1
|
van Nijnatten TJA, de Mooij CM, Mitea C, Houwers J, de Boer M, Smidt ML, Mottaghy FM, Wildberger JE. [ 18F]FDG whole-body PET-MR including an integrated breast MR protocol for locoregional and distant staging in breast cancer patients-a feasibility study. Insights Imaging 2024; 15:243. [PMID: 39382796 PMCID: PMC11464706 DOI: 10.1186/s13244-024-01830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE To investigate in a feasibility study the combination of [18F]FDG whole-body (WB) positron emission tomography-magnetic resonance (PET-MR), including an integrated breast MR within a single protocol for locoregional and distant staging in breast cancer patients. METHODS Consecutive patients with breast cancer diagnoses according to conventional imaging modalities (full-field digital mammography (FFDM) and ultrasound (US)) were prospectively included. All patients underwent [18F]FDG WB PET-MR, including an integrated dedicated breast MR (prone position) and WB PET-MR (supine position) protocol. Results of [18F]FDG WB PET-MR, including integrated breast MR, versus conventional imaging modalities were compared. RESULTS From April 2021-April 2022, 28 patients were included. On conventional imaging, cT1-2 breast cancer was present in 22 (FFDM) and 23 (US) out of 28 patients. With regard to clinical nodal status, eight patients were considered cN0, eighteen cN1 (1-3 suspicious lymph nodes), and two patients were cN2 (four suspicious axillary lymph nodes/internal mammary lymph node metastasis). [18F]FDG WB PET-MR, including an integrated breast MR protocol, upstaged clinical tumor status in two patients and clinical nodal status in nine patients according to both [18F]FDG WB PET-MR and breast MR findings. In addition, distant metastases were detected in three patients (liver/bone), and another patient was diagnosed with a synchronous primary tumor (lung cancer). CONCLUSION [18F]FDG WB PET-MR, including an integrated breast MR within a single protocol in breast cancer patients, is feasible and provides a promising new approach in breast cancer patients with regard to locoregional and distant staging. CRITICAL RELEVANCE STATEMENT: [18F]FDG whole-body PET-MR, including an integrated breast MR protocol, is feasible and allows locoregional and distant staging within a single imaging exam in breast cancer patients. KEY POINTS [18F]FDG PET-MR allows the combination of breast MR and whole-body staging. Therefore, a single protocol of whole-body [18F]FDG PET-MR, including an integrated breast MRI, is investigated. [18F]FDG PET-MR, including an integrated breast MR is feasible and can be considered in daily clinical practice.
Collapse
Affiliation(s)
- Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Cornelis M de Mooij
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Division of Internal Medicine, Department of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Janneke Houwers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maaike de Boer
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Division of Internal Medicine, Department of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marjolein L Smidt
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Albert NL, Preusser M, Traub-Weidinger T, Tolboom N, Law I, Palmer JD, Guedj E, Furtner J, Fraioli F, Huang RY, Johnson DR, Deroose CM, Herrmann K, Vogelbaum M, Chang S, Tonn JC, Weller M, Wen PY, van den Bent MJ, Verger A, Ivanidze J, Galldiks N. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: version 1.0. Eur J Nucl Med Mol Imaging 2024; 51:3662-3679. [PMID: 38898354 PMCID: PMC11445317 DOI: 10.1007/s00259-024-06783-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To provide practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor (SSTR) ligands. METHODS This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neurooncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). RESULTS Positron emission tomography (PET) using somatostatin receptor (SSTR) ligands can detect meningioma tissue with high sensitivity and specificity and may provide clinically relevant information beyond that obtained from structural magnetic resonance imaging (MRI) or computed tomography (CT) imaging alone. SSTR-directed PET imaging can be particularly useful for differential diagnosis, delineation of meningioma extent, detection of osseous involvement, and the differentiation between posttherapeutic scar tissue and tumour recurrence. Moreover, SSTR-peptide receptor radionuclide therapy (PRRT) is an emerging investigational treatment approach for meningioma. CONCLUSION These practice guidelines will define procedure standards for the application of PET imaging in patients with meningiomas and related SSTR-targeted PRRTs in routine practice and clinical trials and will help to harmonize data acquisition and interpretation across centers, facilitate comparability of studies, and to collect larger databases. The current document provides additional information to the evidence-based recommendations from the PET/RANO Working Group regarding the utilization of PET imaging in meningiomas Galldiks (Neuro Oncol. 2017;19(12):1576-87). The information provided should be considered in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Nelleke Tolboom
- Princess Máxima Centre for Paediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Division Imaging & Oncology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eric Guedj
- Institut Fresnel, Nuclear Medicine Department, APHM, CNRS, Timone Hospital, CERIMED, Aix Marseille Univ, Marseille, France
| | - Julia Furtner
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK) - University Hospital Essen, Essen, Germany
| | | | - Susan Chang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM UMR 1254, Université de Lorraine, Nancy, France
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
3
|
van de Weijer T, van der Meer WL, Moonen RPM, van Nijnatten TJA, Gietema HA, Mitea C, van der Pol JAJ, Wildberger JE, Mottaghy FM. Limited Additional Value of a Chest CT in Whole-Body Staging with PET-MRI: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2265. [PMID: 38927970 PMCID: PMC11201796 DOI: 10.3390/cancers16122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Hybrid PET-MRI systems are being used more frequently. One of the drawbacks of PET-MRI imaging is its inferiority in detecting lung nodules, so it is often combined with a computed tomography (CT) of the chest. However, chest CT often detects additional, indeterminate lung nodules. The objective of this study was to assess the sensitivity of detecting metastatic versus indeterminate nodules with PET-MRI compared to chest CT. A total of 328 patients were included. All patients had a PET/MRI whole-body scan for (re)staging of cancer combined with an unenhanced chest CT performed at our center between 2014 and 2020. Patients had at least a two-year follow-up. Six percent of the patients had lung metastases at initial staging. The sensitivity and specificity of PET-MRI for detecting lung metastases were 85% and 100%, respectively. The incidence of indeterminate lung nodules on chest CT was 30%. The sensitivity of PET-MRI to detect indeterminate lung nodules was poor (23.0%). The average size of the indeterminate lung nodules detected on PET-MRI was 7 ± 4 mm, and the missed indeterminate nodules on PET-MRI were 4 ± 1 mm (p < 0.001). The detection of metastatic lung nodules is fairly good with PET-MRI, whereas the sensitivity of PET-MRI for detecting indeterminate lung nodules is size-dependent. This may be an advantage, limiting unnecessary follow-up of small, indeterminate lung nodules while adequately detecting metastases.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), 6200 MD Maastricht, The Netherlands
| | - Wilhelmina L. van der Meer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Hester A. Gietema
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Cardiovascular Diseases (CARIM), 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Waelti S, Skawran S, Sartoretti T, Schwyzer M, Gennari AG, Mader C, Treyer V, Kellenberger CJ, Burger IA, Hany T, Maurer A, Huellner MW, Messerli M. A third of the radiotracer dose: two decades of progress in pediatric [ 18F]fluorodeoxyglucose PET/CT and PET/MR imaging. Eur Radiol 2024; 34:3252-3259. [PMID: 37855853 PMCID: PMC11126459 DOI: 10.1007/s00330-023-10319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To assess the evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between years 2000 and 2021. METHODS Pediatric patients (≤ 16 years) referred for 18F-FDG PET/CT or PET/MR imaging of the body during 2000 and 2021 were retrospectively included. The amount of administered radiotracer activity in megabecquerel (MBq) was recorded, and signal-to-noise ratio (SNR) was measured in the right liver lobe with a 4 cm3 volume of interest as an indicator for objective image quality. Descriptive statistics were computed. RESULTS Two hundred forty-three children and adolescents underwent a total of 466 examinations. The median injected 18F-FDG activity in MBq decreased significantly from 296 MBq in 2000-2005 to 100 MBq in 2016-2021 (p < 0.001), equaling approximately one-third of the initial amount. The median SNR ratio was stable during all years with 11.7 (interquartile range [IQR] 10.7-12.9, p = 0.133). CONCLUSIONS Children have benefited from a massive reduction in the administered 18F-FDG dose over the past 20 years without compromising objective image quality. CLINICAL RELEVANCE STATEMENT Radiotracer dose was reduced considerably over the past two decades of pediatric F-18-fluorodeoxyglucose PET/CT and PET/MR imaging highlighting the success of technical innovations in pediatric PET imaging. KEY POINTS • The evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between 2000 and 2021 was assessed. • The injected tracer activity decreased by 66% during the study period from 296 megabecquerel (MBq) to 100 MBq (p < 0.001). • The continuous implementation of technical innovations in pediatric hybrid 18F-FDG PET has led to a steady decrease in the amount of applied radiotracer, which is particularly beneficial for children who are more sensitive to radiation.
Collapse
Affiliation(s)
- Stephan Waelti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Moritz Schwyzer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Antonio G Gennari
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Cäcilia Mader
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian J Kellenberger
- University of Zurich, Zurich, Switzerland
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Thomas Hany
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- MRI Bahnhofplatz, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Shashi KK, Weldon CB, Voss SD. Positron emission tomography in the diagnosis and management of primary pediatric lung tumors. Pediatr Radiol 2024; 54:671-683. [PMID: 38231400 DOI: 10.1007/s00247-023-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Primary pediatric lung tumors are uncommon and have many overlapping clinical and imaging features. In contrast to adult lung tumors, these rare pediatric neoplasms have a relatively broad histologic spectrum. Informed by a single-institution 13-year retrospective record review, we present an overview of the most common primary pediatric lung neoplasms, with a focus on the role of positron emission tomography (PET), specifically 18F-fluorodeoxyglucose (FDG) PET and 68Ga-DOTATATE PET, in the management of primary pediatric lung tumors. In addition to characteristic conventional radiographic and cross-sectional imaging findings, knowledge of patient age, underlying cancer predisposition syndromes, and PET imaging features may help narrow the differential. While metastases from other primary malignancies remain the most commonly encountered pediatric lung malignancy, the examples presented in this pictorial essay highlight many of the important conventional radiologic and PET imaging features of primary pediatric lung malignancies.
