1
|
Foucher J, Öijerstedt L, Lovik A, Sun J, Ismail MAM, Sennfält S, Savitcheva I, Estenberg U, Pagani M, Fang F, Pereira JB, Ingre C. ECAS correlation with metabolic alterations on FDG-PET imaging in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:708-716. [PMID: 38836336 DOI: 10.1080/21678421.2024.2361695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Background: Cognitive impairment is observed in up to 50% of patients with amyotrophic lateral sclerosis (ALS). The Edinburgh Cognitive and Behavioral ALS Screen (ECAS) is an ALS-specific multi-domain screening tool. Few studies have examined the relationship between ECAS scores and [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) findings. Objective: To assess the relationship between ECAS scores and glucose metabolism patterns on [18F]FDG -PET images in ALS. Methods: We collected [18F]FDG-PET images from 65 patients with ALS and 39 healthy controls. ECAS scores were collected on all patients and we calculated the correlation to [18F]FDG-PET in order to investigate the potential links between cognition and glucose metabolism. Results: We observed hypometabolism in the frontal cortex, insula, and limbic system, together with hypermetabolism in the cerebellum in patients with ALS compared to controls. A lower ECAS total score was associated with lower glucose metabolism in the right orbitofrontal gyrus and higher glucose metabolism in lateral occipital, medial occipital, and cerebellar regions, among patients with ALS. Similar results, although less widespread, were observed in the analyses of ECAS ALS-specific scores. Conclusions: The metabolic patterns in [18F]FDG -PET show that changes in the glucose metabolism of corresponding areas are related to cognitive dysfunction in ALS, and can be detected using the ECAS.
Collapse
Affiliation(s)
- Juliette Foucher
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, ME Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Öijerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, ME Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anikó Lovik
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Methodology and Statistics Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Jiawei Sun
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad-Al-Mustafa Ismail
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, ME Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Sennfält
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, ME Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine Imaging, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden, and
| | - Ulrika Estenberg
- Medical Radiation Physics and Nuclear Medicine Imaging, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden, and
| | - Marco Pagani
- Medical Radiation Physics and Nuclear Medicine Imaging, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden, and
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, ME Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
3
|
Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of Amyloidogenic and Non-Amyloidogenic Protein Spaces in Neurodegenerative Diseases and their Mitigation Using Theranostic Agents. Chembiochem 2024; 25:e202400224. [PMID: 38668376 DOI: 10.1002/cbic.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Collapse
Affiliation(s)
- Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Mansi Bhandari
- Department of computer science and engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062
| | - Vishakha Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Virendra Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
4
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Vacchiano V, Bonan L, Liguori R, Rizzo G. Primary Lateral Sclerosis: An Overview. J Clin Med 2024; 13:578. [PMID: 38276084 PMCID: PMC10816328 DOI: 10.3390/jcm13020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder which causes the selective deterioration of the upper motor neurons (UMNs), sparing the lower motor neuron (LMN) system. The clinical course is defined by a progressive motor disability due to muscle spasticity which typically involves lower extremities and bulbar muscles. Although classically considered a sporadic disease, some familiar cases and possible causative genes have been reported. Despite it having been recognized as a rare but distinct entity, whether it actually represents an extreme end of the motor neuron diseases continuum is still an open issue. The main knowledge gap is the lack of specific biomarkers to improve the clinical diagnostic accuracy. Indeed, the diagnostic imprecision, together with some uncertainty about overlap with UMN-predominant ALS and Hereditary Spastic Paraplegia (HSP), has become an obstacle to the development of specific therapeutic trials. In this study, we provided a comprehensive analysis of the existing literature, including neuropathological, clinical, neuroimaging, and neurophysiological features of the disease, and highlighting the controversies still unsolved in the differential diagnoses and the current diagnostic criteria. We also discussed the current knowledge gaps still present in both diagnostic and therapeutic fields when approaching this rare condition.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| | - Luigi Bonan
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Rocco Liguori
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Rizzo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy; (V.V.); (R.L.)
| |
Collapse
|
6
|
Jamali AM, Kethamreddy M, Burkett BJ, Port JD, Pandey MK. PET and SPECT Imaging of ALS: An Educational Review. Mol Imaging 2023; 2023:5864391. [PMID: 37636591 PMCID: PMC10460279 DOI: 10.1155/2023/5864391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease leading to progressive motor degeneration and ultimately death. It is a complex disease that can take a significantly long time to be diagnosed, as other similar pathological conditions must be ruled out for a definite diagnosis of ALS. Noninvasive imaging of ALS has shed light on disease pathology and altered biochemistry in the ALS brain. Other than magnetic resonance imaging (MRI), two types of functional imaging, positron emission tomography (PET) and single photon emission computed tomography (SPECT), have provided valuable data about what happens in the brain of ALS patients compared to healthy controls. PET imaging has revealed a specific pattern of brain metabolism through [18F]FDG, while other radiotracers have uncovered neuroinflammation, changes in neuronal density, and protein aggregation. SPECT imaging has shown a general decrease in regional cerebral blood flow (rCBF) in ALS patients. This educational review summarizes the current state of ALS imaging with various PET and SPECT radiopharmaceuticals to better understand the pathophysiology of ALS.
