October 2009 to October 2021, 42 meningioma patients with radiologic recurrence after standard therapies were treated with 90Y-DOTATOC (dosage of 1.1 or 5.5 GBq) or with 177Lu-DOTATATE (dosage of 3.7 or 5.5 GBq) in a mean of 4 cycles. All patients showed intense uptake at diagnostic 68Ga-DOTATOC PET/CT or in an 111In-octreotide scan. Results: Of 42 patients treated, 5 patients received 90Y-DOTATOC with a cumulative activity of 11.1 GBq and 37 patients received 177Lu-DOTATATE with a cumulative activity of 22 GBq. The disease control rate was 57%. With a median follow-up of 63 mo, median progression-free survival was 16 mo, and median overall survival was 36 mo. Retreatment 177Lu-PRRT was performed in 6 patients with an administered median activity of 13 GBq in a mean of 5 cycles. With a 75.8-mo follow-up, median progression-free survival and overall survival were 6.5 and 17 mo, respectively. Only 1 patient discontinued the treatment because of grade 3 platelet toxicity. A rapidly transient grade 2 neutropenia was recorded in 1 retreated patient. Conclusion: PRRT in patients with advanced meningiomas overexpressing somatostatin receptor 2 was active and well tolerated, showing a 57% disease control rate. Furthermore, PRRT could represent a potential retreatment option. Further studies, also in combination with other treatments, are warranted.
Collapse
Affiliation(s)
- Stefano Severi
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Ilaria Grassi
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumor Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy;
| | - Silvia Nicolini
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Irene Marini
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Donatella Arpa
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Emilia Romagna, Italy
| | - Nicoletta Ranallo
- Osteoncology and Rare Tumor Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Irene Azzali
- Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Valentina Di Iorio
- Oncological Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Emilia Romagna, Italy
| | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Monti Manuela
- Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Elena Amadori
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Lucia Fabbri
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Emilia Romagna, Italy
| | | | - Luigino Tosatto
- Department of Neurosciences, Neurosurgery Division "M Bufalini" Hospital, Cesena, Emilia Romagna, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Lorena Gurrieri
- Osteoncology and Rare Tumor Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Nada Riva
- Osteoncology and Rare Tumor Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Luana Calabro
- Department of Oncology, University Hospital of Ferrara, Cona, Italy; and
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Matteucci
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Giovanni Paganelli
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| | - Maddalena Sansovini
- Nuclear Medicine and Radiometabolic Units, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", Meldola, Italy
| |
Collapse
|
7
|
Graillon T, Salgues B, Horowitz T, Padovani L, Appay R, Tabouret E, Guedj E, Chinot O. Peptide radionuclide radiation therapy with Lutathera in multirecurrent nonanaplastic meningiomas: antitumoral activity study by growth rate analysis. J Neurooncol 2024; 167:427-436. [PMID: 38451361 DOI: 10.1007/s11060-024-04622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Several retrospective studies and meta-analyses of Peptide Radionuclide Radiation Therapy in meningiomas suggest six-month progression-free survival improvement for WHO grade 1 and 2 meningiomas. In the present study, we aimed to evaluate the impact of such treatment on three-dimensional volume growth rate (3DVGR) in nonanaplastic meningiomas. METHODS The authors performed a retrospective study including eight patients treated with Lutathera®. Millimetric 3D T1-weighted with gadolinium enhancement magnetic resonance imaging sequences were requested for volume measurement. Then, tumor growth rate was classified following a previously described 3DVGR classification (Graillon et al.). RESULTS Patients harbored seven WHO grade 2 meningiomas and one aggressive WHO grade 1. All patients, except one, underwent four treatment cycles. 3DVGR significantly decreased at 3, 6, and 12 months after treatment initiation analyzing each lesion separately. Mean and median 3DVGR from all patients were respectively at 29.5% and 44.5%/6 months before treatment initiation, then at 16.5% and 25%/6 months at three months post-treatment initiation, 9.5% and 4.5%/6 months after 6 months, as well as 9.5% and 10.5%/6 months after 12 months. At 3, 6, and 12 months after treatment initiation, 4/8, 6/7, and 5/6 patients were class 2 (stabilization or severe 3DVGR slowdown), respectively. No patient was class 1 at 6 and 12 months, suggesting a lack of drug response. CONCLUSION In nonanaplastic meningiomas, Lutathera®'s antitumoral activity appeared delayed and more likely observed at six months, while no major response was observed under treatment. Moreover, its antitumoral activity persisted for 12-18 months following treatment initiation.
Collapse
Affiliation(s)
- Thomas Graillon
- Department of Neurosurgery, Aix Marseille Univ, INSERM, APHM, MMG, UMR1251, Marmara Institute, La Timone Hospital, 264 rue Saint-Pierre, 13005, Marseille, France.
| | - Betty Salgues
- CERIMED, Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Aix-Marseille University, Marseille, France
| | - Tatiana Horowitz
- CERIMED, Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Aix-Marseille University, Marseille, France
| | | | - Romain Appay
- Service d'Anatomie Pathologique et de Neuropathologie, APHM, CHU Timone, Marseille, France
- Inst Neurophysiopathol, GlioME Team, Aix-Marseille Univ, CNRS, INP, PETRA network, Marseille, France
| | - Emeline Tabouret
- Neuro-Oncology Department, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Marseille, France
| | - Eric Guedj
- CERIMED, Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, Aix-Marseille University, Marseille, France
| | - Olivier Chinot
- Neuro-Oncology Department, APHM, Timone Hospital, Marseille, France
| |
Collapse
|
8
|
Eigler C, McDougall L, Bauman A, Bernhardt P, Hentschel M, Blackham KA, Nicolas G, Fani M, Wild D, Cordier D. Radiolabeled Somatostatin Receptor Antagonist Versus Agonist for Peptide Receptor Radionuclide Therapy in Patients with Therapy-Resistant Meningioma: PROMENADE Phase 0 Study. J Nucl Med 2024; 65:573-579. [PMID: 38423782 DOI: 10.2967/jnumed.123.266817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Our primary aim was to compare the therapeutic index (tumor-to-bone marrow and tumor-to-kidney absorbed-dose ratios) of the new radiolabeled somatostatin receptor antagonist [177Lu]Lu-DOTA-JR11 with the established radiolabeled somatostatin receptor agonist [177Lu]Lu-DOTATOC in the same patients with progressive, standard therapy-refractory meningioma. Methods: In this prospective, single-center, open-label phase 0 study (NCT04997317), 6 consecutive patients were included: 3 men and 3 women (mean age, 63.5 y). Patients received 6.9-7.3 GBq (standard injected radioactivity) of [177Lu]Lu-DOTATOC followed by 3.3-4.9 GBq (2 GBq/m2 × body surface area) of [177Lu]Lu-DOTA-JR11 at an interval of 10 ± 1 wk. In total, 1 [177Lu]Lu-DOTATOC and 2-3 [177Lu]Lu-DOTA-JR11 treatment cycles were performed. Quantitative SPECT/CT was done at approximately 24, 48, and 168 h after injection of both radiopharmaceuticals to calculate meningioma and organ absorbed doses as well as tumor-to-organ absorbed-dose ratios (3-dimensional segmentation approach for meningioma, kidneys, liver, bone marrow, and spleen). Results: The median of the meningioma absorbed dose of 1 treatment cycle was 3.4 Gy (range, 0.8-10.2 Gy) for [177Lu]Lu-DOTATOC and 11.5 Gy (range, 4.7-22.7 Gy) for [177Lu]Lu-DOTA-JR11. The median bone marrow and kidney absorbed doses after 1 treatment cycle were 0.11 Gy (range, 0.05-0.17 Gy) and 2.7 Gy (range, 1.3-5.3 Gy) for [177Lu]Lu-DOTATOC and 0.29 Gy (range, 0.16-0.39 Gy) and 3.3 Gy (range, 1.6-5.9 Gy) for [177Lu]Lu-DOTA-JR11, resulting in a 1.4 (range, 0.9-1.9) times higher median tumor-to-bone marrow absorbed-dose ratio and a 2.9 (range, 2.0-4.8) times higher median tumor-to-kidney absorbed-dose ratio with [177Lu]Lu-DOTA-JR11. According to the Common Terminology Criteria for Adverse Events version 5.0, 2 patients developed reversible grade 2 lymphopenia after 1 cycle of [177Lu]Lu-DOTATOC. Afterward, 2 patients developed reversible grade 3 lymphopenia and 1 patient developed reversible grade 3 lymphopenia and neutropenia after 2-3 cycles of [177Lu]Lu-DOTA-JR11. No grade 4 or 5 adverse events were observed at 15 mo or more after the start of therapy. The disease control rate was 83% (95% CI, 53%-100%) at 12 mo or more after inclusion. Conclusion: Treatment with 1 cycle of [177Lu]Lu-DOTA-JR11 showed 2.2-5.7 times higher meningioma absorbed doses and a favorable therapeutic index compared with [177Lu]Lu-DOTATOC after injection of 1.4-2.1 times lower activities. The first efficacy results demonstrated a high disease control rate with an acceptable safety profile in the standard therapy for refractory meningioma patients. Therefore, larger studies with [177Lu]Lu-DOTA-JR11 are warranted in meningioma patients.