Collapse
Affiliation(s)
- Kumar K Shashi
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Radiology, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR, 72202, USA
| | - Christopher B Weldon
- Department of Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Alves VDPV, Ata NA, MacLean J, Sharp SE, Li Y, Brady S, Trout AT. Reduced count pediatric whole-body 18F-FDG PET imaging reconstruction with a Bayesian penalized likelihood algorithm. Pediatr Radiol 2024; 54:170-180. [PMID: 37962603 DOI: 10.1007/s00247-023-05801-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Advanced positron emission tomography (PET) image reconstruction methods promise to allow optimized PET/CT protocols with improved image quality, decreased administered activity and/or acquisition times. OBJECTIVE To evaluate the impact of reducing counts (simulating reduced acquisition time) in block sequential regularized expectation maximization (BSREM) reconstructed pediatric whole-body 18F-fluorodeoxyglucose (FDG) PET images, and to compare BSERM with ordered-subset expectation maximization (OSEM) reconstructed reduced-count images. MATERIALS AND METHODS Twenty children (16 male) underwent clinical whole-body 18F-FDG PET/CT examinations using a 25-cm axial field-of-view (FOV) digital PET/CT system at 90 s per bed (s/bed) with BSREM reconstruction (β=700). Reduced count simulations with varied BSREM β levels were generated from list-mode data: 60 s/bed, β=800; 50 s/bed, β=900; 40 s/bed, β=1000; and 30 s/bed, β=1300. In addition, a single OSEM reconstruction was created at 60 s/bed based on prior literature. Qualitative (Likert scores) and quantitative (standardized uptake value [SUV]) analyses were performed to evaluate image quality and quantitation across simulated reconstructions. RESULTS The mean patient age was 9.0 ± 5.5 (SD) years, mean weight was 38.5 ± 24.5 kg, and mean administered 18F-FDG activity was 4.5 ± 0.7 (SD) MBq/kg. Between BSREM reconstructions, no qualitative measure showed a significant difference versus the 90 s/bed β=700 standard (all P>0.05). SUVmax values for lesions were significantly lower from 90 s/bed, β=700 only at a simulated acquisition time of 30 s/bed, β=1300 (P=0.001). In a side-by-side comparison of BSREM versus OSEM reconstructions, 40 s/bed, β=1000 images were generally preferred over 60 s/bed TOF OSEM images. CONCLUSION In children who undergo whole-body 18F-FDG PET/CT on a 25-cm FOV digital PET/CT scanner, reductions in acquisition time or, by corollary, administered radiopharmaceutical activity of >50% from a clinical standard of 90 s/bed may be possible while maintaining diagnostic quality when a BSREM reconstruction algorithm is used.
Collapse
Affiliation(s)
- Vinicius de Padua V Alves
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
| | - Nadeen Abu Ata
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph MacLean
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
| | - Susan E Sharp
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yinan Li
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel Brady
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH, 45226, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Yamada D, Matsusako M, Yoneoka D, Oikado K, Ninomiya H, Nozaki T, Ishiyama M, Makidono A, Otsuji M, Itoh H, Ojiri H. Ex-vivo 1.5T MR Imaging versus CT in Estimating the Size of the Pathologically Invasive Component of Lung Adenocarcinoma Spectrum Lesions. Magn Reson Med Sci 2024; 23:92-101. [PMID: 36529498 PMCID: PMC10838715 DOI: 10.2463/mrms.mp.2022-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2024] Open
Abstract
PURPOSE The purpose of this study was to investigate whether ex-vivo MRI enables accurate estimation of the invasive component of lung adenocarcinoma. METHODS We retrospectively reviewed 32 patients with lung adenocarcinoma who underwent lung lobectomy. The specimens underwent MRI at 1.5T. The boundary between the lesion and the normal lung was evaluated on a 5-point scale in each three MRI sequences, and a one-way analysis of variance and post-hoc tests were performed. The invasive component size was measured histopathologically. The maximum diameter of each solid component measured on CT and MR T1-weighted (T1W) images and the maximum size obtained from histopathologic images were compared using the Wilcoxon signed-rank test. Inter-reader agreement was evaluated using intraclass correlation coefficients (ICC). RESULTS T1W images were determined to be optimal for the delineation of the lesions (P < 0.001). The histopathologic invasive area corresponded to the area where the T1W ex-vivo MR image showed a high signal intensity that was almost equal to the intravascular blood signal. The maximum diameter of the solid component on CT was overestimated compared with the maximum invasive size on histopathology (mean, 153%; P < 0.05), while that on MRI was evaluated mostly accurately without overestimation (mean, 108%; P = 0.48). The interobserver reliability of the measurements using CT and MRI was good (ICC = 0.71 on CT, 0.74 on MRI). CONCLUSION Ex-vivo MRI was more accurate than conventional CT in delineating the invasive component of lung adenocarcinoma.
Collapse
Affiliation(s)
- Daisuke Yamada
- Department of Radiology, St. Luke’s International University, Tokyo, Japan
| | - Masaki Matsusako
- Department of Radiology, St. Luke’s International University, Tokyo, Japan
| | - Daisuke Yoneoka
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsunori Oikado
- Diagnostic Imaging Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, St. Luke’s International University, Tokyo, Japan
| | - Mitsutomi Ishiyama
- Diagnostic Imaging Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akari Makidono
- Department of Diagnostic Radiology, Tokyo Metropolitan Children’s Medical Center, Fuchu, Tokyo, Japan
| | - Mizuto Otsuji
- Department of Thoracic Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Harumi Itoh
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine and University Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Tran-Gia J, Eberlein U, Lassmann M, Mauz-Körholz C, Körholz D, Zuccetta P, Bar-Sever Z, Rosner U, Georgi TW, Sabri O, Kluge R, Piccardo A, Kurch L. Analysis of image data from the EuroNet PHL-C2 trial indicates a potential reduction in injected F-18 FDG activities in children: a proposal to update the EANM Paediatric Dosage Card. Eur J Nucl Med Mol Imaging 2024; 51:405-411. [PMID: 37728668 PMCID: PMC10774179 DOI: 10.1007/s00259-023-06396-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The aim of this work is to provide the currently missing evidence that may allow an update of the Paediatric Dosage Card provided by the European Association of Nuclear Medicine (EANM) for conventional PET/CT systems. METHODS In a total of 2082 consecutive [18F]FDG-PET scans performed within the EuroNet-PHL-C2 trial, the administered [18F]FDG activity was compared to the activity recommended by the EANM Paediatric Dosage Card. None of these scans had been rejected beforehand by the reference nuclear medicine panel of the trial because of poor image quality. For detailed quality assessment, a subset of 91 [18F]FDG-PET scans, all performed in different patients at staging, was selected according to pre-defined criteria, which (a) included only patients who had received substantially lower activities than those recommended by the EANM Paediatric Dosage Card, and (b) included as wide a range of different PET systems and imaging parameters as possible to ensure that the conclusions drawn in this work are as generally valid as possible. The image quality of the subset was evaluated visually by two independent readers using a quality scoring system as well as analytically based on a volume-of-interest analysis in 244 lesions and the healthy liver. Finally, recommendations for an update of the EANM Paediatric Dosage Card were derived based on the available data. RESULTS The activity recommended by the EANM Paediatric Dosage Card was undercut by a median of 99.4 MBq in 1960 [18F]FDG-PET scans and exceeded by a median of 15.1 MBq in 119 scans. In the subset analysis (n = 91), all image data were visually classified as clinically useful. In addition, only a very weak correlation (r = 0.06) between activity reduction and tumour-to-background ratio was found. Due to the intended heterogeneity of the dataset, the noise could not be analysed statistically sound as the high range of different imaging variables resulted in very small subsets. Finally, a suggestion for an update of the EANM Paediatric Dosage Card was developed, based on the analysis presented, resulting in a mean activity reduction by 39%. CONCLUSION The results of this work allow for a conservative update of the EANM Paediatric Dosage Card for [18F]FDG-PET/CT scans performed with conventional PET/CT systems.