Collapse
Affiliation(s)
| | | | | | - John D. Port
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Cortés Mancera EA, Sinisterra Solis FA, Romero-Castellanos FR, Diaz-Meneses IE, Kerik-Rotenberg NE. 18F-FDG PET/CT as a molecular biomarker in the diagnosis of amyotrophic lateral sclerosis associated with prostate cancer and progressive supranuclear palsy: A case report. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1137875. [PMID: 39355053 PMCID: PMC11440934 DOI: 10.3389/fnume.2023.1137875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/23/2023] [Indexed: 10/03/2024]
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a neurodegenerative, multisystem disorder. Its clinical presentation typically consists of progressive focal muscle atrophy and weakness. In addition to motor disorders, the association between ALS and cancer has been researched, such as frontotemporal dementia and progressive supranuclear palsy. The diagnosis is based primarily on the clinical history, physical examination, electrodiagnostic tests (with an EMG needle), and neuroimaging, such as MRI and 18F-FDG PET/CT. Presentation of the case A 67-year-old male patient was diagnosed with prostate adenocarcinoma with a clinical picture of muscle weakness in the lower limbs that caused falls and was associated with fasciculations in the thighs and arms, alterations in the tone of voice, poor memory, and difficulty articulating words. In the neurological assessment, he described walking supported by a walker with decreased strength in both lower limbs and sensitivity without alterations. The diagnoses of upper and lower motor neuron disease and probable ALS were integrated. Furthermore, the probable coexistence of frontotemporal dementia/disorder (FDD) with ALS was considered. The main findings in the 18F-FDG PET/CT study was hypometabolism in the cortex of the bilateral motor and premotor areas, the anterior cingulate, both caudate and putamen, a metabolic pattern compatible with ALS, and progressive supranuclear palsy. Conclusion Through the PET/CT studies, we demonstrated a case in which ALS, prostate cancer and progressive supranuclear palsy coexisted molecularly; it was clinically difficult to diagnose. Molecular imaging has potential in the diagnostic and prognostic evaluation of ALS. It is crucial to identify the disease early and reliably through metabolic patterns that allow us to confirm the disease or differentiate it from other pathologies.
Collapse
Affiliation(s)
- Emilly A Cortés Mancera
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Fabio A Sinisterra Solis
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Ivan E Diaz-Meneses
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Nora E Kerik-Rotenberg
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
8
|
Tahedl M, Tan EL, Chipika RH, Hengeveld JC, Vajda A, Doherty MA, McLaughlin RL, Siah WF, Hardiman O, Bede P. Brainstem-cortex disconnection in amyotrophic lateral sclerosis: bulbar impairment, genotype associations, asymptomatic changes and biomarker opportunities. J Neurol 2023:10.1007/s00415-023-11682-6. [PMID: 37022479 DOI: 10.1007/s00415-023-11682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Bulbar dysfunction is a cardinal feature of ALS with important quality of life and management implications. The objective of this study is the longitudinal evaluation of a large panel imaging metrics pertaining to bulbar dysfunction, encompassing cortical measures, structural and functional cortico-medullary connectivity indices and brainstem metrics. METHODS A standardised, multimodal imaging protocol was implemented with clinical and genetic profiling to systematically appraise the biomarker potential of specific metrics. A total of 198 patients with ALS and 108 healthy controls were included. RESULTS Longitudinal analyses revealed progressive structural and functional disconnection between the motor cortex and the brainstem over time. Cortical thickness reduction was an early feature on cross-sectional analyses with limited further progression on longitudinal follow-up. Receiver operating characteristic analyses of the panel of MR metrics confirmed the discriminatory potential of bulbar imaging measures between patients and controls and area-under-the-curve values increased significantly on longitudinal follow-up. C9orf72 carriers exhibited lower brainstem volumes, lower cortico-medullary structural connectivity and faster cortical thinning. Sporadic patients without bulbar symptoms, already exhibit significant brainstem and cortico-medullary connectivity alterations. DISCUSSION Our results indicate that ALS is associated with multi-level integrity change from cortex to brainstem. The demonstration of significant corticobulbar alterations in patients without bulbar symptoms confirms considerable presymptomatic disease burden in sporadic ALS. The systematic assessment of radiological measures in a single-centre academic study helps to appraise the diagnostic and monitoring utility of specific measures for future clinical and clinical trial applications.
Collapse
Affiliation(s)
- Marlene Tahedl
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | | | - Alice Vajda
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - We Fong Siah
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Trinity Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
9
|
De Vocht J, Van Weehaeghe D, Ombelet F, Masrori P, Lamaire N, Devrome M, Van Esch H, Moisse M, Koole M, Dupont P, Van Laere K, Van Damme P. Differences in Cerebral Glucose Metabolism in ALS Patients with and without C9orf72 and SOD1 Mutations. Cells 2023; 12:cells12060933. [PMID: 36980274 PMCID: PMC10047407 DOI: 10.3390/cells12060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. In 10% of patients, the disorder runs in the family. Our aim was to study the impact of ALS-causing gene mutations on cerebral glucose metabolism. Between October 2010 and October 2022, 538 patients underwent genetic testing for mutations with strong evidence of causality for ALS and 18F-2-fluoro-2-deoxy-D-glucose-PET (FDG PET), at University Hospitals Leuven. We identified 48 C9orf72-ALS and 22 SOD1-ALS patients. After propensity score matching, two cohorts of 48 and 21 matched sporadic ALS patients, as well as 20 healthy controls were included. FDG PET images were assessed using a voxel-based and volume-of-interest approach. We observed widespread frontotemporal involvement in all ALS groups, in comparison to healthy controls. The degree of relative glucose metabolism in SOD1-ALS in motor and extra-motor regions did not differ significantly from matched sporadic ALS patients. In C9orf72-ALS, we found more pronounced hypometabolism in the peri-rolandic region and thalamus, and hypermetabolism in the medulla extending to the pons, in comparison to matched sporadic ALS patients. Our study revealed C9orf72-dependent differences in glucose metabolism in the peri-rolandic region, thalamus, and brainstem (i.e., medulla, extending to the pons) in relation to matched sporadic ALS patients.