Collapse
Affiliation(s)
- Christopher Eigler
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Lisa McDougall
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Andreas Bauman
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Peter Bernhardt
- Department of Medical Radiation Sciences, Institution of Clinical Science, University of Gothenburg, Gothenburg, Sweden; and
| | - Michael Hentschel
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Kristine A Blackham
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Guillaume Nicolas
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Melpomeni Fani
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Clinic for Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland;
| | - Dominik Cordier
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Kurz SC, Zan E, Cordova C, Troxel AB, Barbaro M, Silverman JS, Snuderl M, Zagzag D, Kondziolka D, Golfinos JG, Chi AS, Sulman EP. Evaluation of the SSTR2-targeted Radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as Imaging Biomarker in Patients with Intracranial Meningioma. Clin Cancer Res 2024; 30:680-686. [PMID: 38048045 DOI: 10.1158/1078-0432.ccr-23-2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospitals Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Germany
| | - Elcin Zan
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Andrea B Troxel
- Department of Population Health, New York University Grossman School of Medicine, New York, New York
| | - Marissa Barbaro
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
| | - Joshua S Silverman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Matija Snuderl
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - David Zagzag
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Douglas Kondziolka
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | - John G Golfinos
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | | | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
10
|
Iglseder S, Iglseder A, Beliveau V, Heugenhauser J, Gizewski ER, Kerschbaumer J, Stockhammer G, Uprimny C, Virgolini I, Dudas J, Nevinny-Stickel M, Nowosielski M, Scherfler C. Somatostatin receptor subtype expression and radiomics from DWI-MRI represent SUV of [68Ga]Ga-DOTATOC PET in patients with meningioma. J Neurooncol 2023; 164:711-720. [PMID: 37707754 PMCID: PMC10589159 DOI: 10.1007/s11060-023-04414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE This retrospective study aimed to analyse the correlation between somatostatin receptor subtypes (SSTR 1-5) and maximum standardized uptake value (SUVmax) in meningioma patients using Gallium-68 DOTA-D-Phe1-Tyr3-octreotide Positron Emission Tomography ([68Ga]Ga-DOTATOC PET). Secondly, we developed a radiomic model based on apparent diffusion coefficient (ADC) maps derived from diffusion weighted magnetic resonance images (DWI MRI) to reproduce SUVmax. METHOD The study included 51 patients who underwent MRI and [68Ga]Ga-DOTATOC PET before meningioma surgery. SUVmax values were quantified from PET images and tumour areas were segmented on post-contrast T1-weighted MRI and mapped to ADC maps. A total of 1940 radiomic features were extracted from the tumour area on each ADC map. A random forest regression model was trained to predict SUVmax and the model's performance was evaluated using repeated nested cross-validation. The expression of SSTR subtypes was quantified in 18 surgical specimens and compared to SUVmax values. RESULTS The random forest regression model successfully predicted SUVmax values with a significant correlation observed in all 100 repeats (p < 0.05). The mean Pearson's r was 0.42 ± 0.07 SD, and the root mean square error (RMSE) was 28.46 ± 0.16. SSTR subtypes 2A, 2B, and 5 showed significant correlations with SUVmax values (p < 0.001, R2 = 0.669; p = 0.001, R2 = 0.393; and p = 0.012, R2 = 0.235, respectively). CONCLUSION SSTR subtypes 2A, 2B, and 5 correlated significantly with SUVmax in meningioma patients. The developed radiomic model based on ADC maps effectively reproduces SUVmax using [68Ga]Ga-DOTATOC PET.
Collapse
Affiliation(s)
- Sarah Iglseder
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Iglseder
- Department of Geodesy and Geoinformation, Technical University Vienna, Vienna, Austria
| | - Vincent Beliveau
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
| | | | - Elke R Gizewski
- Neuroimaging Research Core Facility, Innsbruck Medical University, Innsbruck, Austria
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - Christian Uprimny
- Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Innsbruck Medical University, Innsbruck, Austria
| | - Meinhard Nevinny-Stickel
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Martha Nowosielski
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | - Christoph Scherfler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
11
|
Graillon T, Tabouret E, Salgues B, Horowitz T, Padovani L, Appay R, Farah K, Dufour H, Régis J, Guedj E, Barlier A, Chinot O. Innovative treatments for meningiomas. Rev Neurol (Paris) 2023; 179:449-463. [PMID: 36959063 DOI: 10.1016/j.neurol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Multi-recurrent high-grade meningiomas remain an unmet medical need in neuro-oncology when iterative surgeries and radiation therapy sessions fail to control tumor growth. Nevertheless, the last 10years have been marked by multiple advances in the comprehension of meningioma tumorigenesis via the discovery of new driver mutations, the identification of activated intracellular signaling pathways, and DNA methylation analyses, providing multiple potential therapeutic targets. Today, Anti-VEGF and mTOR inhibitors are the most used and probably the most active drugs in aggressive meningiomas. Peptide radioactive radiation therapy aims to target SSTR2A receptors, which are strongly expressed in meningiomas, but have an insufficient effect in most aggressive meningiomas, requiring the development of new techniques to increase the dose applied to the tumor. Based on the multiple potential intracellular targets, multiple targeted therapy clinical trials targeting Pi3K-Akt-mTOR and MAP kinase pathways as well as cell cycle and particularly, cyclin D4-6 are ongoing. Recently discovered driver mutations, SMO, Akt, and PI3KCA, offer new targets but are mostly observed in benign meningiomas, limiting their clinical relevance mainly to rare aggressive skull base meningiomas. Therefore, NF2 mutation remains the most frequent mutation and main challenging target in high-grade meningioma. Recently, inhibitors of focal adhesion kinase (FAK), which is involved in tumor cell adhesion, were tested in a phase 2 clinical trial with interesting but insufficient activity. The Hippo pathway was demonstrated to interact with NF2/Merlin and could be a promising target in NF2-mutated meningiomas with ongoing multiple preclinical studies and a phase 1 clinical trial. Recent advances in immune landscape comprehension led to the proposal of the use of immunotherapy in meningiomas. Except in rare cases of MSH2/6 mutation or high tumor mass burden, the activity of PD-1 inhibitors remains limited; however, its combination with various radiation therapy modalities is particularly promising. On the whole, therapeutic management of high-grade meningiomas is still challenging even with multiple promising therapeutic targets and innovations.
Collapse
Affiliation(s)
- T Graillon
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France.
| | - E Tabouret
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - B Salgues
- Nuclear Medicine Department, Groupe Hospitalier Pitié-Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - T Horowitz
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - L Padovani
- AP-HM, Timone Hospital, Radiotherapy Department, Marseille, France
| | - R Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - K Farah
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - H Dufour
- Aix-Marseille University, AP-HM, Inserm, MMG, Neurosurgery department, La Timone Hospital, Marseille, France
| | - J Régis
- Aix-Marseille University, Institut de Neurosciences des Systèmes, UMR Inserm 1106, Functional Neurosurgery and Radiosurgery, Timone University Hospital, Marseille, France
| | - E Guedj
- AP-HM, CNRS, centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - A Barlier
- Aix-Marseille University, AP-HM, Inserm, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - O Chinot
- Aix-Marseille University, AP-HM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| |
Collapse
|
12
|
Minczeles NS, Bos EM, de Leeuw RC, Kros JM, Konijnenberg MW, Bromberg JEC, de Herder WW, Dirven CMF, Hofland J, Brabander T. Efficacy and safety of peptide receptor radionuclide therapy with [ 177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur J Nucl Med Mol Imaging 2023; 50:1195-1204. [PMID: 36454268 DOI: 10.1007/s00259-022-06044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE There is no evidence-based systemic therapy for patients with progressive meningiomas for whom surgery or external radiotherapy is no longer an option. In this study, the efficacy and safety of peptide receptor radionuclide therapy (PRRT) in patients with progressive, treatment-refractory meningiomas were evaluated. METHODS Retrospective analysis of all meningioma patients treated with [177Lu]Lu-DOTA-TATE from 2000 to 2020 in our centre. Primary outcomes were response according to RANO bidimensional and volumetric criteria and progression-free survival (PFS). Overall survival (OS) and tumour growth rate (TGR) were secondary endpoints. TGR was calculated as the percentage change in surface or volume per month. RESULTS Fifteen meningioma patients received [177Lu]Lu-DOTA-TATE (7.5-29.6 GBq). Prior to PRRT, all patients had received external radiotherapy, and 14 patients had undergone surgery. All WHO grades were included WHO 1 (n=3), WHO 2 (n=5), and WHO 3 (n=6). After PRRT, stable disease was observed in six (40%) patients. The median PFS was 7.8 months with a 6-month PFS rate of 60%. The median OS was 13.6 months with a 12-month OS rate of 60%. All patients had progressive disease prior to PRRT, with an average TGR of 4.6% increase in surface and 14.8% increase in volume per month. After PRRT, TGR declined to 3.1% in surface (p=0.016) and 5.0% in volume (p=0.013) per month. CONCLUSION In this cohort of meningioma patients with exhaustion of surgical and radiotherapeutic options and progressive disease, it was shown that PRRT plays a role in controlling tumour growth.