Collapse
Affiliation(s)
- Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Dieter Körholz
- Department of Paediatric Oncology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Pietro Zuccetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padua, Padua, Italy
| | - Zvi Bar-Sever
- Schneider Children's Medical Center, Petach Tikva, Israel
| | - Ute Rosner
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Skawran S, Sartoretti T, Gennari AG, Schwyzer M, Sartoretti E, Treyer V, Maurer A, Huellner MW, Waelti S, Messerli M. Evolution of CT radiation dose in pediatric patients undergoing hybrid 2-[ 18F]FDG PET/CT between 2007 and 2021. Br J Radiol 2023; 96:20220482. [PMID: 37751216 PMCID: PMC10646648 DOI: 10.1259/bjr.20220482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES To evaluate the evolution of CT radiation dose in pediatric patients undergoing hybrid 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT between 2007 and 2021. METHODS AND MATERIALS Data from all pediatric patients aged 0-18 years who underwent hybrid 2-[18F]FDG PET/CT of the body between January 2007 and May 2021 were reviewed. Demographic and imaging parameters were collected. A board-certified radiologist reviewed all CT scans and measured image noise in the brain, liver, and adductor muscles. RESULTS 294 scans from 167 children (72 females (43%); median age: 14 (IQR 10-15) years; BMI: median 17.5 (IQR 15-20.4) kg/m2) were included. CT dose index-volume (CTDIvol) and dose length product (DLP) both decreased significantly from 2007 to 2021 (both p < 0.001, Spearman's rho coefficients -0.46 and -0.35, respectively). Specifically, from 2007 to 2009 to 2019-2021 CTDIvol and DLP decreased from 2.94 (2.14-2.99) mGy and 309 (230-371) mGy*cm, respectively, to 0.855 (0.568-1.11) mGy and 108 (65.6-207) mGy*cm, respectively. From 2007 to 2021, image noise in the brain and liver remained constant (p = 0.26 and p = 0.06), while it decreased in the adductor muscles (p = 0.007). Peak tube voltage selection (in kilovolt, kV) of CT scans shifted from high kV imaging (140 or 120kVp) to low kV imaging (100 or 80kVp) (p < 0.001) from 2007 to 2021. CONCLUSION CT radiation dose in pediatric patients undergoing hybrid 2-[18F]FDG PET/CT has decreased in recent years equaling approximately one-third of the initial amount. ADVANCES IN KNOWLEDGE Over the past 15 years, CT radiation dose decreased considerably in pediatric patients undergoing hybrid imaging, while objective image quality may not have been compromised.
Collapse
|
10
|
Martin MD, Henry TS, Berry MF, Johnson GB, Kelly AM, Ko JP, Kuzniewski CT, Lee E, Maldonado F, Morris MF, Munden RF, Raptis CA, Shim K, Sirajuddin A, Small W, Tong BC, Wu CC, Donnelly EF. ACR Appropriateness Criteria® Incidentally Detected Indeterminate Pulmonary Nodule. J Am Coll Radiol 2023; 20:S455-S470. [PMID: 38040464 DOI: 10.1016/j.jacr.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
Incidental pulmonary nodules are common. Although the majority are benign, most are indeterminate for malignancy when first encountered making their management challenging. CT remains the primary imaging modality to first characterize and follow-up incidental lung nodules. This document reviews available literature on various imaging modalities and summarizes management of indeterminate pulmonary nodules detected incidentally. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Maria D Martin
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Mark F Berry
- Stanford University Medical Center, Stanford, California; Society of Thoracic Surgeons
| | - Geoffrey B Johnson
- Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Jane P Ko
- New York University Langone Health, New York, New York; IF Committee
| | | | - Elizabeth Lee
- University of Michigan Health System, Ann Arbor, Michigan
| | - Fabien Maldonado
- Vanderbilt University Medical Center, Nashville, Tennessee; American College of Chest Physicians
| | | | - Reginald F Munden
- Medical University of South Carolina, Charleston, South Carolina; IF Committee
| | | | - Kyungran Shim
- John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois; American College of Physicians
| | | | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois; Commission on Radiation Oncology
| | - Betty C Tong
- Duke University School of Medicine, Durham, North Carolina; Society of Thoracic Surgeons
| | - Carol C Wu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin F Donnelly
- Specialty Chair, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
11
|
Giraudo C, Carraro S, Zucchetta P, Cecchin D. Pediatric Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:625-636. [PMID: 37741646 DOI: 10.1016/j.mric.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
PET/MR imaging is a one-stop shop technique for pediatric diseases allowing not only an accurate clinical assessment of tumors at staging and restaging but also the diagnosis of neurologic, inflammatory, and infectious diseases in complex cases. Moreover, applying PET kinetic analyses and sequences such as diffusion-weighted imaging as well as quantitative analysis investigating the relationship between disease metabolic activity and cellularity can be applied. Complex radiomics analysis can also be performed.
Collapse
Affiliation(s)
- Chiara Giraudo
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women's and Children's Health Department, University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Pietro Zucchetta
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy
| | - Diego Cecchin
- Complex Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Via Nicolo' Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
12
|
Significant CT dose reduction of 2-[ 18F]FDG PET/CT in pretreatment pediatric lymphoma without compromising the diagnostic and staging efficacy. Eur Radiol 2023; 33:2248-2257. [PMID: 36166086 DOI: 10.1007/s00330-022-09145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To compare the diagnostic and staging efficacy of PET/diagnostic-level CT (PET/DxCT) and PET/low-dose CT (PET/LDCT) in pretreatment pediatric lymphoma patients and to estimate the reduction of the CT effective dose in the PET/CT scan. METHODS One hundred and five pediatric patients who underwent total-body PET/CT examination were enrolled and divided into the DxCT group (n = 47) and LDCT group (n = 58) according to their dose levels. The sensitivity, specificity, PPV, and NPV of PET/DxCT and PET/LDCT for detecting the involvement of lymph node, spleen, bone marrow, and other extranodal organs in pretreatment lymphoma were compared. ROC analysis was performed to evaluate the integral efficiency. The staging accuracies based on PET/DxCT and PET/LDCT were also evaluated. Dosimetry was calculated for DxCT and LDCT, and the reduction in the effective dose was estimated. RESULTS In the diagnosis of nodal, splenic, bone marrow, and other extranodal involvement, the differences in sensitivity, specificity, PPV, and NPV between PET/LDCT and PET/DxCT were not significant (all p values ∈ [0.332, 1.000]). Both modalities had accuracies above 90% and the ROC analysis indicated good or high efficiency in diagnosing all patterns of lymphoma involvement. PET/LDCT and PET/DxCT each had a staging accuracy of 89.7% and 89.4%, respectively. LDCT had a comparable image quality score with DxCT, with a significant increase in noise (p < 0.001) and a 66.1% reduction in effective dose. CONCLUSIONS PET/LDCT allowed for a 66.1% CT effective dose reduction compared to PET/DxCT in pediatric lymphoma patients without compromising the diagnostic and staging efficacy. KEY POINTS • Pediatric lymphoma patients can benefit from a reduced effective dose of PET/CT. • This retrospective study showed that the diagnostic and staging efficacies of PET/low-dose CT are comparable to those of PET/diagnostic-level CT, both with satisfactory efficiency in diagnosing all patterns of lymphoma involvement. • PET/low-dose CT allowed for a 66.1% CT effective dose reduction compared to PET/diagnostic-level CT.
Collapse
|
13
|
Aboughalia HA, Cheeney SHE, Elojeimy S, Blacklock LC, Parisi MT. Meckel diverticulum scintigraphy: technique, findings and diagnostic pitfalls. Pediatr Radiol 2023; 53:493-508. [PMID: 36323958 DOI: 10.1007/s00247-022-05527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Meckel diverticulum, the most common congenital anomaly of the gastrointestinal tract, results from the aberrant involution of the omphalomesenteric duct and accounts for more than 50% of unexplained lower gastrointestinal bleeding in the pediatric population. The most accurate imaging tool to identify a Meckel diverticulum containing ectopic gastric mucosa is the Technetium-99m pertechnetate Meckel scan, a scintigraphic study with a reported accuracy of 90% in the pediatric population. In addition to depicting a Meckel diverticulum with ectopic gastric mucosa, careful attention to the normal biodistribution of the radiotracer can lead to the identification of unexpected pathology with implications for patient management. This article serves to review the embryological origin and anatomical features of Meckel diverticulum, highlight the role of scintigraphy in evaluating Meckel diverticulum, and discuss the proper imaging technique when performing this test. We will focus on pitfalls that can lead to an erroneous diagnosis as well as incidental findings that can affect patient management.