Collapse
Affiliation(s)
- Joke De Vocht
- Division of Psychiatry, Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-34-13-73
| | | | - Fouke Ombelet
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Pegah Masrori
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Nikita Lamaire
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Martijn Devrome
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Mathieu Moisse
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Michel Koole
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Patrick Dupont
- Laboratory of Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Division of Neurology, University Hospitals Leuven, VIB-KULeuven Center for Brain & Disease Research, Laboratory of Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Caruso D, Polici M, Lauri C, Laghi A. Radiomics and artificial intelligence. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Lulé D, Michels S, Finsel J, Braak H, Del Tredici K, Strobel J, Beer AJ, Uttner I, Müller HP, Kassubek J, Juengling FD, Ludolph AC. Clinicoanatomical substrates of selfish behaviour in amyotrophic lateral sclerosis - An observational cohort study. Cortex 2021; 146:261-270. [PMID: 34923303 DOI: 10.1016/j.cortex.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE ALS primarily affects motor functions, but cognitive functions, including social understanding, may also be impaired. Von Economo neurons (VENs) are part of the neuronal substrate of social understanding and these cells are histopathologically altered in ALS. We investigated whether activity in areas including VENs is associated with an impairment of cognitive tasks that mirror social functioning. METHODS In this observational prospective study, ALS patients (N = 26) were tested for cognitive behavioural function, encompassing different aspects of empathetic understanding (interpersonal reactivity index, IRI), social behaviour (ultimatum game), recognition of faux-pas situations, and general cognitive functioning (Edinburgh Cognitive and Behavioural ALS Screen, ECAS). For in vivo pathological staging according to Braak, DTI-MRI was performed to determine those ALS patients with expected pathological involvement of VENs (B ALS stages 3 + 4) compared to those without (B ALS stages 1 + 2). Expected hypometabolism of cerebral areas was determined with 18F-FDG PET in N = 20 ALS patients and compared to N = 20 matched healthy controls. Volume of interest analysis was performed in the anterior cingulate cortex (ACC) and the anterior insular cortex (AIC), which contain high numbers of VENs. RESULTS Compared to those without expected pathological involvement of VENs (B/B ALS stages 1 + 2), ALS patients with anticipated pathological involvement of VENs (B/B ALS stages 3 + 4) presented with significantly reduced fantasy to understand the mindset of others (IRI) and, social behaviour was more selfish (ultimatum game) despite the fact that cognitive understanding of socially inappropriate behaviour of others (faux-pas) was unimpaired. 18F-FDG-PET showed hypometabolism in ACC and AIC in ALS patients with anticipated pathological involvement of VENs compared to those without and this was significantly correlated to cognitive-behavioral functions in certain tasks. CONCLUSION Here, we present evidence of altered social behaviour in ALS patients associated with regional 18FDG-PET hypometabolism in areas with a high density of VENs, thereby suggesting a possible causal association.
Collapse
Affiliation(s)
- Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany.
| | | | - Julia Finsel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Ambros J Beer
- Department of Nuclear Medicine, University of Ulm, Germany
| | - Ingo Uttner
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Freimut D Juengling
- Department of Oncology, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
13
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
14
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
De Vocht J, Blommaert J, Devrome M, Radwan A, Van Weehaeghe D, De Schaepdryver M, Ceccarini J, Rezaei A, Schramm G, van Aalst J, Chiò A, Pagani M, Stam D, Van Esch H, Lamaire N, Verhaegen M, Mertens N, Poesen K, van den Berg LH, van Es MA, Vandenberghe R, Vandenbulcke M, Van den Stock J, Koole M, Dupont P, Van Laere K, Van Damme P. Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. JAMA Neurol 2021; 77:1008-1017. [PMID: 32421156 PMCID: PMC7417970 DOI: 10.1001/jamaneurol.2020.1087] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Question Can metabolic brain changes be detected in presymptomatic individuals who are carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) using time-of-flight fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging and magnetic resonance imaging, and what is the association between the mutation and clinical and fluid biomarkers of amyotrophic lateral sclerosis and frontotemporal dementia? Findings In a case-control study including 17 preSxC9 participants and 25 healthy controls, fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging noted significant clusters of relative hypometabolism in frontotemporal regions, the insular cortices, basal ganglia, and thalami in the preSxC9 participants. Use of this strategy allowed detection of changes at an individual level. Meaning Glucose metabolic changes appear to occur early in the sequence of events leading to manifest amyotrophic lateral sclerosis and frontotemporal dementia. Fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging may provide a sensitive biomarker of a presymptomatic phase of disease. Importance During a time with the potential for novel treatment strategies, early detection of disease manifestations at an individual level in presymptomatic carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) is becoming increasingly relevant. Objectives To evaluate changes in glucose metabolism before symptom onset of amyotrophic lateral sclerosis or frontotemporal dementia in preSxC9 using simultaneous fluorine 18–labeled fluorodeoxyglucose ([18F]FDG positron emission tomographic (PET) and magnetic resonance imaging as well as the mutation’s association with clinical and fluid biomarkers. Design, Setting, and Participants A prospective, case-control study enrolled 46 participants from November 30, 2015, until December 11, 2018. The study was conducted at the neuromuscular reference center of the University Hospitals Leuven, Leuven, Belgium. Main Outcomes and Measures Neuroimaging data were spatially normalized and analyzed at the voxel level at a height threshold of P < .001, cluster-level familywise error–corrected threshold of P < .05, and statistical significance was set at P < .05 for the volume-of-interest level analysis, using Benjamini-Hochberg correction for multiple correction. W-score maps were computed using the individuals serving as controls as a reference to quantify the degree of [18F]FDG PET abnormality. The threshold for abnormality on the W-score maps was designated as an absolute W-score greater than or equal to 1.96. Neurofilament levels and performance on cognitive and neurologic examinations were determined. All hypothesis tests were 1-sided. Results Of the 42 included participants, there were 17 with the preSxC9 mutation (12 women [71%]; mean [SD] age, 51 [9] years) and 25 healthy controls (12 women [48%]; mean [SD] age, 47 [10] years). Compared with control participants, significant clusters of relative hypometabolism were found in frontotemporal regions, basal ganglia, and thalami of preSxC9 participants and relative hypermetabolism in the peri-Rolandic region, superior frontal gyrus, and precuneus cortex. W-score frequency maps revealed reduced glucose metabolism with local maxima in the insular cortices, central opercular cortex, and thalami in up to 82% of preSxC9 participants and increased glucose metabolism in the precentral gyrus and precuneus cortex in up to 71% of preSxC9 participants. Other findings in the preSxC9 group were upper motor neuron involvement in 10 participants (59%), cognitive abnormalities in 5 participants (29%), and elevated neurofilament levels in 3 of 16 individuals (19%) who underwent lumbar puncture. Conclusions and Relevance The results suggest that [18F]FDG PET can identify glucose metabolic changes in preSxC9 at an individual level, preceding significantly elevated neurofilament levels and onset of symptoms.