Collapse
Affiliation(s)
- Noémie S Minczeles
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands. .,Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Reinoud C de Leeuw
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wouter W de Herder
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Tollefsen SE, Solheim O, Mjønes P, Torp SH. Meningiomas and Somatostatin Analogs: A Systematic Scoping Review on Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:4793. [PMID: 36902224 PMCID: PMC10003463 DOI: 10.3390/ijms24054793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Meningioma is the most frequent brain tumor, and the incidence is ever-increasing. Though often benign and slow growth, recurrence rates are substantial and today's surgical and radiation-based treatment are not without complications. No drugs specific for meningiomas are hitherto approved and patients with inoperable or recurrent meningioma are left with few treatment options. Somatostatin receptors are previously detected in meningiomas and may inhibit growth when stimulated by somatostatin. Hence, somatostatin analogs could provide a targeted drug therapy. The aim of this study was to compile the current insights of somatostatin analogs for patients with meningioma. This paper adheres to the PRISMA extension for Scoping Reviews. A systematic search was conducted in the search databases PubMed, Embase via Ovid, and Web of Science. Seventeen papers adhered to the inclusion and exclusion criteria, and critical appraisal was conducted. The overall quality of evidence is low, as none of the studies were randomized or controlled. Various efficacy of somatostatin analogs is reported, and adverse effects are sparse. Due to the beneficial effects reported by some studies, somatostatin analogs may offer a novel last-option treatment for severely ill-patients. Nonetheless, only a controlled study, preferably a randomized clinical trial, could clarify the efficacy of somatostatin analogs.
Collapse
Affiliation(s)
- Sofie Eline Tollefsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Patricia Mjønes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Sverre Helge Torp
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| |
Collapse
|
14
|
Galldiks N, Hattingen E, Langen KJ, Tonn JC. Imaging Characteristics of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:21-33. [PMID: 37432617 DOI: 10.1007/978-3-031-29750-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Contemporary neuroimaging of meningiomas has largely relied on computed tomography, and more recently magnetic resonance imaging. While these modalities are frequently used in nearly all clinical settings where meningiomas are treated for the routine diagnosis and follow-up of these tumors, advances in neuroimaging have provided novel opportunities for prognostication and treatment planning (including both surgical planning and radiotherapy planning). These include perfusion MRIs, and positron emission tomography (PET) imaging modalities. Here we will summarize the contemporary uses for neuroimaging in meningiomas, and future applications of novel, cutting edge imaging techniques that may be routinely implemented in the future to enable more precise treatment of these challenging tumors.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Aachen, Germany.
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Aachen, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich (LMU), Munich, Germany
| |
Collapse
|
15
|
Lazow MA, Fuller C, Trout AT, Stanek JR, Reuss J, Turpin BK, Szabo S, Salloum R. Immunohistochemical assessment and clinical, histopathologic, and molecular correlates of membranous somatostatin type-2A receptor expression in high-risk pediatric central nervous system tumors. Front Oncol 2022; 12:996489. [PMID: 36465400 PMCID: PMC9713413 DOI: 10.3389/fonc.2022.996489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/31/2022] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION 177Lu-DOTATATE, a radionuclide therapy that binds somatostatin type-2A receptors (SST2A), has demonstrated efficacy in neuroendocrine tumors and evidence of central nervous system (CNS) penetration, supporting potential expansion within pediatric neuro-oncology. Understanding the prevalence of SST2A expression across pediatric CNS tumors is essential to identify patients who may benefit from somatostatin receptor-targeted therapy and to further elucidate the oncogenic role of SST2A. METHODS SST2A immunohistochemistry (IHC) was performed on tumor specimens and interpreted by an experienced pathologist (blinded), utilizing semi-quantitative scoring of membranous expression within viable tumor. Immunoreactive cell percentage was visually scored as 0 (none), 1 (<10%), 2 (10-50%), 3 (51-80%), or 4 (>80%). Staining intensity was scored as 0 (none), 1 (weak), 2 (moderate), or 3 (strong). Combined scores for each specimen were calculated by multiplying percent immunoreactivity and staining intensity values (Range: 0-12). RESULTS A total of 120 tumor samples from 114 patients were analyzed. Significant differences in SST2A IHC scores were observed across histopathologic diagnoses, with consistently high scores in medulloblastoma (mean ± SD: 7.5 ± 3.6 [n=38]) and meningioma (5.7 ± 3.4 [n=15]), compared to minimal or absent expression in ATRT (0.3 ± 0.6 [n=3]), ETMR (1.0 ± 0 [n=3]), ependymoma (grades I-III; 0.2 ± 0.7 [n=27]), and high-grade glioma (grades III-IV; 0.4 ± 0.7 [n=23]). Pineoblastoma (3.8 ± 1.5 [n=4]) and other embryonal tumors (2.0 ± 4.0 [n=7]) exhibited intermediate, variable expression. Among medulloblastomas, SST2A IHC scores were higher in non-SHH (8.5 ± 3.1) than SHH (5.0 ± 3.3) molecular subgroups (p=0.033). In a subset of paired primary and recurrent specimens from four patients, SST2A IHC scores remained largely unchanged. DISCUSSION High membranous SST2A expression was demonstrated in medulloblastoma, meningioma, and some rarer embryonal tumors with potential diagnostic, biologic, and therapeutic implications. Somatostatin receptor-targeted therapy such as 177Lu-DOTATATE deserves further investigation in these highly SST2A-expressing pediatric CNS tumors.
Collapse
Affiliation(s)
- Margot A. Lazow
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | - Andrew T. Trout
- Department of Radiology and Medical Imaging, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph R. Stanek
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jaime Reuss
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Brian K. Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ralph Salloum
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
16
|
Kong MJ, Yang AF, Vora SA, Ross JS, Yang M. The Complementary Role of 68Ga-DOTATATE PET/CT in Diagnosis of Recurrent Meningioma. J Nucl Med Technol 2022; 50:jnmt.122.263949. [PMID: 36041874 DOI: 10.2967/jnmt.122.263949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Contrast-enhanced brain MRI is the choice of imaging modality in diagnosis and posttreatment evaluation, its role is limited in distinguishing recurrent lesion from postoperative change. 68Ga-DOTATATE is a somatostatin analog PET tracer which has high affinity to meningioma expressing somatostatin receptor. Methods and subjects: In this case series review, we described 8 patients with brain MRI suspected of recurrent meningioma who underwent focused 68Ga-DOTATATE PET/CT scan for radiation treatment planning. Results: The combined brain MRI and PET/CT allowed improved conspicuity of the lesions and aided radiation treatment planning. The time from the initial surgery to PET/CT scans varied widely ranging from 1 year to 12 years. Three patients had PET/CT shortly after the initial surgery (1-3 years) and underwent targeted radiation therapy. Subsequent imaging showed no evidence of recurrence. Four patients had prolonged time between the PET/CT and the initial surgery (7-12 years) which showed extensive tumor burden. All four patients expired shortly after the last PET/CT scan. Conclusion: 68Ga-DOTATATE PET shows promising complementary role in detection and treatment planning of recurrent meningioma.
Collapse
|
17
|
Corniola MV, Meling TR. Management of Recurrent Meningiomas: State of the Art and Perspectives. Cancers (Basel) 2022; 14:cancers14163995. [PMID: 36010988 PMCID: PMC9406695 DOI: 10.3390/cancers14163995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Intracranial meningiomas account for 30% to 40% of the primary lesions of the central nervous system. Surgery is the mainstay treatment whenever symptoms related to an intra-cranial meningioma are encountered. However, the management of recurrences after initial surgery, which are not uncommon, is still a matter of debate. Here, we present the alternatives described in the management of meningioma recurrence (radiotherapy, stereotaxic radiosurgery, protontherapy, and chemotherapy, among others). Their overall results are compared to surgery and future perspectives are presented. Abstract Background: While meningiomas often recur over time, the natural history of repeated recurrences and their management are not well described. Should recurrence occur, repeat surgery and/or use of adjuvant therapeutic options may be necessary. Here, we summarize current practice when it comes to meningioma recurrence after initial surgical management. Methods: A total of N = 89 articles were screened. N = 41 articles met the inclusion criteria and N = 16 articles failed to assess management of meningioma recurrence. Finally, N = 24 articles were included in our review. Results: The articles were distributed as follows: studies on chemotherapy (N = 14), radiotherapy, protontherapy, and stereotaxic radiosurgery (N = 6), boron-neutron capture therapy (N = 2) and surgery (N = 3). No study seems to provide serious alternatives to surgery in terms of progression-free and overall survival. Recurrence can occur long after the initial surgery and also affects WHO grade 1 meningiomas, even after initial gross total resection at first surgery, emphasizing the need for a long-term and comprehensive follow-up. Conclusions: Surgery still seems to be the state-of-the-art management when it comes to meningioma recurrence, since none of the non-surgical alternatives show promising results in terms of progression-free and overall survival.