Collapse
Affiliation(s)
- Hassan A Aboughalia
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| | - Safia H E Cheeney
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Saeed Elojeimy
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Lisa C Blacklock
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Marguerite T Parisi
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
14
|
Mirshahvalad SA, Metser U, Basso Dias A, Ortega C, Yeung J, Veit-Haibach P. 18F-FDG PET/MRI in Detection of Pulmonary Malignancies: A Systematic Review and Meta-Analysis. Radiology 2023; 307:e221598. [PMID: 36692397 DOI: 10.1148/radiol.221598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background There have been conflicting results regarding fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI diagnostic performance in lung malignant neoplasms. Purpose To evaluate the diagnostic performance of 18F-FDG PET/MRI for the detection of pulmonary malignant neoplasms. Materials and Methods A systematic search was conducted within the Scopus, Web of Science, and PubMed databases until December 31, 2021. Published original articles that met the following criteria were considered eligible for meta-analysis: (a) detecting malignant lesions in the lung, (b) comparing 18F-FDG PET/MRI with a valid reference standard, and (c) providing data for the meta-analytic calculations. A hierarchical method was used to pool the performances. The bivariate model was used to find the summary points and 95% CIs. The hierarchical summary receiver operating characteristic model was used to draw the summary receiver operating characteristic curve and calculate the area under the curve. The Higgins I2 statistic and Cochran Q test were used for heterogeneity assessment. Results A total of 43 studies involving 1278 patients met the inclusion criteria and were included in the meta-analysis. 18F-FDG PET/MRI had a pooled sensitivity and specificity of 96% (95% CI: 84, 99) and 100% (95% CI: 98, 100), respectively. 18F-FDG PET/CT had a pooled sensitivity and specificity of 99% (95% CI: 61, 100) and 99% (95% CI: 94, 100), respectively, which were comparable with those of 18F-FDG PET/MRI. At meta-regression, studies in which contrast media (P = .03) and diffusion-weighted imaging (P = .04) were used as a part of a pulmonary 18F-FDG PET/MRI protocol showed significantly higher sensitivities. Conclusion Fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI was found to be accurate and comparable with 18F-FDG PET/CT in the detection of malignant pulmonary lesions, with significantly improved sensitivity when advanced acquisition protocols were used. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Ur Metser
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Adriano Basso Dias
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Claudia Ortega
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Jonathan Yeung
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|
15
|
Zhang A, Meng X, Yao Y, Zhou X, Yan S, Fei W, Zhou N, Zhang Y, Kong H, Li N. Predictive Value of 18 F-FDG PET/MRI for Pleural Invasion in Solid and Subsolid Lung Adenocarcinomas Smaller Than 3 cm. J Magn Reson Imaging 2022; 57:1367-1375. [PMID: 36066210 DOI: 10.1002/jmri.28422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET)/MRI combines the characteristics of metabolism imaging and high soft tissue resolution, and could provide high diagnostic efficacy for assessment of pleural invasion (PI) of lung cancer. PURPOSE To investigate the application of 18 F-fluorodeoxyglucose (FDG) PET/MRI for predicting PI of lung cancer with the maximum diameter ≤3 cm. STUDY TYPE Prospective. POPULATION A total of 44 patients with non-small cell lung cancer (NSCLC), age from 39 to 79 years old, including 19 (56.82%) females. FIELD STRENGTH/SEQUENCE A 3-T, hybrid PET/MRI including axial fast spin echo respiratory-triggered T2 fat-suppressed imaging (T2FS) and echo planar imaging diffusion-weighted imaging (DWI). ASSESSMENT The maximum standardized uptake value (SUVmax) of all lesions was measured on PET images. Localized effusion outside the contact between the nodules and the pleura on T2FS and signal at the contact between the nodules and the pleura on DWI were evaluated by experienced physicians through visual assessment of the MRI sequences. STATISTICAL TESTS Three models (models 1-3) were developed, incorporating CT, CT and PET, PET and MRI features, and Lasso regression was used in feature selection. The receiver operating characteristic (ROC) curve for PI diagnosis was visualized for each model, and the area under the curve (AUC) was calculated. The DeLong test was used to compare the different AUCs. A P value < 0.05 was considered statistically significant. RESULTS The AUC of models 1-3 was 0.762, 0.829, and 0.915, respectively. The DeLong test showed a statistically significant difference between the AUCs of model 1 vs. model 3, while the differences between the AUCs of model 1 vs. model 2 (P = 0.253) and model 2 vs. model 3 (P = 0.075) were not statistically significant. DATA CONCLUSION 18 F-FDG PET/MRI might show high predictive value for lung adenocarcinoma smaller than 3 cm with PI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Annan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Xin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Shuo Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiology, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Wang Fei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| | - Hanjing Kong
- Beijing United Imaging Research Institute of Intelligent Imaging, UIH Group, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Haidian, Beijing, China
| |
Collapse
|
16
|
Jannusch K, Bruckmann NM, Geuting CJ, Morawitz J, Dietzel F, Rischpler C, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Quick HH, Umutlu L, Antoch G, Kirchner J. Lung Nodules Missed in Initial Staging of Breast Cancer Patients in PET/MRI-Clinically Relevant? Cancers (Basel) 2022; 14:cancers14143454. [PMID: 35884513 PMCID: PMC9321171 DOI: 10.3390/cancers14143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Image-based primary staging in women with newly-diagnosed breast cancer is important to exclude distant metastases, which affect up to 10% of women. The increasing implementation of [18F]FDG-PET/MRI as a radiation-saving primary staging tool bears the risk of missing lung nodules. Thus, chest CT serves as the diagnostic of choice for the detection and classification of pulmonary nodules. The aim of this study was the evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. We demonstrated in an homogeneous population of 152 patients that all patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity of MRI in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, a supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup. Abstract Purpose: The evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. Methods: A total of 152 patients underwent an initial whole-body [18F]FDG-PET/MRI and a thoracoabdominal CT for staging. Presence, size, shape and location for each lung nodule in [18F]FDG-PET/MRI was noted. The reference standard was established by taking initial CT and follow-up imaging into account (a two-step approach) to identify clinically-relevant lung nodules. Patient-based and lesion-based data analysis was performed. Results: No patient with clinically-relevant lung nodules was missed on a patient-based analysis with MRI VIBE, while 1/84 females was missed with MRI HASTE (1%). Lesion-based analysis revealed 4/96 (4%, VIBE) and 8/138 (6%, HASTE) missed clinically-relevant lung nodules. The average size of missed lung nodules was 3.2 mm ± 1.2 mm (VIBE) and 3.6 mm ± 1.4 mm (HASTE) and the predominant location was in the left lower quadrant and close to the hilum. Conclusion: All patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Charlotte Johanna Geuting
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Harald H. Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
- Correspondence: ; Tel.: +49-211-8-11-77-54
| |
Collapse
|
17
|
Chen W, Liu L, Li Y, Li S, Li Z, Zhang W, Zhang X, Wu R, Hu D, Sun H, Zhou Y, Fan W, Zhao Y, Zhang Y, Hu Y. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [ 18F]-FDG. Eur J Nucl Med Mol Imaging 2022; 49:4145-4155. [PMID: 35788704 DOI: 10.1007/s00259-022-05893-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the impact of a true half dose of [18F]-FDG on image quality in pediatric oncological patients undergoing total-body PET/CT and investigate short acquisition times with half-dose injected activity. METHODS One hundred pediatric oncological patients who underwent total-body PET/CT using the uEXPLORER scanner after receiving a true half dose of [18F]-FDG (1.85 MBq/kg) were retrospectively enrolled. The PET images were first reconstructed using complete 600-s data and then split into 300-s, 180-s, 60-s, 40-s, and 20-s duration groups (G600 to G20). The subjective analysis was performed using 5-point Likert scales. Objective quantitative metrics included the maximum standard uptake value (SUVmax), SUVmean, standard deviation (SD), signal-to-noise ratio (SNR), and SNRnorm of the background. The variabilities in lesion SUVmean, SUVmax, and tumor-to-background ratio (TBR) were also calculated. RESULTS The overall image quality scores in the G600, G300, G180, and G60 groups were 4.9 ± 0.2, 4.9 ± 0.3, 4.4 ± 0.5, and 3.5 ± 0.5 points, respectively. All the lesions identified in the half-dose images were localized in the G60 images, while 56% of the lesions could be clearly identified in the G20 images. With reduced acquisition time, the SUVmax and SD of the backgrounds were gradually increased, while the TBR values showed no statistically significant differences among the groups (all p > 0.1). Using the half-dose images as a reference, the variability in the lesion SUVmax gradually increased from the G180 to G20 images, while the lesion SUVmean remained stable across all age groups. SNRnorm was highly negatively correlated with age. CONCLUSION Total-body PET/CT with a half dose of [18F]-FDG (1.85 MBq/kg, estimated whole-body effective dose: 1.76-2.57 mSv) achieved good performance in pediatric patients, with sufficient image quality and good lesion conspicuity. Sufficient image quality and lesion conspicuity could be maintained at a fast scanning time of 60 s with half-dose activity.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Runze Wu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Debin Hu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yumo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Dickson J, Eberlein U, Lassmann M. The effect of modern PET technology and techniques on the EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2022; 49:1964-1969. [PMID: 34910233 PMCID: PMC9016049 DOI: 10.1007/s00259-021-05635-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
AIM Recent advancements in PET technology have brought with it significant improvements in PET performance and image quality. In particular, the extension of the axial field of view of PET systems, and the introduction of semiconductor technology into the PET detector, initially for PET/MR, and more recently available long-field-of-view PET/CT systems (≥ 25 cm) have brought a step change improvement in the sensitivity of PET scanners. Given the requirement to limit paediatric doses, this increase in sensitivity is extremely welcome for the imaging of children and young people. This is even more relevant with PET/MR, where the lack of CT exposures brings further dose reduction benefits to this population. In this short article, we give some details around the benefits around new PET technology including PET/MR and its implications on the EANM paediatric dosage card. MATERIAL AND METHODS : Reflecting on EANM adult guidance on injected activities, and making reference to bed overlap and the concept of MBq.min bed-1 kg-1, we use published data on image quality from PET/MR systems to update the paediatric dosage card for PET/MR and extended axial field of view (≥ 25 cm) PET/CT systems. However, this communication does not cover the expansion of paediatric dosing for the half-body and total-body scanners that have recently come to market. RESULTS In analogy to the existing EANM dosage card, new parameters for the EANM paediatric dosage card were developed (class B, baseline value: 10.7 MBq, minimum recommended activity 10 MBq). The recommended administered activities for the systems considered in this communication range from 11 MBq [18F]FDG for a child with a weight of 3 kg to 149 MBq [18F]FDG for a paediatric patient weight of 68 kg, assuming a scan of 3 min per bed position. The mean effective dose over all ages (1 year and older) is 2.85 mSv. CONCLUSION With this, recommendations for paediatric dosing are given for systems that have not been considered previously.