Collapse
Affiliation(s)
- Joke De Vocht
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | | | - Martijn Devrome
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000 Leuven, Belgium
| | - Donatienne Van Weehaeghe
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Maxim De Schaepdryver
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Jenny Ceccarini
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmadreza Rezaei
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Georg Schramm
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - June van Aalst
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Adriano Chiò
- ALS Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Daphne Stam
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium
| | - Hilde Van Esch
- University Hospitals Leuven, Center for Human Genetics, B-3000 Leuven, Belgium
| | - Nikita Lamaire
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Marianne Verhaegen
- KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium
| | - Nathalie Mertens
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Koen Poesen
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Leonard H van den Berg
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik Vandenberghe
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Michel Koole
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Koen Van Laere
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Philip Van Damme
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
16
|
Tefera TW, Steyn FJ, Ngo ST, Borges K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target? Cell Biosci 2021; 11:14. [PMID: 33431046 PMCID: PMC7798275 DOI: 10.1186/s13578-020-00511-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selective degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence demonstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregulation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impairments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investigations into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, and to also reveal new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Tesfaye Wolde Tefera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.,Center for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
17
|
Pioro EP, Turner MR, Bede P. Neuroimaging in primary lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:18-27. [PMID: 33602015 DOI: 10.1080/21678421.2020.1837176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Increased interest in the underlying pathogenesis of primary lateral sclerosis (PLS) and its relationship to amyotrophic lateral sclerosis (ALS) has corresponded to a growing number of CNS imaging studies, especially in the past decade. Both its rarity and uncertainty of definite diagnosis prior to 4 years from symptom onset have resulted in PLS being less studied than ALS. In this review, we highlight most relevant papers applying magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) to analyzing CNS changes in PLS, often in relation to ALS. In patients with PLS, mostly brain, but also spinal cord has been evaluated since significant neurodegeneration is essentially restricted to upper motor neuron (UMN) structures and related pathways. Abnormalities of cortex and subcortical white matter tracts have been identified by structural and functional MRI and MRS studies, while metabolic and cell-specific changes in PLS brain have been revealed using various PET radiotracers. Future neuroimaging studies will continue to explore the interface between the PLS-ALS continuum, identify more changes unique to PLS, apply novel MRI and MRS sequences showing greater structural and neurochemical detail, as well as expand the repertoire of PET radiotracers that reveal various cellular pathologies. Neuroimaging has the potential to play an important role in the evaluation of novel therapies for patients with PLS.
Collapse
Affiliation(s)
- Erik P Pioro
- Section of ALS & Related Disorders, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Van Weehaeghe D, Devrome M, Schramm G, De Vocht J, Deckers W, Baete K, Van Damme P, Koole M, Van Laere K. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur J Nucl Med Mol Imaging 2020; 47:2681-2690. [PMID: 32314027 DOI: 10.1007/s00259-020-04786-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with on average a 1-year delay between symptom onset and diagnosis. Studies have demonstrated the value of [18F]-FDG PET as a sensitive diagnostic biomarker, but the discriminatory potential to differentiate ALS from patients with symptoms mimicking ALS has not been investigated. We investigated the combination of brain and spine [18F]-FDG PET-CT for differential diagnosis between ALS and ALS mimics in a real-life clinical diagnostic setting. METHODS Patients with a suspected diagnosis of ALS (n = 98; 64.8 ± 11 years; 61 M) underwent brain and spine [18F]-FDG PET-CT scans. In 62 patients, ALS diagnosis was confirmed (67.8 ± 10 years; 35 M) after longitudinal follow-up (average 18.1 ± 8.4 months). In 23 patients, another disease was diagnosed (ALS mimics, 60.9 ± 12.9 years; 17 M) and 13 had a variant motor neuron disease, primary lateral sclerosis (PLS; n = 4; 53.6 ± 2.5 years; 2 M) and progressive muscular atrophy (PMA; n = 9; 58.4 ± 7.3 years; 7 M). Spine metabolism was determined after manual and automated segmentation. VOI- and voxel-based comparisons were performed. Moreover, a support vector machine (SVM) approach was applied to investigate the discriminative power of regional brain metabolism, spine metabolism and the combination of both. RESULTS Brain metabolism was very similar between ALS mimics and ALS, whereas cervical and thoracic spine metabolism was significantly different (in standardised uptake values; cervical: ALS 2.1 ± 0.5, ALS mimics 1.9 ± 0.4; thoracic: ALS 1.8 ± 0.3, ALS mimics 1.5 ± 0.3). As both brain and spine metabolisms were very similar between ALS mimics and PLS/PMA, groups were pooled for accuracy analyses. Mean discrimination accuracy was 65.4%, 80.0% and 81.5%, using only brain metabolism, using spine metabolism and using both, respectively. CONCLUSION The combination of brain and spine FDG PET-CT with SVM classification is useful as discriminative biomarker between ALS and ALS mimics in a real-life clinical setting.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Joke De Vocht
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Wies Deckers
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kristof Baete
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
19
|