Collapse
Affiliation(s)
- Marco Vincenzo Corniola
- Service de Neurochirurgie, Pôle des Neurosciences, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Faculté de Médecine, Université de Rennes 1, 35000 Rennes, France
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Laboratoire du Traitement de Signal, Unité Médicis, INSERM UMR 1099 LTSI, Université de Rennes 1, 35000 Rennes, France
| | - Torstein R. Meling
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Besta NeuroSim Center, Fondazione IRCCS, Istituto Neurologico Carlo Basta, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
18
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
19
|
Somatostatin Receptor Theranostics for Refractory Meningiomas. Curr Oncol 2022; 29:5550-5565. [PMID: 36005176 PMCID: PMC9406720 DOI: 10.3390/curroncol29080438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Somatostatin receptor (SSTR)-targeted peptide receptor radionuclide therapy (PRRT) represents a promising approach for treatment-refractory meningiomas progressing after surgery and radiotherapy. The aim of this study was to provide outcomes of patients harboring refractory meningiomas treated by 177Lu-DOTATATE and an overall analysis of progression-free survival at 6 months (PFS-6) of the same relevant studies in the literature. Eight patients with recurrent and progressive WHO grade II meningiomas were treated after multimodal pretreatment with 177Lu-DOTATATE between 2019 and 2022. Primary and secondarily endpoints were progression-free survival at 6-months (PFS-6) and toxicity, respectively. PFS-6 analysis of our case series was compared with other similar relevant studies that included 86 patients treated with either 177Lu-DOTATATE or 90Y-DOTATOC. Our retrospective study showed a PFS-6 of 85.7% for WHO grade II progressive refractory meningiomas. Treatment was clinically and biologically well tolerated. The overall analysis of the previous relevant studies showed a PFS-6 of 89.7% for WHO grade I meningiomas (n = 29); 57.1% for WHO grade II (n = 21); and 0 % for WHO grade III (n = 12). For all grades (n = 86), including unknown grades, PFS-6 was 58.1%. SSTR-targeted PRRT allowed us to achieve prolonged PFS-6 in patients with WHO grade I and II progressive refractory meningiomas, except the most aggressive WHO grade II tumors. Large scale randomized trials are warranted for the better integration of PRRT in the treatment of refractory meningioma into clinical practice guidelines.
Collapse
|
20
|
Filippi L, Palumbo I, Bagni O, Schillaci O, Aristei C, Palumbo B. Somatostatin Receptor Targeted PET-Imaging for Diagnosis, Radiotherapy Planning and Theranostics of Meningiomas: A Systematic Review of the Literature. Diagnostics (Basel) 2022; 12:1666. [PMID: 35885570 PMCID: PMC9321668 DOI: 10.3390/diagnostics12071666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The aims of the present systematic review are to: (1) assess the diagnostic performance of somatostatin receptor (SSR)targeted positron emission tomography (PET) with different tracers and devices in patients affected by meningiomas; and (2) to evaluate the theranostic applications of peptide receptor radionuclide therapy (PRRT) in meningiomas. A systematic literature search according to PRISMA criteria was made by using two main databases. Only studies published from 2011 up to March 2022 in the English language with ≥10 enrolled patients were selected. Following our research strategy, 17 studies were included for the assessment. Fourteen studies encompassed 534 patients, harboring 733 meningiomas, submitted to SSR-targeted PET/CT (n = 10) or PET/MRI (n = 4) for de novo diagnosis, recurrence detection, or radiation therapy (RT) planning (endpoint 1), while 3 studies included 69 patients with therapy-refractory meningiomas submitted to PRRT (endpoint 2). A relevant variation in methodology was registered among diagnostic studies, since only a minority of them reported histopathology as a reference standard. PET, especially when performed through PET/MRI, resulted particularly useful for the detection of meningiomas located in the skull base (SB) or next to the falx cerebri, significantly influencing RT planning. As far as it concerns PRRT studies, stable disease was obtained in the 66.6% of the treated patients, being grade 1-2 hematological toxicity the most common side effect. Of note, the wide range of the administered activities, the various utilized radiopharmaceuticals (90Y-DOTATOC and/or 177Lu-DOTATATE), the lack of dosimetric studies hamper a clear definition of PRRT potential on meningiomas' management.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy;
| | - Isabella Palumbo
- Section of Radiation Oncology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy; (I.P.); (C.A.)
| | - Oreste Bagni
- Nuclear Medicine Unit, “Santa Maria Goretti” Hospital, Via Antonio Canova, 04100 Latina, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Cynthia Aristei
- Section of Radiation Oncology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy; (I.P.); (C.A.)
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy;
| |
Collapse
|
21
|
Galldiks N, Langen KJ, Albert NL, Law I, Kim MM, Villanueva-Meyer JE, Soffietti R, Wen PY, Weller M, Tonn JC. Investigational PET tracers in neuro-oncology-What's on the horizon? A report of the PET/RANO group. Neuro Oncol 2022; 24:1815-1826. [PMID: 35674736 DOI: 10.1093/neuonc/noac131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies in patients with brain tumors evaluating innovative PET tracers have been published in recent years, and the initial results are promising. Here, the Response Assessment in Neuro-Oncology (RANO) PET working group provides an overview of the literature on novel investigational PET tracers for brain tumor patients. Furthermore, newer indications of more established PET tracers for the evaluation of glucose metabolism, amino acid transport, hypoxia, cell proliferation, and others are also discussed. Based on the preliminary findings, these novel investigational PET tracers should be further evaluated considering their promising potential. In particular, novel PET probes for imaging of translocator protein and somatostatin receptor overexpression as well as for immune system reactions appear to be of additional clinical value for tumor delineation and therapy monitoring. Progress in developing these radiotracers may contribute to improving brain tumor diagnostics and advancing clinical translational research.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Fodi CK, Schittenhelm J, Honegger J, Castaneda-Vega SG, Behling F. The Current Role of Peptide Receptor Radionuclide Therapy in Meningiomas. J Clin Med 2022; 11:jcm11092364. [PMID: 35566491 PMCID: PMC9104797 DOI: 10.3390/jcm11092364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Meningiomas are the most common primary intracranial tumors. The majority of patients can be cured by surgery, or tumor growth can be stabilized by radiation. However, the management of recurrent and more aggressive tumors remains difficult because no established alternative treatment options exist. Therefore, innovative therapeutic approaches are needed. Studies have shown that meningiomas express somatostatin receptors. It is well known from treating neuroendocrine tumors that peptide radioreceptor therapy that targets somatostatin receptors can be effective. As yet, this therapy has been used for treating meningiomas only within individual curative trials. However, small case series and studies have demonstrated stabilization of the disease. Therefore, we see potential for optimizing this therapeutic option through the development of new substances and specific adaptations to the different meningioma subtypes. The current review provides an overview of this topic.
Collapse
Affiliation(s)
- Christina-Katharina Fodi
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Jürgen Honegger
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
| | - Salvador Guillermo Castaneda-Vega
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany;
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Felix Behling
- Department of Neurosurgery and Neurotechnology, University Hospital Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany; (C.-K.F.); (J.H.)
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-707129-80235; Fax: +49-707129-4549
| |
Collapse
|
23
|
Graillon T, Tabouret E, Chinot O. Chemotherapy and targeted therapies for meningiomas: what is the evidence? Curr Opin Neurol 2021; 34:857-867. [PMID: 34629433 DOI: 10.1097/wco.0000000000001002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Although most meningiomas are slow growing tumors mainly controlled by surgery with or without radiotherapy, aggressive meningiomas that fail these conventional treatments constitute a rare situation, a therapeutic challenge and an unmet need in neuro-oncology. RECENT FINDING Mutational landscape in recurrent high-grade meningiomas includes mainly NF2 mutation or 22q chromosomal deletion, whereas telomerase reverse transcriptase promoter, BAP-1 and CDK2NA mutations were also found in aggressive meningiomas. Pi3K-Akt-mTOR pathway is currently the most relevant intracellular signaling pathway target in meningiomas with preliminary clinical activity observed. Assessment of drug activity with progression free survival rate at 6 months is challenging in regard to meningioma growth rate heterogeneity, so that 3-dimensional growth rate before and during treatment could be considered in the future to selected new active drugs. SUMMARY Despite a low evidence level, some systemic therapies may be considered for patients with recurrent meningioma not amenable to further surgery or radiotherapy. In recurrent high-grade meningioma, everolimus-octreotide combination, bevacizumab, sunitinib and peptide receptor radionuclide therapy exhibit a signal of activity that may justify their clinical use. Despite a lack of clear signal of activity to date, immunotherapy may offer new perspectives in the treatment of these refractory tumors.
Collapse
Affiliation(s)
- Thomas Graillon
- Aix Marseille Univ, APHM, INSERM, MMG, UMR1251, La Timone Hospital, neurosurgery department Marseille, France
| | - Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, La Timone Hospital, Neurooncology Department, Marseille, France
| | - Olivier Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, La Timone Hospital, Neurooncology Department, Marseille, France
| |
Collapse
|
24
|
Ferdinandus J, Fendler WP, Morigi JJ, Fanti S. Theranostics in oncology: What radiologists want to know. Eur J Radiol 2021; 142:109875. [PMID: 34391057 DOI: 10.1016/j.ejrad.2021.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Combination of radioligand imaging and therapy, so called radiotheranostics, is a novel tool of precision oncology with proven clinical value. In-depth knowledge of functional imaging nuances is critically needed for precise prognostication and guidance of management. Here, we review theranostic applications with up to Phase III type evidence for outcome improvement: Imaging and therapy of neuroendocrine neoplasms (NEN) exploiting high levels of somatostatin receptor (SSTR) expression and radiotheranostics of prostate cancer targeting the prostate specific membrane antigen (PSMA). This narrative review focusses on these two applications and elucidates patient selection and response assessment by radioligand scintigraphy and/or positron emission tomography. Furthermore, we provide a brief outlook on future applications for novel targets outside of NEN and prostate cancer.