Collapse
Affiliation(s)
- John Dickson
- Institute of Nuclear Medicine, University College London Hospitals, London, UK
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Evaluation and management of biliary complications after pediatric liver transplantation: pearls and pitfalls for percutaneous techniques. Pediatr Radiol 2022; 52:570-586. [PMID: 34713322 DOI: 10.1007/s00247-021-05212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
In pediatric liver transplantation, bile duct complications occur with a greater incidence than vascular anastomotic dysfunction and represent a major source of morbidity and mortality. While surgical re-anastomosis can reduce the need for retransplantation, interventional radiology offers minimally invasive and graft-saving therapies. The combination of small patient size and prevailing Roux-en-Y biliary enteric anastomotic techniques makes endoscopic retrograde cholangiopancreatography difficult if not impossible. Expertise in percutaneous management is therefore imperative. This article describes post-surgical anatomy, pathophysiology and noninvasive imaging of biliary complications. We review percutaneous techniques, focusing heavily on biliary access and interventions for reduced liver grafts. Subsequently we review the results and adverse events of these procedures and describe conditions that masquerade as biliary obstruction.
Collapse
|
20
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Fendler WP, Herrmann K, Bittner AK, Hoffmann O, Fehm T, Lindemann ME, Buchbender C, Antoch G, Sawicki LM. Free-breathing 3D Stack of Stars GRE (StarVIBE) sequence for detecting pulmonary nodules in 18F-FDG PET/MRI. EJNMMI Phys 2022; 9:11. [PMID: 35129774 PMCID: PMC8821742 DOI: 10.1186/s40658-022-00439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. The purpose of this study was to evaluate StarVIBE for the detection of pulmonary nodules in 18F-FDG PET/MRI. MATERIAL AND METHODS In this retrospective analysis, conducted on a prospective clinical trial cohort, 88 consecutive women with newly diagnosed breast cancer underwent both contrast-enhanced whole-body 18F-FDG PET/MRI and computed tomography (CT). Patients' chests were examined on CT as well as on StarVIBE and conventional T1-weighted VIBE and T2-weighted HASTE MR sequences, with CT serving as the reference standard. Presence, size, and location of all detectable lung nodules were assessed. Wilcoxon test was applied to compare nodule features and Pearson's, and Spearman's correlation coefficients were calculated. RESULTS Out of 65 lung nodules detected in 36 patients with CT (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respectively. Overall, CT showed a significantly higher detectability than all MRI sequences combined (65 vs. 36, difference 44.6%, p < 0.001). The VIBE showed a significantly better detection rate than the HASTE (23.1%, p = 0.001). Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031). There was a strong correlation in nodule size between CT and MRI sequences (HASTE: ρ = 0.80, p = 0.003; VIBE: ρ = 0.77, p < 0.001; StarVIBE: ρ = 0.78, p < 0.001). Mean image quality was rated as good to excellent for CT and MRI sequences. CONCLUSION The overall lung nodule detection rate of StarVIBE was slightly, but not significantly, higher than conventional T1w VIBE and significantly higher than T2w HASTE. Detectability of centrally located nodules is better with StarVIBE than with VIBE. Nevertheless, all MRI analyses demonstrated considerably lower detection rates for small lung nodules, when compared to CT.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Tanja Fehm
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
21
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
22
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
23
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Ingenwerth M, Schaarschmidt BM, Li Y, Stang A, Antoch G, Sawicki LM, Buchbender C. Prospective comparison of CT and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients: Initial results. PLoS One 2021; 16:e0260804. [PMID: 34855886 PMCID: PMC8638872 DOI: 10.1371/journal.pone.0260804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives To compare the diagnostic accuracy of contrast-enhanced thoraco-abdominal computed tomography and whole-body 18F-FDG PET/MRI in N and M staging in newly diagnosed, histopathological proven breast cancer. Material and methods A total of 80 consecutive women with newly diagnosed and histopathologically confirmed breast cancer were enrolled in this prospective study. Following inclusion criteria had to be fulfilled: (1) newly diagnosed, treatment-naive T2-tumor or higher T-stage or (2) newly diagnosed, treatment-naive triple-negative tumor of every size or (3) newly diagnosed, treatment-naive tumor with molecular high risk (T1c, Ki67 >14%, HER2neu over-expression, G3). All patients underwent a thoraco-abdominal ceCT and a whole-body 18F-FDG PET/MRI. All datasets were evaluated by two experienced radiologists in hybrid imaging regarding suspect lesion count, localization, categorization and diagnostic confidence. Images were interpreted in random order with a reading gap of at least 4 weeks to avoid recognition bias. Histopathological results as well as follow-up imaging served as reference standard. Differences in staging accuracy were assessed using Mc Nemars chi2 test. Results CT rated the N stage correctly in 64 of 80 (80%, 95% CI:70.0–87.3) patients with a sensitivity of 61.5% (CI:45.9–75.1), a specificity of 97.6% (CI:87.4–99.6), a PPV of 96% (CI:80.5–99.3), and a NPV of 72.7% (CI:59.8–82.7). Compared to this, 18F-FDG PET/MRI determined the N stage correctly in 71 of 80 (88.75%, CI:80.0–94.0) patients with a sensitivity of 82.1% (CI:67.3–91.0), a specificity of 95.1% (CI:83.9–98.7), a PPV of 94.1% (CI:80.9–98.4) and a NPV of 84.8% (CI:71.8–92.4). Differences in sensitivities were statistically significant (difference 20.6%, CI:-0.02–40.9; p = 0.008). Distant metastases were present in 7/80 patients (8.75%). 18 F-FDG PET/MRI detected all of the histopathological proven metastases without any false-positive findings, while 3 patients with bone metastases were missed in CT (sensitivity 57.1%, specificity 95.9%). Additionally, CT presented false-positive findings in 3 patients. Conclusion 18F-FDG PET/MRI has a high diagnostic potential and outperforms CT in assessing the N and M stage in patients with primary breast cancer.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
- * E-mail:
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Lino M. Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
24
|
68Ga-EMP-100 PET/CT-a novel ligand for visualizing c-MET expression in metastatic renal cell carcinoma-first in-human biodistribution and imaging results. Eur J Nucl Med Mol Imaging 2021; 49:1711-1720. [PMID: 34708249 PMCID: PMC8940803 DOI: 10.1007/s00259-021-05596-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
Background 68Ga-EMP-100 is a novel positron emission tomography (PET) ligand that directly targets tumoral c-MET expression. Upregulation of the receptor tyrosin kinase c-MET in renal cell carcinoma (RCC) is correlated with overall survival in metastatic disease (mRCC). Clinicopathological staging of c-MET expression could improve patient management prior to systemic therapy with for instance inhibitors targeting c-MET such as cabozantinib. We present the first in-human data of 68Ga-EMP-100 in mRCC patients evaluating uptake characteristics in metastases and primary RCC. Methods Twelve patients with mRCC prior to anticipated cabozantinib therapy underwent 68Ga-EMP-100 PET/CT imaging. We compared the biodistribution in normal organs and tumor uptake of mRCC lesions by standard uptake value (SUVmean) and SUVmax measurements. Additionally, metastatic sites on PET were compared to contrast-enhanced computed tomography (CT) and the respective, quantitative PET parameters were assessed and then compared inter- and intra-individually. Results Overall, 87 tumor lesions were analyzed. Of these, 68/87 (79.3%) were visually rated c-MET-positive comprising a median SUVmax of 4.35 and SUVmean of 2.52. Comparing different tumor sites, the highest uptake intensity was found in tumor burden at the primary site (SUVmax 9.05 (4.86–29.16)), followed by bone metastases (SUVmax 5.56 (0.97–15.85)), and lymph node metastases (SUVmax 3.90 (2.13–6.28)) and visceral metastases (SUVmax 3.82 (0.11–16.18)). The occurrence of visually PET-negative lesions (20.7%) was distributed heterogeneously on an intra- and inter-individual level; the largest proportion of PET-negative metastatic lesions were lung and liver metastases. The highest physiological 68Ga-EMP-100 accumulation besides the urinary bladder content was seen in the kidneys, followed by moderate uptake in the liver and the spleen, whereas significantly lower uptake intensity was observed in the pancreas and the intestines. Conclusion Targeting c-MET expression, 68Ga-EMP-100 shows distinctly elevated uptake in mRCC patients with partially high inter- and intra-individual differences comprising both c-MET-positive and c-MET-negative lesions. Our first clinical results warrant further systemic studies investigating the clinical use of 68Ga-EMP-100 as a biomarker in mRCC patients.
Collapse
|
25
|
Galgano SJ, Calderone CE, Xie C, Smith EN, Porter KK, McConathy JE. Applications of PET/MRI in Abdominopelvic Oncology. Radiographics 2021; 41:1750-1765. [PMID: 34597228 DOI: 10.1148/rg.2021210035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With PET/MRI, the strengths of PET and MRI are combined to allow simultaneous image acquisition and near-perfect image coregistration. MRI is increasingly being used for staging and restaging of abdominopelvic oncologic lesions, including prostate, hepatobiliary, pancreatic, neuroendocrine, cervical, and rectal cancers. Fluorine 18-fluorodeoxyglucose PET/CT has long been considered a cornerstone of oncologic imaging, and the development of multiple targeted radiotracers has led to increased research on and use of these agents in clinical practice. Thus, simultaneously performed PET/MRI enables the acquisition of complementary imaging information, with distinct advantages over PET/CT and MR image acquisitions. The authors provide an overview of PET/MRI, including descriptions of the major differences between PET/MRI and PET/CT, as well as case examples and treatment protocols for patients with commonly encountered malignancies in the abdomen and pelvis. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Samuel J Galgano
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Carli E Calderone
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Charlies Xie
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Elainea N Smith
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Kristin K Porter
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Jonathan E McConathy
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| |
Collapse
|
26
|
Tian M, Watanabe Y, Kang KW, Murakami K, Chiti A, Carrio I, Civelek AC, Feng J, Zhu Y, Zhou R, Wu S, Zhu J, Ding Y, Zhang K, Zhang H. International consensus on the use of [ 18F]-FDG PET/CT in pediatric patients affected by epilepsy. Eur J Nucl Med Mol Imaging 2021; 48:3827-3834. [PMID: 34453559 DOI: 10.1007/s00259-021-05524-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Positron emission tomography (PET) with 18F-fluorodeoxyglucose ([18F]-FDG) has been increasingly applied in precise localization of epileptogenic focus in epilepsy patients, including pediatric patients. The aim of this international consensus is to provide the guideline and specific considerations for [18F]-FDG PET in pediatric patients affected by epilepsy. METHODS An international, multidisciplinary task group is formed, and the guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients has been discussed and approved, which include but not limited to the clinical indications, patient preparation, radiopharmaceuticals and administered activities, image acquisition, image processing, image interpretation, documentation and reporting, etc. CONCLUSION: This is the first international consensus and practice guideline for brain [18F]-FDG PET/CT in pediatric epilepsy patients. It will be an international standard for this purpose in clinical practice.