Artificial intelligence and radiomics in nuclear medicine: potentials and challenges. Eur J Nucl Med Mol Imaging 2019; 46:2731-2736. [DOI: 10.1007/s00259-019-04593-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Finegan E, Li Hi Shing S, Chipika RH, Doherty MA, Hengeveld JC, Vajda A, Donaghy C, Pender N, McLaughlin RL, Hardiman O, Bede P. Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NEUROIMAGE-CLINICAL 2019; 24:102089. [PMID: 31795059 PMCID: PMC6978214 DOI: 10.1016/j.nicl.2019.102089] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/02/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is a low incidence motor neuron disease which carries a markedly better prognosis than amyotrophic lateral sclerosis (ALS). Despite sporadic reports of extra-motor symptoms, PLS is widely regarded as a pure upper motor neuron disorder. The post mortem literature of PLS is strikingly sparse and very little is known of subcortical grey matter pathology in this condition. METHODS A prospective imaging study was undertaken with 33 PLS patients, 117 healthy controls and 100 ALS patients to specifically assess the integrity of subcortical grey matter structures and determine whether PLS and ALS have divergent thalamic, hippocampal and basal ganglia signatures. Volumetric, morphometric, segmentation and vertex-wise analyses were carried out in the three study groups to evaluate the integrity of thalamus, hippocampus, caudate, amygdala, pallidum, putamen and accumbens nucleus in each hemisphere. The hippocampus was further parcellated to characterise the involvement of specific subfields. RESULTS Considerable thalamic, caudate, and hippocampal atrophy was detected in PLS based on both volumetric and vertex analyses. Significant volume reductions were also detected in the accumbens nuclei. Hippocampal atrophy in PLS was dominated by dentate gyrus, hippocampal tail and CA4 subfield volume reductions. The morphometric comparison of ALS and PLS cohorts revealed preferential medial bi-thalamic pathology in PLS compared to the predominant putaminal degeneration detected in ALS. Another distinguishing feature between ALS and PLS was the preferential atrophy of the amygdala in ALS. CONCLUSIONS PLS is associated with considerable subcortical grey matter degeneration and due to the extensive extra-motor involvement, it should no longer be regarded a pure upper motor neuron disorder. Given its unique pathological features and a clinical course which differs considerably from ALS, dedicated research studies and disease-specific therapeutic strategies are urgently required in PLS.
Collapse
Affiliation(s)
- Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | | | - Niall Pender
- Department of Psychology, Beaumont Hospital Dublin, Ireland
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
21
|
Bede P, Chipika RH, Finegan E, Li Hi Shing S, Doherty MA, Hengeveld JC, Vajda A, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NEUROIMAGE-CLINICAL 2019; 24:102054. [PMID: 31711033 PMCID: PMC6849418 DOI: 10.1016/j.nicl.2019.102054] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Computational neuroimaging captures focal brainstem pathology in motor neuron diseases in contrast to both healthy- and disease controls. ALS patients exhibit progressive medulla oblongata, pontine and mesencephalic volume loss over time. Brainstem atrophy in ALS and PLS is dominated by medulla oblongata volume reductions. Vertex analyses of ALS patients reveal flattening of the medullary pyramids bilaterally. Morphometric analyses in ALS detect density reductions in the mesencephalic crura consistent with corticospinal tract degeneration.
Background Brainstem pathology is a hallmark feature of ALS, yet most imaging studies focus on cortical grey matter alterations and internal capsule white matter pathology. Brainstem imaging in ALS provides a unique opportunity to appraise descending motor tract degeneration and bulbar lower motor neuron involvement. Methods A prospective longitudinal imaging study has been undertaken with 100 patients with ALS, 33 patients with PLS, 30 patients with FTD and 100 healthy controls. Volumetric, vertex and morphometric analyses were conducted correcting for demographic factors to characterise disease-specific patterns of brainstem pathology. Using a Bayesian segmentation algorithm, the brainstem was segmented into the medulla, pons and mesencephalon to measure regional volume reductions, shape analyses were performed to ascertain the atrophy profile of each study group and region-of-interest morphometry was used to evaluate focal density alterations. Results ALS and PLS patients exhibit considerable brainstem atrophy compared to both disease- and healthy controls. Volume reductions in ALS and PLS are dominated by medulla oblongata pathology, but pontine atrophy can also be detected. In ALS, vertex analyses confirm the flattening of the medullary pyramids bilaterally in comparison to healthy controls and widespread pontine shape deformations in contrast to PLS. The ALS cohort exhibit bilateral density reductions in the mesencephalic crura in contrast to healthy controls, central pontine atrophy compared to disease controls, peri-aqueduct mesencephalic and posterior pontine changes in comparison to PLS patients. Conclus ions: Computational brainstem imaging captures the degeneration of both white and grey matter components in ALS. Our longitudinal data indicate progressive brainstem atrophy over time, underlining the biomarker potential of quantitative brainstem measures in ALS. At a time when a multitude of clinical trials are underway worldwide, there is an unprecedented need for accurate biomarkers to monitor disease progression and detect response to therapy. Brainstem imaging is a promising addition to candidate biomarkers of ALS and PLS.
Collapse
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Western Health & Social Care Trust, Belfast, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
22
|
|
23
|
The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 2019; 266:2718-2733. [PMID: 31325016 DOI: 10.1007/s00415-019-09473-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Primary lateral sclerosis is a progressive upper-motor-neuron disorder associated with markedly longer survival than ALS. In contrast to ALS, the genetic susceptibility, histopathological profile and imaging signature of PLS are poorly characterised. Suspected PLS patients often face considerable diagnostic delay and prognostic uncertainty. OBJECTIVE To characterise the distinguishing clinical, genetic and imaging features of PLS in contrast to ALS and healthy controls. METHODS A prospective population-based study was conducted with 49 PLS patients, 100 ALS patients and 100 healthy controls using genetic profiling, standardised clinical assessments and neuroimaging. Whole-brain and region-of-interest analyses were undertaken to evaluate patterns of grey and white matter degeneration. RESULTS In PLS, disease burden in the motor cortex is more medial than in ALS consistent with its lower limb symptom-predominance. PLS is associated with considerable cerebellar white and grey matter degeneration and the extra-motor profile of PLS includes marked insular, inferior frontal and left pars opercularis pathology. Contrary to ALS, PLS spares the postcentral gyrus. The body and splenium of the corpus callosum are preferentially affected in PLS, in contrast to the genu involvement observed in ALS. Clinical measures show anatomically meaningful correlations with imaging metrics in a somatotopic distribution. PLS patients tested negative for C9orf72 repeat expansions, known ALS and HSP-associated genes. CONCLUSIONS Multiparametric imaging in PLS highlights disease-specific motor and extra-motor involvement distinct from ALS. In a condition where limited post-mortem data are available, imaging offers invaluable pathological insights. Anatomical correlations with clinical metrics confirm the biomarker potential of quantitative neuroimaging in PLS.