Collapse
Affiliation(s)
- Justin Ferdinandus
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Joshua James Morigi
- PET/CT Unit, Department of Medical Imaging, Royal Darwin Hospital, Darwin, Australia.
| | - Stefano Fanti
- Nuclear Medicine Division, Policlinico S Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Kertels O, Breun M, Hänscheid H, Kircher M, Hartrampf PE, Schirbel A, Monoranu CM, Ernestus RI, Buck AK, Löhr M, Matthies C, Lapa C. Peptide Receptor Radionuclide Therapy in Patients With Neurofibromatosis Type 2: Initial Experience. Clin Nucl Med 2021; 46:e312-e316. [PMID: 33826573 DOI: 10.1097/rlu.0000000000003627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Neurofibromatosis type 2 (NF2) is a genetic disorder that is associated with multiple tumors of the nervous system, and approximately one half of patients present with meningiomas. For patients with multifocal disease, somatostatin receptor-targeted peptide receptor radionuclide therapy (PRRT) might be a suitable systemic treatment option. PATIENTS AND METHODS Between March 2015 and August 2017, 11 NF2 patients (7 females and 4 males; mean age, 39 ± 12 years) with multifocal, progressive meningiomas underwent a median of 4 cycles of PRRT (range, 2-6 cycles). Acute and chronic adverse events were recorded according to National Institutes of Health's Common Toxicity Criteria (CTC) version 5.0. Follow-up MRIs (every 3 to 6 months), using the Response Assessment in Neuro-Oncology response criteria for meningiomas, were used to assess treatment responses. RESULTS Peptide receptor radionuclide therapy was well tolerated in all patients without any relevant acute adverse effects. Transient hematologic toxicity (CTC grade 3) was observed in 2 subjects. Somatostatin receptor-directed radiopeptide therapy resulted in radiological disease stabilization in 6 of 11 patients. Median progression-free survival was 12 months (range, 1-55 months), and overall survival was 37 months (range, 5-61 months). CONCLUSIONS Based on our retrospective pilot data, PRRT is feasible and well-tolerated in NF2 patients. It might offer a suitable treatment option in subjects with multiple, recurrent, or treatment-refractory meningiomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg
| | | | | | | |
Collapse
|
26
|
Brain-invasive meningiomas: molecular mechanisms and potential therapeutic options. Brain Tumor Pathol 2021; 38:156-172. [PMID: 33903981 DOI: 10.1007/s10014-021-00399-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Meningiomas are the most commonly diagnosed benign intracranial adult tumors. Subsets of meningiomas that present with extensive invasion into surrounding brain areas have high recurrence rates, resulting in difficulties for complete resection, substantially increased mortality of patients, and are therapeutically challenging for neurosurgeons. Exciting new data have provided insights into the understanding of the molecular machinery of invasion. Moreover, clinical trials for several novel approaches have been launched. Here, we will highlight the mechanisms which govern brain invasion and new promising therapeutic approaches for brain-invasive meningiomas, including pharmacological approaches targeting three major aspects of tumor cell invasion: extracellular matrix degradation, cell adhesion, and growth factors, as well as other innovative treatments such as immunotherapy, hormone therapy, Tumor Treating Fields, and biodegradable copolymers (wafers), impregnated chemotherapy. Those ongoing studies can offer more diversified possibilities of potential treatments for brain-invasive meningiomas, and help to increase the survival benefits for patients.
Collapse
|
27
|
Differences in the expression of SSTR1-5 in meningiomas and its therapeutic potential. Neurosurg Rev 2021; 45:467-478. [PMID: 33899156 PMCID: PMC8827401 DOI: 10.1007/s10143-021-01552-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 12/05/2022]
Abstract
Beyond microsurgical resection and radiation therapy, there are currently no established treatment alternatives for meningioma patients. In selected cases, peptide radio receptor therapy (PRRT) can be implemented. For this purpose, a radionuclide is bound to a substance targeting specific receptors in meningiomas. One of them is somatostatin receptor 2, which can be found in most meningiomas. However, other somatostatin receptors (SSTR) exist, but their expressions have only been described in small case series. In this study, we analyzed the expression of SSTR1, 2A, 3, 4, and 5 in a large cohort of meningiomas in order to enable further refinement of this innovative treatment option. Overall, 726 tumor samples were processed into tissue microarrays and stained for SSTR1, 2A, 3, 4, and 5 immunohistochemically. Microscopic evaluation was done with an established semiquantitative score regarding percentual quantification and staining intensity, and results were correlated with clinical data. There was a significant lower rate of SSTR1 expression in meningiomas of male patients. Older age was associated with higher expression of SSTR1, 2A, and 5 and lower scores for SSTR3 and 4. Tumors treated with radiotherapy before resection showed lower rates of SSTR1 and 5 expression, while recurrent meningiomas had lower SSTR1 scores. Tumor tissue from patients suffering from neurofibromatosis type 2 had lower expression scores for SSTR1, 2, and 5. For SSTR3 and 4, NF2 patients showed higher scores than sporadic tumors. Spinal meningiomas had higher scores for SSTR1, 4, and 5 compared tumor location of the skull base and convexity/falx. Overall, higher WHO grade was associated with lower SSTR scores. While all SSTRs were expressed, there are marked differences of SSTR expression between meningioma subgroups. This has the potential to drive the development of more selective PRRT substances with higher treatment efficacy.
Collapse
|
28
|
Abstract
Meningiomas are the most frequently occurring primary brain tumors in adults, representing almost one-third of all primary central nervous system tumors. Several factors have been suggested as an underlying cause in the development of meningiomas, such as ionizing radiation (therapeutic or other incidental exposure), hormonal factors, and genetic predisposition syndromes. Other established factors associated with meningiomas include age, female gender, and those from non-Hispanic Black backgrounds. Though the 2016 World Health Organization Classification of Brain Tumors largely preserves the existing grading scheme for organization of meningioma, there is increasing understanding of the molecular factors underlying the development of meningioma, some of which now form the basis for active clinical investigation. The mainstay of treatment has been the combination of radiation therapy and surgery, with a limited role for systemic therapy due to low efficacy, short duration of treatment response, and lack of uniform response criteria. Similar to other primary and metastatic brain tumors, immune-based therapies hold promise and are still under investigation.
Collapse
Affiliation(s)
- Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
29
|
Mirian C, Duun-Henriksen AK, Maier A, Pedersen MM, Jensen LR, Bashir A, Graillon T, Hrachova M, Bota D, van Essen M, Spanjol P, Kreis C, Law I, Broholm H, Poulsgaard L, Fugleholm K, Ziebell M, Munch T, Walter MA, Mathiesen T. Somatostatin Receptor-Targeted Radiopeptide Therapy in Treatment-Refractory Meningioma: Individual Patient Data Meta-analysis. J Nucl Med 2021; 62:507-513. [PMID: 32859705 DOI: 10.2967/jnumed.120.249607] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Somatostatin receptor (SSTR)-targeted peptide receptor radionuclide therapy (PRRT) represents a promising approach for treatment-refractory meningiomas. Methods: We performed an individual patient data meta-analysis, including all published data on meningioma patients treated with SSTR-targeted PRRT. The main outcomes were toxicity, response to treatment, progression-free survival (PFS), and overall survival (OS). We applied the Kaplan-Meier method to estimate survival probabilities and report incidence rates per 100 person-years. We applied Cox proportional hazards models to determine the effect of covariates. Results: We screened 537 papers and identified 6 eligible cohort studies. We included a total of 111 patients who had treatment-refractory meningioma and received SSTR-targeted PRRT. Disease control was achieved in 63% of patients. The 6-mo PFS rates were 94%, 48%, and 0% for World Health Organization grades I, II, and III, respectively. The risk of disease progression decreased by 13% per 1,000-MBq increase in the total applied activity. The 1-y OS rates were 88%, 71%, and 52% for World Health Organization grades I, II, and III, respectively. The risk of death decreased by 17% per 1,000-MBq increase in the total applied activity. The main side effects comprised transient hematotoxicity, such as anemia in 22% of patients, leukopenia in 13%, lymphocytopenia in 24%, and thrombocytopenia in 17%. Conclusion: To our knowledge, this individual patient data meta-analysis represents the most comprehensive analysis of the benefits of and adverse events associated with SSTR-targeted PRRT for treatment-refractory meningioma. The treatment was well tolerated, achieved disease control in most cases, and showed promising results regarding PFS and OS.