Collapse
Affiliation(s)
- Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Koji Murakami
- Department of Radiology, Juntendo University Hospital, Tokyo, 113-8431, Japan
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Ignasi Carrio
- Department of Nuclear Medicine, Hospital Sant Pau, Autonomous University of Barcelona, 08025, Barcelona, Spain
| | - A Cahid Civelek
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Jianhua Feng
- Department of Pediatrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Ding
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310007, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310007, China.
| | | |
Collapse
|
27
|
Abstract
Consensus guidelines acknowledge the role of gallium Ga-68 (68Ga) 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic (DOTA) somatostatin receptor (SSTR) positron emission tomography/computed tomography (PET/CT) in management of neuroendocrine tumor (NET) patients. 68Ga-DOTA-SSTR PET/CT demonstrates superior performance to conventional imaging in initial detection, staging, detection of recurrent tumor, and detection of unknown primary in known metastatic disease. 68Ga-DOTA-SSTR PET/CT is low yield for NET detection in the setting of symptoms or elevated biomarkers when conventional imaging is negative, but may still guide management. The role of 68Ga-DOTA-SSTR PET/CT is not established in monitoring response to systemic therapy but may identify progression through detection of new metastases.
Collapse
Affiliation(s)
- Janet Pollard
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Parren McNeely
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Yusuf Menda
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Hu X, Li D, Hu G, Huang Q, Wang P, Cai J. Diagnostic performance of 18F-FDG PET/CT in pediatric lymphoma infiltrating bone marrow: a meta-analysis. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00452-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Pediatric hyperparathyroidism: review and imaging update. Pediatr Radiol 2021; 51:1106-1120. [PMID: 33904951 DOI: 10.1007/s00247-021-05050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Hyperparathyroidism, due to increased secretion of parathyroid hormones, may be primary, secondary or tertiary. Most pediatric patients with sporadic primary hyperparathyroidism will be symptomatic, presenting with either end-organ damage or nonspecific symptoms. In younger patients with primary hyperparathyroidism, there is a higher prevalence of familial hyperparathyroidism including germline inactivating mutations of the calcium-sensing receptor genes that result in either neonatal severe hyperparathyroidism or familial hypocalciuric hypercalcemia. Parathyroid scintigraphy and ultrasound are complementary, first-line imaging modalities for localizing hyperfunctioning parathyroid glands. Second-line imaging modalities are multiphase computed tomography (CT) and magnetic resonance imaging. In pediatrics, multiphase CT protocols should be adjusted to optimize radiation dose. Although, the role of these imaging modalities is better established in preoperative localization of hyperfunctioning parathyroid glands in primary hyperparathyroidism, the same principles apply in secondary and tertiary hyperparathyroidism. In this manuscript, we will review the embryology, anatomy, pathophysiology and preoperative localization of parathyroid glands as well as several subtypes of primary familial hyperparathyroidism. While most of the recent imaging literature centers on adults, we will focus on the issues that are pertinent and applicable to pediatrics.
Collapse
|
30
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Bruckmann NM, Sawicki LM, Kirchner J, Martin O, Umutlu L, Herrmann K, Fendler W, Bittner AK, Hoffmann O, Mohrmann S, Dietzel F, Ingenwerth M, Schaarschmidt BM, Li Y, Kowall B, Stang A, Antoch G, Buchbender C. Prospective evaluation of whole-body MRI and 18F-FDG PET/MRI in N and M staging of primary breast cancer patients. Eur J Nucl Med Mol Imaging 2020; 47:2816-2825. [PMID: 32333068 PMCID: PMC7567721 DOI: 10.1007/s00259-020-04801-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate and compare the diagnostic potential of whole-body MRI and whole-body 18F-FDG PET/MRI for N and M staging in newly diagnosed, histopathologically proven breast cancer. MATERIAL AND METHODS A total of 104 patients (age 53.4 ± 12.5) with newly diagnosed, histopathologically proven breast cancer were enrolled in this study prospectively. All patients underwent a whole-body 18F-FDG PET/MRI. MRI and 18F-FDG PET/MRI datasets were evaluated separately regarding lesion count, lesion localization, and lesion characterization (malignant/benign) as well as the diagnostic confidence (5-point ordinal scale, 1-5). The N and M stages were assessed according to the eighth edition of the American Joint Committee on Cancer staging manual in MRI datasets alone and in 18F-FDG PET/MRI datasets, respectively. In the majority of lesions histopathology served as the reference standard. The remaining lesions were followed-up by imaging and clinical examination. Separately for nodal-positive and nodal-negative women, a McNemar chi2 test was performed to compare sensitivity and specificity of the N and M stages between 18F-FDG PET/MRI and MRI. Differences in diagnostic confidence scores were assessed by Wilcoxon signed rank test. RESULTS MRI determined the N stage correctly in 78 of 104 (75%) patients with a sensitivity of 62.3% (95% CI: 0.48-0.75), a specificity of 88.2% (95% CI: 0.76-0.96), a PPV (positive predictive value) of 84.6% % (95% CI: 69.5-0.94), and a NPV (negative predictive value) of 69.2% (95% CI: 0.57-0.8). Corresponding results for 18F-FDG PET/MRI were 87/104 (83.7%), 75.5% (95% CI: 0.62-0.86), 92.2% (0.81-0.98), 90% (0.78-0.97), and 78.3% (0.66-0.88), showing a significantly better sensitivity of 18F-FDG PET/MRI determining malignant lymph nodes (p = 0.008). The M stage was identified correctly in MRI and 18F-FDG PET/MRI in 100 of 104 patients (96.2%). Both modalities correctly staged all 7 patients with distant metastases, leading to false-positive findings in 4 patients in each modality (3.8%). In a lesion-based analysis, 18F-FDG PET/MRI showed a significantly better performance in correctly determining malignant lesions (85.8% vs. 67.1%, difference 18.7% (95% CI: 0.13-0.26), p < 0.0001) and offered a superior diagnostic confidence compared with MRI alone (4.1 ± 0.7 vs. 3.4 ± 0.7, p < 0.0001). CONCLUSION 18F-FDG PET/MRI has a better diagnostic accuracy for N staging in primary breast cancer patients and provides a significantly higher diagnostic confidence in lesion characterization than MRI alone. But both modalities bear the risk to overestimate the M stage.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lino M Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany.
| | - Ole Martin
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Frederic Dietzel
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| | - Christian Buchbender
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
32
|
de Mooij CM, Sunen I, Mitea C, Lalji UC, Vanwetswinkel S, Smidt ML, van Nijnatten TJ. Diagnostic performance of PET/computed tomography versus PET/MRI and diffusion-weighted imaging in the N- and M-staging of breast cancer patients. Nucl Med Commun 2020; 41:995-1004. [PMID: 32769814 PMCID: PMC7497599 DOI: 10.1097/mnm.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a systematic review regarding the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) and diffusion-weighted imaging (DWI) compared to 18F-FDG PET/computed tomography (CT) focused on nodal and distant staging in breast cancer patients. METHODS The PubMed and Embase databases were searched for relevant publications until April 2020. Two independent reviewers searched for eligible articles based on predefined in- and exclusion criteria, assessed quality and extracted data. RESULTS Eleven eligible studies were selected from 561 publications identified by the search. In seven studies, PET/CT was compared with PET/MRI, and in five, PET/CT with DWI. Significantly higher sensitivity for PET/MRI compared to PET/CT in a lesion-based analysis was reported for all lesions together (77% versus 89%) in one study, osseous metastases (69-99% versus 92-98%) in two studies and hepatic metastases (70-75% versus 80-100%) in one study. Moreover, PET/MRI revealed a significantly higher amount of osseous metastases (90 versus 141) than PET/CT. PET/CT is associated with a statistically higher specificity than PET/MRI in the lesion detection of all lesions together (98% versus 96%) and of osseous metastases (100% versus 95%), both in one study. None of the reviewed studies reported significant differences between PET/CT and DWI for any of the evaluated sites. There is a trend toward higher specificity for PET/CT. CONCLUSION In general, there is a trend toward higher sensitivity and lower specificity of PET/MRI when compared to PET/CT. Results on the diagnostic performance of DWI are conflicting. Rather than evaluating it separate, it seems to have complementary value when combined with other MR sequences.