Collapse
|
24
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Chew S, Atassi N. Positron Emission Tomography Molecular Imaging Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:135. [PMID: 30881332 PMCID: PMC6405430 DOI: 10.3389/fneur.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with limited treatment options. Despite decades of therapeutic development, only two modestly efficacious disease-modifying drugs-riluzole and edaravone-are available to ALS patients. Biomarkers that can facilitate ALS diagnosis, aid in prognosis, and measure drug pharmacodynamics are needed to accelerate therapeutic development for patients with ALS. Positron emission tomography (PET) imaging has promise as a biomarker for ALS because it permits visualization of central nervous system (CNS) pathology in individuals living with ALS. The availability of PET radioligands that target a variety of potential pathophysiological mechanisms-including cerebral metabolism, neuroinflammation, neuronal dysfunction, and oxidative stress-has enabled dynamic interrogation of molecular changes in ALS, in both natural history studies and human clinical trials. PET imaging has potential as a diagnostic biomarker that can establish upper motor neuron (UMN) pathology in ALS patients without overt UMN symptoms, as a prognostic biomarker that might help stratify patients for clinical trials, and as a pharmacodynamic biomarker that measures the biological effect of investigational drugs in the brain and spinal cord. In this Review, we discuss progress made with 30 years of PET imaging studies in ALS and consider future research needed to establish PET imaging biomarkers for ALS therapeutic development.
Collapse
Affiliation(s)
- Sheena Chew
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| | - Nazem Atassi
- Department of Neurology, Harvard Medical School, Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F, Black SE, Zukotynski K. Machine Learning in Nuclear Medicine: Part 1—Introduction. J Nucl Med 2019; 60:451-458. [DOI: 10.2967/jnumed.118.223495] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
|
27
|
Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P. Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:133-145. [PMID: 30654671 DOI: 10.1080/21678421.2018.1550518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Primary lateral sclerosis (PLS) has been traditionally viewed as a distinct upper motor neuron condition (UMN) but is increasingly regarded as a sub-phenotype within the amyotrophic lateral sclerosis (ALS) spectrum. Despite established diagnostic criteria, formal diagnosis can be challenging and the protracted diagnostic journey and uncertainty about longer-term prognosis cause considerable distress to patients and caregivers. PLS patients are invariably excluded from ALS clinical trials, while PLS pharmacological trials are lacking. There remains an unmet need for diagnostic biomarkers for upper motor neuron predominant conditions and prognostic indicators regarding prognosis, survival, and risk of conversion to ALS. Validated biomarkers will not only have implications for individualized patient care but also serve as outcome measures in pharmaceutical trials. Given the paucity of post-mortem studies in PLS, novel pathological insights are generally inferred from state-of-the-art imaging studies. Computational neuroimaging has already contributed significantly to the characterization of PLS-associated pathology in vivo and has underscored the role of neuro-inflammation, the presence of extra-motor changes, and confirmed pathological patterns similar to ALS. This systematic review assesses the current state of PLS research across clinical, neuroimaging and neuropathological domains from a combined clinical and academic perspective. We discuss patterns of pathological overlap with other ALS phenotypes, examine if the biological processes of PLS warrant therapeutic strategies distinct from ALS, and evaluate the evidence that classes PLS as a distinct clinico-pathological entity.
Collapse
Affiliation(s)
- Eoin Finegan
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Rangariroyashe H Chipika
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Stacey Li Hi Shing
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Orla Hardiman
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| | - Peter Bede
- a Computational Neuroimaging Group, Academic Unit of Neurology , Biomedical Sciences Institute, Trinity College , Dublin , Ireland
| |
Collapse
|
28
|
Devrome M, Van Weehaeghe D, De Vocht J, Van Damme P, Van Laere K, Koole M. Glucose metabolic brain patterns to discriminate amyotrophic lateral sclerosis from Parkinson plus syndromes. EJNMMI Res 2018; 8:110. [PMID: 30547248 PMCID: PMC6292827 DOI: 10.1186/s13550-018-0458-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background 18F-FDG brain PET measures metabolic changes in neurodegenerative disorders and may discriminate between different diseases even at an early stage. The objective of this study was to classify patients with amyotrophic lateral sclerosis (ALS) and Parkinson plus syndromes (PP). To this end, different approaches were evaluated using generalized linear models and corresponding glucose metabolic brain patterns. Besides direct classification, healthy controls were also included to generate disease-specific metabolic brain patterns and to perform a classification using disease expression scores. Methods ALS patients (n = 70) and PP patients (n = 33: 20 PSP, 3 CBD, and 10 MSA) were available from an existing database of patients with neuromuscular and movement disorders while age-matched healthy controls (n = 29) were selected from a prospective study. To generate both disease-discriminative (direct classification) and disease-specific (classification versus controls) metabolic brain patterns, data were spatially normalized and a principal component analysis (PCA) was performed prior to classification using either logistic regression (PCA-LR) or a support vector machine (PCA-SVM). Furthermore, a direct SVM approach was considered. To compare the three different approaches, Pearson correlations (r) between pattern expression scores and metabolic brain patterns were evaluated, while pairs of ALS- and PP-specific pattern expression scores were compared using the RV coefficient. Results Classification between ALS and PP resulted in a sensitivity and specificity ≥ 0.82 for both direct classification and classification according to disease-specific pattern expression scores. PCA-LR, PCA-SVM, and SVM generated very similar metabolic brain patterns with voxelwise correlations ≥ 0.66, while all patterns allowed straightforward identification of ALS- and PP-specific brain regions of hyper- and hypometabolism. Moreover, pattern expression scores were highly correlated among different classifiers with a mean r of 0.94 while a RV coefficient ≥ 0.91 was found between pairs of ALS- and PP-specific pattern expression scores. Conclusion We demonstrated that a classification between ALS and PP using expression scores of an ALS and PP metabolic brain pattern leads to a similar and high prediction accuracy as direct classification between ALS and PP. Classification performance and disease-specific metabolic patterns, which could support visual reading and improve insight in brain pathology, were very related for different classifiers.