Collapse
Affiliation(s)
- Christian Mirian
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
| | | | - Andrea Maier
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Møller Pedersen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Rehné Jensen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Asma Bashir
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Graillon
- APHM, Department of Neurosurgery, La Timone Hospital, Marseille, France
| | - Maya Hrachova
- Department of Neurology, UC Irvine Medical Center, Irvine, California
| | - Daniela Bota
- Department of Neurology, UC Irvine Medical Center, Irvine, California
- Department of Neurosurgery, UC Irvine Medical Center, Irvine, California
| | - Martjin van Essen
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petar Spanjol
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Christian Kreis
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Neuropathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Poulsgaard
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tina Munch
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; and
| | - Martin A Walter
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
30
|
Wu W, Zhou Y, Wang Y, Liu L, Lou J, Deng Y, Zhao P, Shao A. Clinical Significance of Somatostatin Receptor (SSTR) 2 in Meningioma. Front Oncol 2020; 10:1633. [PMID: 33014821 PMCID: PMC7494964 DOI: 10.3389/fonc.2020.01633] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022] Open
Abstract
Somatostatin receptor (SSTR) 2, widely expressed in meningioma, is a G-protein-coupled receptor and can be activated by somatostatin or its synthetic analogs. SSTR2 is therefore extensively studied as a marker and target for the diagnosis and treatment of meningioma. Accumulating studies have revealed the crucial clinical significance of SSTR2 in meningioma. Summarizing the progress of these studies is urgently needed as it may not only provide novel and better management for patients with meningioma but also indicate the direction of future research. Pertinent literature is reviewed to summarize the recent collective knowledge and understanding of SSTR2’s clinical significance in meningioma in this review. SSTR2 offers novel ideas and approaches in the diagnosis, treatment, and prognostic prediction for meningioma, but more and further studies are required.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Müther M, Roll W, Brokinkel B, Zinnhardt B, Sporns PB, Seifert R, Schäfers M, Weckesser M, Stegger L, Stummer W, Rahbar K. Response assessment of somatostatin receptor targeted radioligand therapies for progressive intracranial meningioma. Nuklearmedizin 2020; 59:348-355. [PMID: 32691404 DOI: 10.1055/a-1200-0989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In somatostatin receptor (SSTR) expressing progressive meningioma, peptide receptor radionuclide therapy (PRRT) has shown effect in small clinical series. However, standardized treatment and response assessment protocols are lacking. We present our experience on PPRT with 177Lu-DOTATATE in progressive meningioma with a special emphasis on state-of-the-art response assessment. METHODS Retrospective analysis on PRRT with 177Lu-DOTATATE from 2015 to 2019. Pre- and post-therapy imaging was performed using MRI and 68Ga-DOTATATE-PET for standard bidimensional and volumetric analyses, respectively, following novel RANO guidelines. RESULTS Seven patients with progressive intracranial meningioma (median age 73 years, interquartile range 60-76; 5 WHO II, 2 WHO I; 5 multifocal) received a median of 4 cycles 2 3 4 of PRRT with 177Lu-DOTATATE in eight-week intervals. Three patients did not undergo post-therapy 68Ga-DOTATATE-PET due to early symptomatic progression and subsequent cessation of PRRT. After completion of 4 PRRT cycles volumetric PET imaging showed stable disease in two of four patients. According to bidimensional MRI response assessment, only one patient was stable. Progression free survival at six months was 42.9 %. CONCLUSION In this heterogeneous collective of seven patients with progressive meningioma, 177Lu-DOTATATE therapies showed heterogeneous effectiveness. PET-based volumetric assessment should be used for response assessment in PRRT additionally to bidimensional imaging.
Collapse
Affiliation(s)
- Michael Müther
- Department of Neurosurgery, University Hospital Münster, Germany
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Germany
| | | | | | - Peter B Sporns
- Institute of Clinical Radiology, University Hospital Münster, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Münster, Germany
| | | | | | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Germany
| |
Collapse
|
32
|
Cordova C, Kurz SC. Advances in Molecular Classification and Therapeutic Opportunities in Meningiomas. Curr Oncol Rep 2020; 22:84. [PMID: 32617743 DOI: 10.1007/s11912-020-00937-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the genetic and epigenetic alterations in meningioma and the underlying tumor biology of meningioma has significantly changed over the past decade and resulted in revision of prognostically relevant meningioma subclasses within and beyond the WHO classification of CNS tumors. RECENT FINDINGS The 2016 WHO classification of CNS tumors recognizes WHO grade I, II, and III based on histopathological features. Recent work has identified genetic alterations with prognostic implications, including mutations of the TERT promoter, loss of function of the DMD gene, and inactivation of the tumor suppressor BAP-1. Studies of DNA methylation patterns in meningiomas have resulted in a novel and prognostically relevant meningioma subclassification schema. There have been major advances in our understanding of prognostically relevant genetic and epigenetic changes in meningioma which will hopefully allow for improvement in clinical trial design and the development of more effective therapies for meningioma.
Collapse
Affiliation(s)
- Christine Cordova
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA
| | - Sylvia C Kurz
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E. 38th Street, 19th floor, New York, NY, 10016, USA.
| |
Collapse
|
33
|
Hartrampf PE, Hänscheid H, Kertels O, Schirbel A, Kreissl MC, Flentje M, Sweeney RA, Buck AK, Polat B, Lapa C. Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Clin Transl Radiat Oncol 2020; 22:29-32. [PMID: 32195377 PMCID: PMC7075763 DOI: 10.1016/j.ctro.2020.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/01/2020] [Indexed: 11/18/2022] Open
Abstract
Combination of PRRT and EBRT is feasible and safe in meningioma. Combined therapy resulted in disease stabilization in 7 of 10 patients. Future prospective validation of this new approach in larger cohorts is warranted.
Background The combination of somatostatin receptor-directed peptide receptor radionuclide therapy (PRRT) in combination with external beam radiotherapy (EBRT) might prove a feasible treatment option in patients with advanced meningioma. Patients and methods From May 2010 to May 2011, 10 patients with unresectable meningioma (6 × WHO grade I, 2 × WHO grade II, 2 × WHO grading not available) were treated with one cycle of PRRT followed by EBRT. Long-term toxicity and efficacy were assessed according to Common Terminology Criteria for Adverse Events version 5.0 and magnetic resonance imaging-based Response Assessment in Neuro-Oncology Working Group criteria, respectively. Results During long-term follow-up of a median of 105.0 months (range, 38.2–111.4 m), combined PRRT and EBRT was well-tolerated with no severe acute or chronic toxicity. Kidney or bone marrow function was not affected in any patient. Combination of PRRT and EBRT resulted in disease stabilization in 7 of the 10 patients with a median progression-free survival of 107.7 months (range, 47.2–111.4 m) vs. 26.2 months (range, 13.8–75.9 m) for the patients with meningioma progression. Conclusions The combination of PRRT and EBRT is a feasible and safe therapeutic option in meningioma patients. In this pilot cohort, the multimodality treatment demonstrated good disease stabilization.
Collapse
Affiliation(s)
- Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Olivia Kertels
- Institute of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Michael C Kreissl
- Department of Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Reinhart A Sweeney
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
34
|
Calabria F, Pichler R, Leporace M, Wolfsgruber J, Coscarelli P, Dunzinger A, Schillaci O, Cascini GL, Bagnato A. 68Ga/64Cu PSMA Bio-Distribution in Prostate Cancer Patients: Potential Pitfalls for Different Tracers. Curr Radiopharm 2020; 12:238-246. [PMID: 31113354 DOI: 10.2174/1874471012666190515090755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND 68Ga-PSMA is a widely useful PET/CT tracer for prostate cancer imaging. Being a transmembrane protein acting as a glutamate carboxypeptidase enzyme, PSMA is highly expressed in prostate cancer cells. PSMA can also be labeled with 64Cu, offering a longer half-life and different resolution imaging. Several studies documented bio-distribution and pitfalls of 68Ga-PSMA as well as of 64Cu- PSMA. No data are reported on differences between these two variants of PSMA. Our aim was to evaluate physiological distribution of these two tracers and to analyze false positive cases. METHODS We examined tracer bio-distribution in prostate cancer patients with negative 68Ga-PSMA PET/CT (n=20) and negative 64Ga-PSMA PET/CT (n=10). A diagnostic pitfall for each tracer was documented. RESULT Bio-distribution of both tracers was similar, with some differences due to renal excretion of 68Ga- PSMA and biliary excretion of 64Cu-PSMA. 68Ga-PSMA uptake was observed in sarcoidosis while 64Cu- PSMA uptake was recorded in pneumonitis. DISCUSSION Both tracers may present similar bio-distribution in the human body, with similar uptake in exocrine glands and high intestinal uptake. Similarly to other tracers, false positive cases cannot be excluded in clinical practice. CONCLUSION The knowledge of difference in bio-distribution between two tracers may help in interpretation of PET data. Diagnostic pitfalls can be documented, due to the possibility of PSMA uptake in inflammation. Our results are preliminary to future studies comparing diagnostic accuracies of 68Ga-PSMA and 64Cu-PSMA.