Collapse
Affiliation(s)
- Cornelis Maarten de Mooij
- Departments of Radiology and Nuclear Medicine
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inés Sunen
- Departments of Radiology and Nuclear Medicine
- Department of Radiology, Miguel Servet Hospital, Zaragoza, Spain
| | - Cristina Mitea
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Marjolein L. Smidt
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Thiemo J.A. van Nijnatten
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
33
|
Nyathi M. Administered Pediatric Radiopharmaceutical Doses at a Tertiary Hospital in South Africa: A Comparison with Corresponding Activities Based on North American Consensus Guidelines and Administration of Radioactive Substances Advisory Committee Guidelines. Curr Radiopharm 2020; 14:107-111. [PMID: 32798379 DOI: 10.2174/1874471013666200814141713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diagnostic nuclear medicine reveals physiological processes in vivo, facilitating early detection of disease prior to anatomical changes. However, in pediatric studies, the selection of appropriate dosing guidelines is challenging. Administration of Radioactive Substances Advisory Committee (ARSAC) and North American Consensus (NAC) guidelines are extensively used. OBJECTIVE To determine appropriate pediatric dosing guideline for a South African Tertiary Hospital (SATH). METHODS A combination of retrospective and empirical studies was conducted. Age, weight, name of the nuclear medicine study and administered activities were extracted from archived pediatric patients' files in a SATH who were attended from 2012-2015. To increase the sample size when calculating would be administered activities based on ARSAC and NAC guidelines, weights for sixty pediatric patients (empirical data) from the commonly conducted nuclear medicine studies were used. RESULTS The most commonly performed nuclear medicine studies at a SATH were bone scans, 99mTc-HIDA scans, renal scans, thyroid scans, MIBG scans and gastroesophageal reflux scans. The mean pediatric administered radiopharmaceutical activities based on SATH, ARSAC and NAC guidelines were; bone scans (57.7, 15.2 and 10.0 MBq/kg), 99mTc-HIDA scans (13.7, 5.0 and 3.6 MBq/kg), renal scans (13.9, 3.4 and 7.8 MBq/kg), thyroid scans (7.0, 2.6 and 1.5 MBq/kg), MIBG scans (15.5, 15.1 and 7.7 MBq/kg) and gastroesophageal reflux scans (2.1, 1.9 and 1.7 MBq/kg). High variability of Administered Radiopharmaceutical Activities (ARAs) was observed for SATH guidelines compared to ARSAC and NAC guidelines. CONCLUSION NAC guidelines are recommended for dosing pediatric patients at SATH. These guidelines will certainly reduce pediatric doses, which are currently high.
Collapse
Affiliation(s)
- Mpumelelo Nyathi
- Department of Medical Physics , School of Medicine Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| |
Collapse
|
34
|
Hybrid PET/MRI in non-small cell lung cancer (NSCLC) and lung nodules-a literature review. Eur J Nucl Med Mol Imaging 2020; 48:584-591. [PMID: 32719914 DOI: 10.1007/s00259-020-04955-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues. METHODS The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included. RESULTS A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low. CONCLUSION PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Collapse
|
35
|
PET/MRI in breast cancer patients: Added value, barriers to implementation, and solutions. Clin Imaging 2020; 68:24-28. [PMID: 32562923 DOI: 10.1016/j.clinimag.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
|
36
|
Oh G, O'Mahoney E, Jeavons S, Law P, Ngai S, McGill G, Yu C, Miles KA. Discrepancies between positron emission tomography/magnetic resonance imaging and positron emission tomography/computed tomography in a cohort of oncological patients. J Med Imaging Radiat Oncol 2020; 64:204-210. [PMID: 32037655 DOI: 10.1111/1754-9485.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION This study aims to evaluate discrepant findings between positron emission tomography/magnetic resonance imaging (PET/MRI) and positron emission tomography/computed tomography (PET/CT) in a cohort of oncological patients and to undertake a phantom study to assess the potential for extended PET acquisitions to lead to false-positive findings on PET/MRI. METHODS Discrepant findings from a series of 106 patients undergoing same-day 18 F-fluorodeoxyglucose (FDG)-PET/CT and PET/MRI were reviewed. Phantom studies explored the potential for PET acquisition time to contribute to discrepancy. RESULTS There were 14 discrepant cases, 5 (35.7%) of which related to PET/MRI acquisitions that had been extended to 10 min. Three of these five cases proved to be falsely positive. Phantom studies showed greater contrast recovery and signal to noise ratio for 10-min PET/MRI acquisitions compared to 2-min acquisitions using PET/CT. There were no discrepancies when PET/CT showed disseminated disease (P = 0.036). CONCLUSIONS Extended PET/MRI acquisitions used to accommodate multiple MRI sequences may be associated with false-positive findings compared to PET/CT. PET/MRI is more likely to have incremental value when the prior probability for disseminated disease is low.
Collapse
Affiliation(s)
- Geon Oh
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Eoin O'Mahoney
- Biomedical Technology Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Susanne Jeavons
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Phillip Law
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stanley Ngai
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - George McGill
- Biomedical Technology Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Chris Yu
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kenneth A Miles
- Department of Diagnostic Radiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Institute of Nuclear Medicine, University College London, London, UK
| |
Collapse
|
37
|
Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, Heusch P, Quick HH, Forsting M, Antoch G, Herrmann K, Umutlu L. PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations. J Nucl Med 2019; 61:1131-1136. [DOI: 10.2967/jnumed.119.233940] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
|
38
|
Lung visualisation on PET/MRI: implementing a protocol with a short echo-time and low flip-angle volumetric interpolated breath-hold examination sequence. Clin Radiol 2019; 75:239.e15-239.e21. [PMID: 31801658 DOI: 10.1016/j.crad.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022]
Abstract
AIM To assess the diagnostic performance in detecting lung lesions of a short echo-time (TE) and low flip-angle (FA) volumetric interpolated breath-hold examination (VIBE) sequence included in the integrated positron-emission tomography (PET)/magnetic resonance imaging (MRI) protocol. METHOD AND MATERIALS Thirty-seven oncological patients who underwent computed tomography (CT) and PET/MRI, including both a dedicated short TE, low FA VIBE (modified VIBE) and a standard VIBE of the lung, were enrolled. Modified VIBE images were reviewed retrospectively and independently by three raters, to detect pulmonary nodules, parenchymal consolidation, and bands. Three other groups examined standard VIBE, PET, and CT images. MRI and PET findings were compared to CT using Krippendorff's alpha using patient-based and a lesion-based analysis. Krippendorff's alpha was calculated to assess the interobserver agreement among the three raters of the modified VIBE. RESULTS In the patient-based analysis (positivity ≥1 lesion), the comparison of modified VIBE with CT showed an alpha of 0.54 for nodules <6 mm (versus 0.41 for standard VIBE and 0.09 for PET) and an alpha of 0.88 for nodules ≥6 mm (versus 0.74 for standard VIBE and 0.42 for PET). On a lesion-based analysis (presence/absence of each lesion), modified VIBE compared to CT showed an alpha of0.58 for nodules <6 mm (versus 0.44 for standard VIBE and 0.09 for PET) and an alpha of 0.90 for nodules ≥6 mm (versus 0.79 for standard VIBE and 0.50 for PET). The alpha value for the interobserver agreement was 0.90 for nodules <6 mm, 0.91 for nodules ≥6 mm, 1.00 for consolidations, and 0.95 for bands in the patient-based analysis and 0.89, 0.93, 1.00, and 0.95 in the lesion-based analysis. CONCLUSIONS Modified VIBE proved to be reproducible, showed better accuracy than standard VIBE and PET, and very good concordance with CT in assessing lung nodules ≥6 mm, whereas the agreement was less satisfactory for smaller nodules.
Collapse
|
39
|
Chen H, Huang S, Zeng Q, Zhang M, Ni Z, Li X, Xu X. A retrospective study analyzing missed diagnosis of lung metastases at their early stages on computed tomography. J Thorac Dis 2019; 11:3360-3368. [PMID: 31559039 DOI: 10.21037/jtd.2019.08.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Lungs are one of the target organs of metastases of primary lung, breast, liver, colorectal, and esophageal cancer. While computed tomography (CT) is the most widely used modality for detecting lung metastases, it is still very challenging to detect them at the earlier stages. If lung metastases could be found on CT scans at the earliest time points, patients would benefit by beginning treatment earlier. The objective of this study was to demonstrate that CT can reveal lung metastases in many cases at even earlier stages than current radiological practice may find. Methods One hundred patients with lung metastases were randomly selected and their surveillance CT scans were analyzed retrospectively. The patients had primary cancer in the breasts, lungs, esophagus, colorectum, and liver. All patients had multiple CT examinations of the lungs and their metastases, if any, were confirmed by subsequent CT scans. The earliest CT scans were examined to determine whether lung metastases at the same locations had been diagnosed or missed. Missed lung metastases, categorized by type of the primary cancer and adjacency to nearby blood vessels, were statistically analyzed. Results There were 36/100 (36%) cases of missed lung metastases, including 15 cases of single metastasis and 21 cases of multiple metastases. There were a total of 174 missed loci of lung metastases. Where metastases were missed, there was a statistically significant difference (P<0.001) in their distribution within the sub-regions of the lungs. Adjacency to blood vessels appeared to be a significant factor in metastases being missed during diagnosis (P<0.001). Conclusions There was a considerable percentage of early lung metastases that were missed by radiologists but actually appeared on CT scans. The capability of CT to reveal such early metastases opens up an opportunity to move up the time points of detecting lung metastases through clinical and training improvement and technology development such as computer-aided detection.