Collapse
Affiliation(s)
- Martijn Devrome
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Donatienne Van Weehaeghe
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Michel Koole
- Department of Nuclear Medicine and Molecular Imaging, Division of Nuclear Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
29
|
Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P. Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1005. [PMID: 30524366 PMCID: PMC6262087 DOI: 10.3389/fneur.2018.01005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is now universally recognized as a complex multisystem disorder with considerable extra-motor involvement. The neuropsychological manifestations of frontotemporal, parietal, and basal ganglia involvement in ALS have important implications for compliance with assistive devices, survival, participation in clinical trials, caregiver burden, and the management of individual care needs. Recent advances in neuroimaging have been instrumental in characterizing the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In this review we discuss the clinical and radiological aspects of cognitive and behavioral impairment in ALS focusing on the recognition, assessment, and monitoring of these symptoms.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Arwas N, Leshno A, Gotkine M. The palmomental reflex predicts earlier corticobulbar involvement in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:513-515. [PMID: 30299162 DOI: 10.1080/21678421.2018.1497064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The palmomental reflex (PMR) is a primitive reflex, which may appear when cortical inhibitory pathways are disrupted by disease. In this study, we examined whether the PMR is associated with corticobulbar involvement in people with ALS (PALS). METHODS PMR was routinely tested for each patient attending the ALS clinic. Three hundred and eighteen consecutive PALS were included, of whom 271 were PMR positive (PMR+). Clinical evaluation defined the presence of upper motor neuron (UMN) and lower motor neuron (LMN) signs in the bulbar, cervical and lumbosacral segments. RESULTS The PMR + group had a higher rate of both UMN and LMN bulbar involvement (BI) as well as more UMN upper-limb involvement and UMN involvement of any type, the strongest association being between PMR + and UMN BI. In patients without BI at presentation, UMN BI developed roughly 15 months early in the PMR + group compared to the PMR- group. CONCLUSION We found that the PMR is strongly associated with UMN signs within the bulbar region and to a lesser extent with upper-limb UMN involvement. We propose the PMR be considered a harbinger of corticobulbar involvement in PALS.
Collapse
Affiliation(s)
- N Arwas
- a Department of Neurology , Hadassah-Hebrew University Hospital , Jerusalem , Israel
| | - A Leshno
- a Department of Neurology , Hadassah-Hebrew University Hospital , Jerusalem , Israel
| | - M Gotkine
- a Department of Neurology , Hadassah-Hebrew University Hospital , Jerusalem , Israel
| |
Collapse
|
31
|
D’hulst L, Van Weehaeghe D, Chiò A, Calvo A, Moglia C, Canosa A, Cistaro A, Willekens SM, De Vocht J, Van Damme P, Pagani M, Van Laere K. Multicenter validation of [18F]-FDG PET and support-vector machine discriminant analysis in automatically classifying patients with amyotrophic lateral sclerosis versus controls. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:570-577. [DOI: 10.1080/21678421.2018.1476548] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ludovic D’hulst
- Division of Nuclear Medicine and Department of Imaging and pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium,
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine and Department of Imaging and pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium,
| | - Adriano Chiò
- ALS Center, ‘Rita Levi Montalcini’ Department of Neuroscience, University of Torino, Torino, Italy,
- Neuroscience Institute of Torino, Torino, Italy,
| | - Andrea Calvo
- ALS Center, ‘Rita Levi Montalcini’ Department of Neuroscience, University of Torino, Torino, Italy,
- Neuroscience Institute of Torino, Torino, Italy,
| | - Cristina Moglia
- ALS Center, ‘Rita Levi Montalcini’ Department of Neuroscience, University of Torino, Torino, Italy,
| | - Antonio Canosa
- ALS Center, ‘Rita Levi Montalcini’ Department of Neuroscience, University of Torino, Torino, Italy,
| | | | - Stefanie Ma Willekens
- Division of Nuclear Medicine and Department of Imaging and pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium,
| | - Joke De Vocht
- Department of Neurology, University Hospitals Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research KU Leuven and VIB, Leuven, Belgium,
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research KU Leuven and VIB, Leuven, Belgium,
| | - Marco Pagani
- Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden, and
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Koen Van Laere
- Division of Nuclear Medicine and Department of Imaging and pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium,
| |
Collapse
|
32
|
Agosta F, Altomare D, Festari C, Orini S, Gandolfo F, Boccardi M, Arbizu J, Bouwman F, Drzezga A, Nestor P, Nobili F, Walker Z, Pagani M. Clinical utility of FDG-PET in amyotrophic lateral sclerosis and Huntington's disease. Eur J Nucl Med Mol Imaging 2018; 45:1546-1556. [PMID: 29717332 DOI: 10.1007/s00259-018-4033-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
AIM To evaluate the incremental value of FDG-PET over clinical tests in: (i) diagnosis of amyotrophic lateral sclerosis (ALS); (ii) picking early signs of neurodegeneration in patients with a genetic risk of Huntington's disease (HD); and detecting metabolic changes related to cognitive impairment in (iii) ALS and (iv) HD patients. METHODS Four comprehensive literature searches were conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on these four diagnostic scenarios. RESULTS The availability of evidence was good for FDG-PET utility to support the diagnosis of ALS, poor for identifying presymptomatic subjects carrying HD mutation who will convert to HD, and lacking for identifying cognitive-related metabolic changes in both ALS and HD. After the Delphi consensual procedure, the panel did not support the clinical use of FDG-PET for any of the four scenarios. CONCLUSION Relative to other neurodegenerative diseases, the clinical use of FDG-PET in ALS and HD is still in its infancy. Once validated by disease-control studies, FDG-PET might represent a potentially useful biomarker for ALS diagnosis. FDG-PET is presently not justified as a routine investigation to predict conversion to HD, nor to detect evidence of brain dysfunction justifying cognitive decline in ALS and HD.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Daniele Altomare
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Orini
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Alzheimer Operative Unit, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - Marina Boccardi
- LANE - Laboratory of Alzheimer's Neuroimaging & Epidemiology, IRCCS S. Giovanni di Dio, Fatebenefratelli, Brescia, Italy.