Collapse
Affiliation(s)
- Ferdinando Calabria
- Department of Nuclear Medicine and Theranostics, National Public Hospital "Mariano Santo", 87100, Cosenza, Italy
| | - Robert Pichler
- Institute of Nuclear Medicine, Kepler University Hospital, Neuromed Campus, Wagner-Jauregg Weg 15, A-4021 Linz, Austria
| | - Mario Leporace
- Department of Nuclear Medicine and Theranostics, National Public Hospital "Mariano Santo", 87100, Cosenza, Italy
| | | | | | - Andreas Dunzinger
- Institute of Nuclear Medicine, Kepler University Hospital, Neuromed Campus, Wagner-Jauregg Weg 15, A-4021 Linz, Austria
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University "Tor Vergata", 00133, Rome, Italy.,IRCCS INM Neuromed, 86077, Pozzilli (IS), Italy
| | - Giuseppe Lucio Cascini
- Department of Diagnostic Imaging, Nuclear Medicine Unit, Magna Graecia University, Catanzaro, Italy
| | - Antonio Bagnato
- Department of Nuclear Medicine and Theranostics, National Public Hospital "Mariano Santo", 87100, Cosenza, Italy
| |
Collapse
|
35
|
Graillon T, Regis J, Barlier A, Brue T, Dufour H, Buchfelder M. Parasellar Meningiomas. Neuroendocrinology 2020; 110:780-796. [PMID: 32492684 DOI: 10.1159/000509090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
Parasellar spaces remain particularly singular, comprising the most important neurovascular structures such as the internal carotid artery and optic, oculomotor, and trigeminal nerves. Meningiomas are one of the most frequent tumors arising from parasellar spaces. In this location, meningiomas remain mostly benign tumors with WHO grade I and a meningothelial subtype. Progestin intake should be investigated and leads mostly to conservative strategies. In the case of benign nonsymptomatic tumors, observation should be proposed. Tumor growth will lead to the proposition of surgery or radiosurgery. In the case of an uncertain diagnosis and an aggressive pattern, a precise diagnosis is required. For cavernous sinus and Meckel's cave lesions, complete removal is rarely considered, leading to the proposition of an endoscopic endonasal or transcranial biopsy. Optic nerve decompression could also be proposed via these approaches. A case-by-case discussion about the best approach is recommended. A transcranial approach remains necessary for tumor removal in most cases. Vascular injury could lead to severe complications. Cerebrospinal fluid leakage, meningitis, venous sacrifice, visual impairment, and cranial nerve palsies are more frequent complications. Pituitary dysfunctions are rare in preoperative assessment and in postoperative follow-up but should be assessed in the case of meningiomas located close to the pituitary axis. Long-term follow-up is required given the frequent incomplete tumor removal and the risk of delayed recurrence. Radiosurgery is relevant for small and well-limited meningiomas or intra-cavernous sinus postoperative residue, whereas radiation therapy and proton beam therapy are indicated for large, extended, nonoperable meningiomas. The place of the peptide receptor radionuclide therapyneeds to be defined. Targeted therapy should be considered in rare, recurrent, and aggressive parasellar meningiomas.
Collapse
Affiliation(s)
- Thomas Graillon
- Neurosurgery Department, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France,
- Aix-Marseille University, INSERM, MMG, Marseille, France,
| | - Jean Regis
- Gamma Knife Unit, Functional and Stereotactic Department, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France
| | - Anne Barlier
- Aix-Marseille University, INSERM, MMG, Marseille, France
- Molecular Biology Department, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France
| | - Thierry Brue
- Aix-Marseille University, INSERM, MMG, Marseille, France
- Endocrinology Department, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CHU Conception, Marseille, France
| | - Henry Dufour
- Neurosurgery Department, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, CHU Timone, Marseille, France
- Aix-Marseille University, INSERM, MMG, Marseille, France
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Brachman DG, Youssef E, Dardis CJ, Sanai N, Zabramski JM, Smith KA, Little AS, Shetter AG, Thomas T, McBride HL, Sorensen S, Spetzler RF, Nakaji P. Resection and permanent intracranial brachytherapy using modular, biocompatible cesium-131 implants: results in 20 recurrent, previously irradiated meningiomas. J Neurosurg 2019; 131:1819-1828. [PMID: 30579269 DOI: 10.3171/2018.7.jns18656] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Effective treatments for recurrent, previously irradiated intracranial meningiomas are limited, and resection alone is not usually curative. Thus, the authors studied the combination of maximum safe resection and adjuvant radiation using permanent intracranial brachytherapy (R+BT) in patients with recurrent, previously irradiated aggressive meningiomas. METHODS Patients with recurrent, previously irradiated meningiomas were treated between June 2013 and October 2016 in a prospective single-arm trial of R+BT. Cesium-131 (Cs-131) radiation sources were embedded in modular collagen carriers positioned in the operative bed on completion of resection. The Cox proportional hazards model with this treatment as a predictive term was used to model its effect on time to local tumor progression. RESULTS Nineteen patients (median age 64.5 years, range 50-78 years) with 20 recurrent, previously irradiated tumors were treated. The WHO grade at R+BT was I in 4 (20%), II in 14 (70%), and III in 2 (10%) cases. The median number of prior same-site radiation courses and same-site surgeries were 1 (range 1-3) and 2 (range 1-4), respectively; the median preoperative tumor volume was 11.3 cm3 (range 0.9-92.0 cm3). The median radiation dose from BT was 63 Gy (range 54-80 Gy). At a median radiographic follow-up of 15.4 months (range 0.03-47.5 months), local failure (within 1.5 cm of the implant bed) occurred in 2 cases (10%). The median treatment-site time to progression after R+BT has not been reached; that after the most recent prior therapy was 18.3 months (range 3.9-321.9 months; HR 0.17, p = 0.02, log-rank test). The median overall survival after R+BT was 26 months, with 9 patient deaths (47% of patients). Treatment was well tolerated; 2 patients required surgery for complications, and 2 experienced radiation necrosis, which was managed medically. CONCLUSIONS R+BT utilizing Cs-131 sources in modular carriers represents a potentially safe and effective treatment option for recurrent, previously irradiated aggressive meningiomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Theresa Thomas
- 4St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | | | - Stephen Sorensen
- 4St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | | | | |
Collapse
|
37
|
Laudicella R, Albano D, Annunziata S, Calabrò D, Argiroffi G, Abenavoli E, Linguanti F, Albano D, Vento A, Bruno A, Alongi P, Bauckneht M. Theragnostic Use of Radiolabelled Dota-Peptides in Meningioma: From Clinical Demand to Future Applications. Cancers (Basel) 2019; 11:cancers11101412. [PMID: 31546734 PMCID: PMC6826849 DOI: 10.3390/cancers11101412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Meningiomas account for approximately 30% of all new diagnoses of intracranial masses. The 2016 World Health Organization's (WHO) classification currently represents the clinical standard for meningioma's grading and prognostic stratification. However, watchful waiting is frequently the chosen treatment option, although this means the absence of a certain histological diagnosis. Consequently, MRI (or less frequently CT) brain imaging currently represents the unique available tool to define diagnosis, grading, and treatment planning in many cases. Nonetheless, these neuroimaging modalities show some limitations, particularly in the evaluation of skull base lesions. The emerging evidence supporting the use of radiolabelled somatostatin receptor analogues (such as dota-peptides) to provide molecular imaging of meningiomas might at least partially overcome these limitations. Moreover, their potential therapeutic usage might enrich the current clinical offering for these patients. Starting from the strengths and weaknesses of structural and functional neuroimaging in meningiomas, in the present article we systematically reviewed the published studies regarding the use of radiolabelled dota-peptides in surgery and radiotherapy planning, in the restaging of treated patients, as well as in peptide-receptor radionuclide therapy of meningioma.
Collapse
Affiliation(s)
- Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy
| | - Domenico Albano
- Department of Nuclear Medicine, University of Brescia and Spedali Civili Brescia, 25123 Brescia, Italy
| | - Salvatore Annunziata
- Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Diletta Calabrò
- Nuclear Medicine, DIMES University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | | | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Unità di Radiologia Diagnostica ed Interventistica, 20161 Milano, Italy
- Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Antonio Vento
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy
| | - Antonio Bruno
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Pierpaolo Alongi
- Unit of Nuclear Medicine, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| |
Collapse
|
38
|
|
39
|
|
40
|
Parghane RV, Talole S, Basu S. Prevalence of hitherto unknown brain meningioma detected on 68Ga-DOTATATE positron-emission tomography/computed tomography in patients with metastatic neuroendocrine tumor and exploring potential of 177Lu-DOTATATE peptide receptor radionuclide therapy as single-shot treatment approach targeting both tumors. World J Nucl Med 2019; 18:160-170. [PMID: 31040748 PMCID: PMC6476244 DOI: 10.4103/wjnm.wjnm_39_18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is a relative paucity of data in the literature regarding the prevalence of meningiomas and their detection in the clinical setting of neuroendocrine tumors (NETs). The primary aim of this study was to study incidentally detected meningiomas (on 68Ga-DOTATATE/ 18F fluorodeoxyglucose positron-emission tomography/computed tomography [18F-FDG PET/CT]) in metastatic NET patients referred for peptide receptor radionuclide therapy (PRRT). The secondary aims of this study were to evaluate the response rate of these incidentally detected meningiomas following PRRT and determine progression-free survival (PFS) in this group of patients. This was a retrospective analysis of 500 metastatic/advanced NET patients who had undergone 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT before PRRT workup. The case records were searched to identify cases of hitherto unknown meningiomas detected on PET images; subsequently, these patients underwent brain magnetic resonance imaging (MRI) for confirmation of diagnosis. Following 177Lu-DOTATATE PRRT, posttreatment functional and structural imaging response evaluation of the meningiomas were undertaken by 68Ga-DOTATATE PET/CT, MRI, or CT brain, respectively, along with clinical neurological evaluation. The patients were designated as responders and nonresponders based on predefined response assessment criteria. The PFS of these incidentally detected meningiomas following PRRT was estimated using the Kaplan-Meier product-limit method. Twelve NET patients were retrospectively identified with abnormal focal brain uptake on 68Ga-DOTATATE PET/CT. Of these, meningiomas were finally diagnosed on brain MRI examination in six patients (M: F =3:3; age range: 30-66 years; and mean age: 45 years), with a prevalence of 1.2%. Standardized uptake value (SUVmax) of meningiomas on 68Ga-DOTATATE and 18F-FDG PET/CT ranged from 7.0 to 22.0 (average 17.0) and 10.19-13.70 (mean: 12.10), respectively, and lesion-to-normal brain parenchyma SUVmax ratio ranged from 140 to 400 (mean: 340) and 1.02-1.07 (mean: 1.04), respectively. Of six patients with incidentally detected meningiomas, one patient died within 1 month and five patients received 177Lu-DOTATATE PRRT, the number of cycles ranging from two to six (average: 4) and cumulative therapeutic dose ranging from 13.28 to 29.97GBq (average dose: 19.86GBq). Follow-up in these patients ranged from 8 to 36 months (mean: 19.4 months) after the first dose of PRRT. Complete disappearance of neurological symptoms was found in two of five patients (40%), partial response in one of five (20%), and worsening of symptoms in two of five patients (40%). The overall "responder" and "nonresponder" of the meningiomas after PRRT were three patients (60%) and two patients (40%), respectively. Two patients (40%) died of advanced NET at the time of analysis of these data. The observed mean PFS of the meningioma lesions following PRRT was 26.25 months (95% confidence interval, 16.65-35.84 months). No major hematological and renal toxicity were documented in any of these patients. To conclude, 68Ga-DOTATATE PET/CT imaging is an effective technique for the incidental identification of meningioma in NET patients. Considering the limited therapeutic options in the palliative setting of advanced or metastatic NET patients and morbidity associated with the therapeutic procedures, PRRT could be a promising targeted therapeutic approach for such cases of incidentally detected meningiomas, which is also helpful in stabilizing the disease process without any significant toxicity.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sanjay Talole
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.,Department of Biostatistcs, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
41
|
Guedj E, Graillon T, Chinot O, Taieb D. Treatment of aggressive recurrent meningiomas: spinning towards peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2018; 46:537-538. [PMID: 30552446 DOI: 10.1007/s00259-018-4221-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Eric Guedj
- Service de Médecine Nucléaire, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France. .,CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Aix-Marseille Université, Marseille, France. .,CERIMED, Aix-Marseille Université, Marseille, France.