Collapse
Affiliation(s)
- Huai Chen
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Suidan Huang
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qingsi Zeng
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Min Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiwen Ni
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoling Li
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoyin Xu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Song HC, Na MH, Kim J, Cho SG, Park JK, Kang KW. Diagnostic Reference Levels for Adult Nuclear Medicine Imaging Established from the National Survey in Korea. Nucl Med Mol Imaging 2019; 53:64-70. [PMID: 30828403 PMCID: PMC6377576 DOI: 10.1007/s13139-019-00585-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE There is substantial need for optimizing radiation protection in nuclear medicine imaging studies. However, the diagnostic reference levels (DRLs) have not yet been established for nuclear medicine imaging studies in Korea. MATERIALS AND METHODS The data of administered activity in 32 nuclear medicine imaging studies were collected from the Korean Society of Nuclear Medicine (KSNM) dose survey database from 2013 and 2014. Through the expert discussions and statistical analyses, the 75th quartile value (Q3) was suggested as the preliminary DRL values. Preliminary DRLs were subjected to approval process by the KSNM Board of Directors and KSNM Council, followed by clinical applications and performance rating by domestic institutes. RESULTS DRLs were determined through 32 nuclear medicine imaging studies. The Q3 value was considered as appropriate selection as it was generally consistent with the most commonly administered activity. In the present study, the final version of initial DRL values for nuclear medicine imaging in Korean adults is described including various protocols of the brain and myocardial perfusion imaging. CONCLUSION The first DRLs for nuclear medicine imaging in Korean adults were confirmed. The DRLs will enable optimized radiation protection in the field of nuclear medicine imaging in Korea.
Collapse
Affiliation(s)
- Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 501-757 South Korea
- Medical Radiation Safety Research Center, Gwangju, South Korea
| | - Myung Hwan Na
- Medical Radiation Safety Research Center, Gwangju, South Korea
- Department of Statistics, Chonnam National University, Gwangju, South Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 501-757 South Korea
- Medical Radiation Safety Research Center, Gwangju, South Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 501-757 South Korea
- Medical Radiation Safety Research Center, Gwangju, South Korea
| | - Jin Kyung Park
- Medical Radiation Safety Research Center, Gwangju, South Korea
- Department of Statistics, Chonnam National University, Gwangju, South Korea
| | - Keon-Wook Kang
- Department of Nuclear Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Korean Society of Nuclear Medicine Diagnostic Reference Level Task Force
- Department of Nuclear Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 501-757 South Korea
- Medical Radiation Safety Research Center, Gwangju, South Korea
- Department of Statistics, Chonnam National University, Gwangju, South Korea
- Department of Nuclear Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
41
|
Kirchner J, Sawicki LM, Nensa F, Schaarschmidt BM, Reis H, Ingenwerth M, Bogner S, Aigner C, Buchbender C, Umutlu L, Antoch G, Herrmann K, Heusch P. Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2018; 46:437-445. [PMID: 30074073 DOI: 10.1007/s00259-018-4109-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare the diagnostic performance of 18F-FDG PET/MRI and 18F-FDG PET/CT for primary and locoregional lymph node staging in non-small cell lung cancer (NSCLC). METHODS In this prospective study, a total of 84 patients (51 men, 33 women, mean age 62.5 ± 9.1 years) with histopathologically confirmed NSCLC underwent 18F-FDG PET/CT followed by 18F-FDG PET/MRI in a single injection protocol. Two readers independently assessed T and N staging in separate sessions according to the seventh edition of the American Joint Committee on Cancer staging manual for 18F-FDG PET/CT and 18F-FDG PET/MRI, respectively. Histopathology as a reference standard was available for N staging in all 84 patients and for T staging in 39 patients. Differences in staging accuracy were assessed by McNemars chi2 test. The maximum standardized uptake value (SUVmax) and longitudinal diameters of primary tumors were correlated using Pearson's coefficients. RESULTS T stage was categorized concordantly in 18F-FDG PET/MRI and 18F-FDG PET/CT in 38 of 39 (97.4%) patients. Herein, 18F-FDG PET/CT and 18F-FDG PET/MRI correctly determined the T stage in 92.3 and 89.7% of patients, respectively. N stage was categorized concordantly in 83 of 84 patients (98.8%). 18F-FDG PET/CT correctly determined the N stage in 78 of 84 patients (92.9%), while 18F-FDG PET/MRI correctly determined the N stage in 77 of 84 patients (91.7%). Differences between 18F-FDG PET/CT and 18F-FDG PET/MRI in T and N staging accuracy were not statistically significant (p > 0.5, each). Tumor size and SUVmax measurements derived from both imaging modalities exhibited excellent correlation (r = 0.963 and r = 0.901, respectively). CONCLUSION 18F-FDG PET/MRI and 18F-FDG PET/CT show an equivalently high diagnostic performance for T and N staging in patients suffering from NSCLC.
Collapse
Affiliation(s)
- Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany.
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Benedikt M Schaarschmidt
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Marc Ingenwerth
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK) Essen, D-45147, Essen, Germany
| | - Simon Bogner
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University of Duisburg-Essen, D-45122, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, University Hospital Essen, Ruhrlandklinik, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Philipp Heusch
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Moorenstrasse 5, D-40225, Dusseldorf, Germany
| |
Collapse
|
42
|
Abstract
PURPOSE PET/computed tomography (CT) has been shown to detect lesions in patients with pulmonary tuberculosis (PTB) and may be useful for assessing PTB disease in clinical research studies. However, radiation dose is of concern for clinical research in individuals with an underlying curable disease. This study aimed to determine whether PET/MR is equivalent to PET/CT in PTB. MATERIALS AND METHODS Ten patients with microbiologically confirmed PTB were recruited. Patients received 129.0±4.1 MBq of fluorine-18-fluorodeoxyglucose. Five of the 10 patients underwent a PET/MR scan, followed by PET/CT. The remaining five were first imaged on the PET/CT, followed by the PET/MRI. PET acquisition began at 66.7±14.4 min (mean±SD) after injection when performing PET/MR first (PET/CT: 117.2±5.6 min) and 92.4±7.6 min when patients were imaged on PET/MR second (PET/CT: 61.1±3.9 min). PET data were reconstructed iteratively with Ordinary-Poisson Ordered-Subset Expectation-Maximization and reconstruction parameters were matched across the two scanners. A visual lesion detection task and a standardized uptake value (SUV) analysis were carried out. The CT Hounsfield unit values of PTB lesions were also compared with MR-based attenuation correction mu-map tissue classes. RESULTS A total of 108 PTB lesions were detected on PET/MR and 112 on PET/CT. SUV analysis was carried out on 50 of these lesions that were observed with both modalities. Mean standardized uptake value (SUVmean) and maximum standardized uptake value (SUVmax) were significantly lower on PET/MR (SUVmean: 2.6±1.4; SUVmax: 4.3±2.5) than PET/CT (SUVmean: 3.5±1.5; SUVmax: 5.3±2.4). CONCLUSION PET/MR visual performance was shown to be comparable to PET/CT in terms of the number of PTB lesions detected. SUVs were significantly lower on PET/MR. Dixon-based attenuation correction underestimates the linear attenuation coefficient of PTB lesions, resulting in lower SUVs compared with PET/CT. However, the use of PET/MR to measure the response of lung lesions to assess response to treatment in research studies is unlikely to be affected by these differences in quantification.
Collapse
|
43
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
44
|
Jadvar H. Highlights of articles published in annals of nuclear medicine 2016. Eur J Nucl Med Mol Imaging 2017; 44:1928-1933. [PMID: 28752226 DOI: 10.1007/s00259-017-3782-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
This article is the first installment of highlights of selected articles published during 2016 in the Annals of Nuclear Medicine, an official peer-reviewed journal of the Japanese Society of Nuclear Medicine. A companion article highlighting selected articles published during 2016 in the European Journal of Nuclear Medicine and Molecular Imaging, which is the official peer-reviewed journal of the European Association of Nuclear Medicine, will also appear in the Annals Nuclear Medicine. This new initiative by the respective journals will continue as an annual endeavor and is anticipated to not only enhance the scientific collaboration between Europe and Japan but also facilitate global partnership in the field of nuclear medicine and molecular imaging.
Collapse
Affiliation(s)
- Hossein Jadvar
- Division of Nuclear Medicine, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
45
|
Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado J. Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Simultaneous PET/MRI vs PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016; 35:306-12. [PMID: 27424217 DOI: 10.1016/j.remn.2016.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this review was to evaluate the diagnostic performance of simultaneous PET/MRI in oncology compared with that of PET/CT, based upon the available evidence. MATERIAL AND METHODS A systematic search was performed in the Medline and Embase databases to identify original clinical articles published up to 21 January 2016, in order to compare simultaneous PET/MRI and PET/CT in oncology patients. RESULTS A total of 57 articles were obtained that included various diseases: head and neck cancer (5), lung cancer and lung nodules (13), colorectal cancer (1), liver lesions (2), abdominal incidentalomas (1), neuroendocrine tumours (2), thyroid carcinoma (2), breast cancer (3), gynaecological cancer (2), prostate cancer (4), lymphoma (2), multiple myeloma (1), bone metastases (3), intracranial tumours (2), paediatric oncology (1) and various tumours (13). Diagnostic performance of simultaneous PET/MRI was similar or even better to that of PET/CT in most oncological diseases. However, PET/CT was superior for small lung nodule detection. CONCLUSION Simultaneous PET/MRI in oncology is feasible, performing at least equally as well as PET/CT, with lower radiation exposure. However, available evidence is still limited. Studies including more patients and tumours are needed to establish PET/MRI indications and to identify appropriate protocols for each disease.
Collapse
|
47
|
Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C. Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer – does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol 2016; 27:681-688. [DOI: 10.1007/s00330-016-4397-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
|