| | - Thomas Graillon
- Service de Neurochirurgie, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CNRS, UMR7286, CRN2M, Aix-Marseille Université, Marseille, France
| | - Olivier Chinot
- Service de Neuro-Oncologie, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - David Taieb
- Service de Médecine Nucléaire, CHU Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,CERIMED, Aix-Marseille Université, Marseille, France.,Inserm, U1068-CNRS 7258, Cancer Research Center of Marseille, Aix-Marseille Université, Marseille, France
| |
Collapse
|
42
|
Dasanu CA, Samara Y, Codreanu I, Limonadi FM, Hamid O, Alvarez-Argote J. Systemic therapy for relapsed/refractory meningioma: Is there potential for antiangiogenic agents? J Oncol Pharm Pract 2018; 25:638-647. [PMID: 30253729 DOI: 10.1177/1078155218799850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Effective therapies for relapsed/refractory meningioma after surgery and radiation therapy represent an unmet need. Most meningiomas are highly vascularized tumors and, therefore, potentially amenable to antiangiogenic therapy. Herein, we review comprehensively the scientific literature on systemic therapy options for relapsed, persistent or metastatic meningioma, not amenable to local therapy. Also, this review offers insights into the function of vascular endothelial growth factor/receptor pathway both in health and disease. Further, we address the current status of the preclinical and clinical studies targeting vascular endothelial growth factor/receptor signaling in meningioma. Most relevant publications were identified through searching the PubMed/Medline database for articles published from inception to 1 February 2018. Vascular endothelial growth factor pathway activation might represent the primary driver of angiogenesis in meningioma. Positive findings of two prospective phase II trials, supported by the results of several retrospective cohorts, suggest a clinical benefit for the vascular endothelial growth factor inhibitor bevacizumab in refractory meningioma. Bevacizumab causes both peritumoral brain edema reduction and true meningioma shrinkage. Patients with WHO grades II-III meningioma appear to benefit more than patients with grade I disease. Similarly, responses have been documented with certain oral targeted anti-vascular endothelial growth factor/receptor agents. Further exploration of the role of vascular endothelial growth factor/receptor inhibitors in refractory meningioma seems warranted.
Collapse
Affiliation(s)
- Constantin A Dasanu
- 1 Lucy Curci Cancer Center, Eisenhower Medical Center, Rancho Mirage, CA, USA.,2 University of California San Diego Health System, La Jolla, CA, USA
| | - Yazeed Samara
- 3 Department of Medicine, Eisenhower Medical Center, Rancho Mirage, CA, USA
| | - Ion Codreanu
- 4 Department of Radiology and Imaging, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldova
| | - Farhad M Limonadi
- 5 Department of Neurosurgery, Eisenhower Medical Center, Rancho Mirage, CA, USA
| | - Omid Hamid
- 6 Department of Translational Research and Immunotherapy, The Angeles Clinic and Research Institute, Los Angeles, CA, USA
| | | |
Collapse
|
43
|
Galldiks N, Albert NL, Sommerauer M, Grosu AL, Ganswindt U, Law I, Preusser M, Le Rhun E, Vogelbaum MA, Zadeh G, Dhermain F, Weller M, Langen KJ, Tonn JC. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro Oncol 2017; 19:1576-1587. [PMID: 28605532 PMCID: PMC5716194 DOI: 10.1093/neuonc/nox112] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Meningiomas are the most frequent nonglial primary brain tumors and represent about 30% of brain tumors. Usually, diagnosis and treatment planning are based on neuroimaging using mainly MRI or, rarely, CT. Most common treatment options are neurosurgical resection and radiotherapy (eg, radiosurgery, external fractionated radiotherapy). For follow-up after treatment, a structural imaging technique such as MRI or CT is used. However, these structural imaging modalities have limitations, particularly in terms of tumor delineation as well as diagnosis of posttherapeutic reactive changes. Molecular imaging techniques such as PET can characterize specific metabolic and cellular features which may provide clinically relevant information beyond that obtained from structural MR or CT imaging alone. Currently, the use of PET in meningioma patients is steadily increasing. In the present article, we provide recommendations for the use of PET imaging in the clinical management of meningiomas based on evidence generated from studies being validated by histology or clinical course.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Nathalie L Albert
- Departments of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Michael Sommerauer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Ute Ganswindt
- Departments of Radiation Oncology, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Michael A Vogelbaum
- Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gelareh Zadeh
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Frédéric Dhermain
- Department of Radiation Oncology, Gustave Roussy University Hospital, Villejuif, France
| | - Michael Weller
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Jörg C Tonn
- Departments of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany
- German Cancer Consortium, Partner Sites, Freiburg and Munich, Germany
| |
Collapse
|
44
|
Calabria F. Fifty shades of meningioma: challenges and perspectives of different PET molecular probes. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0249-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Seystahl K, Stoecklein V, Schüller U, Rushing E, Nicolas G, Schäfer N, Ilhan H, Pangalu A, Weller M, Tonn JC, Sommerauer M, Albert NL. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro Oncol 2016; 18:1538-1547. [PMID: 27106404 DOI: 10.1093/neuonc/now060] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/16/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The prognosis of patients with progressive meningioma after failure of surgery and radiotherapy is poor. METHODS We retrospectively evaluated the safety and efficacy of somatostatin-receptor (SSTR)-targeted radionuclide therapy (177Lu-DOTATATE [n = 16], 90Y-DOTATOC [n = 3], or both [n = 1]) in patients with progressive, treatment-refractory meningiomas (5 World Health Organization [WHO] grade I, 7 WHO grade II, 8 WHO grade III) and in part multifocal disease (17 of 20 patients). RESULTS SSTR radionuclide treatment (median of 3 treatment cycles, median administered dose/cycle 7400 MBq) led to a disease stabilization in 10 of 20 patients for a median time of 17 months. Stratification according to WHO grade showed a median progression-free survival (PFS) of 32.2 months for grade I tumors, 7.2 for grade II, and 2.1 for grade III. PFS at 6 months was 100% for grade I, 57% for grade II, and 0% for grade III. Median overall survival was 17.2 months in WHO grade III patients and not reached for WHO I and II at a median follow-up of 20 months. In the analysis of single meningioma lesions, maximal and mean standardized uptake values in pretherapeutic 68Ga-DOTATOC/-TATE PET/CT were significantly higher in those lesions with radiographic stability after 6 months. In line with this, high expression of SSTR via immunohistochemistry was associated with PFS >6 months. CONCLUSIONS SSTR-targeted radionuclide treatment has activity in a subset of patients with meningioma. Expression of SSTR via immunohistochemistry or radionuclide uptake might serve as a predictive biomarker for outcome to facilitate individualized treatment optimization in patients with uni- and multifocal meningiomas.
Collapse
Affiliation(s)
- Katharina Seystahl
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Veit Stoecklein
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Ulrich Schüller
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Elisabeth Rushing
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Guillaume Nicolas
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Niklaus Schäfer
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Harun Ilhan
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Athina Pangalu
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Michael Weller
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Jörg-Christian Tonn
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Michael Sommerauer
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| | - Nathalie L Albert
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland (K.S., M.W., M.S.); Department of Neurosurgery, University Hospital LMU Munich, Munich, Germany (V.S., J.-C.T.); Department of Neuropathology, University Hospital LMU Munich, Munich, Germany (U.S.); Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland (E.R.); Department of Nuclear Medicine, University Hospital Basel, Basel, Switzerland (G.N.); Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland (N.S., M.S.); Department of Nuclear Medicine, University Hospital LMU Munich, Munich, Germany (H.I., N.L.A.); Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland (A.P.)
| |
Collapse
|