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Femke Bouwman
- Department of Neurology & Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, University of Cologne and German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Queensland Brain Institute, University of Queensland and at the Mater Hospital Brisbane, Brisbane, Australia
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa and Polyclinic San Martino Hospital, Genoa, Italy
| | - Zuzana Walker
- Division of Psychiatry & Essex Partnership University NHS Foundation Trust, University College London, London, UK
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Department of Nuclear Medicine, Karolinska Hospital Stockholm, Stockholm, Sweden
| |
Collapse
|
33
|
Buhour MS, Doidy F, Mondou A, Pélerin A, Carluer L, Eustache F, Viader F, Desgranges B. Voxel-based mapping of grey matter volume and glucose metabolism profiles in amyotrophic lateral sclerosis. EJNMMI Res 2017; 7:21. [PMID: 28266002 PMCID: PMC5339262 DOI: 10.1186/s13550-017-0267-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/18/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease of the nervous system involving both upper and lower motor neurons. The patterns of structural and metabolic brain alterations are still unclear. Several studies using anatomical MRI yielded a number of discrepancies in their results, and a few PET studies investigated the effect of ALS on cerebral glucose metabolism. The aim of this study was threefold: to highlight the patterns of grey matter (GM) atrophy, hypometabolism and hypermetabolism in patients with ALS, then to understand the neurobehavioral significance of hypermetabolism and, finally, to investigate the regional differences between the morphologic and functional changes in ALS patients, using a specially designed voxel-based method. Thirty-seven patients with ALS and 37 age- and sex-matched healthy individuals underwent both structural MRI and 18[F]-fluorodeoxyglucose (FDG) PET examinations. PET data were corrected for partial volume effects. Structural and metabolic abnormalities were examined in ALS patients compared with control subjects using two-sample t tests in statistical parametric mapping (SPM). Then, we extracted the metabolic values of clusters presenting hypermetabolism to correlate with selected cognitive scores. Finally, GM atrophy and hypometabolism patterns were directly compared with a one-paired t test in SPM. RESULTS We found GM atrophy as well as hypometabolism in motor and extra motor regions and hypermetabolism in medial temporal lobe and cerebellum. We observed negative correlations between the metabolism of the right and left parahippocampal gyri and episodic memory and between the metabolism of right temporal pole and cognitive theory of mind. GM atrophy predominated in the temporal pole, left hippocampus and right thalamus, while hypometabolism predominated in a single cluster in the left frontal superior medial cortex. CONCLUSIONS Our findings provide direct evidence of regional variations in the hierarchy and relationships between GM atrophy and hypometabolism in ALS. Moreover, the 18FDG-PET investigation suggests that cerebral hypermetabolism is deleterious to cognitive function in ALS.
Collapse
Affiliation(s)
- M-S Buhour
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - F Doidy
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - A Mondou
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - A Pélerin
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - L Carluer
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - F Eustache
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - F Viader
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - B Desgranges
- Normandie Univ, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
34
|
van Weehaeghe D, Ceccarini J, Willekens SM, de Vocht J, van Damme P, van Laere K. Is there a glucose metabolic signature of spreading TDP-43 pathology in amyotrophic lateral sclerosis? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2017; 64:96-104. [PMID: 29166751 DOI: 10.23736/s1824-4785.17.03009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recently, four neuropathological stages of amyotrophic lateral sclerosis (ALS) with spreading of transactive response DNA-binding protein-43 pathology were described. Although 18F-FDG PET has been useful in diagnosis and prognosis of ALS patients, in-vivo disease staging using glucose metabolic patterns across the different ALS stages has not been attempted so far. In this study, we investigated whether the discriminant brain regions of the neuropathological stage model can be translated to metabolic patterns for in-vivo staging of ALS. Furthermore, we examined the correlation of these metabolic patterns with disease duration, the Revised ALS Functional Rating Scale (ALSFRS-R) and the forced vital capacity (FVC). METHODS A total of 146 ALS patients (age 66.0±11.0 years; 86 male, 60 female) were divided into four metabolic stages depending on glucose metabolism in discriminant regions of neuropathological stages. 18F-FDG data were analysed voxel-based to compare local metabolic patterns between different stages. Additionally, correlation analyses were performed between pathologic stage and clinical parameters. RESULTS Relative hypometabolism was present in regions known to be affected from the post-mortem pathological spread model, but relative hypermetabolism was also observed across the different ALS stages. In particular, stage 4 reflected a different frontotemporal pattern discordant with mere progression of stage 1-3, which may point to a potential different subgroup in ALS. Furthermore, metabolic stage correlated with disease duration (Spearman's ρ=-0.21, P=0.01) and FVC (Spearman's ρ=-0.24, P=0.04). CONCLUSIONS The neuropathological ALS stages correspond to discriminative regional brain glucose metabolism patterns correlating with disease duration and forced vital capacity. Furthermore, metabolic stage 4 may represents a separate group of ALS progression towards frontotemporal dementia.
Collapse
Affiliation(s)
- Donatienne van Weehaeghe
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium -
| | - Jenny Ceccarini
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Stefanie M Willekens
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Joke de Vocht
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Koen van Laere
- Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
36
|
Blanc-Durand P, Van Der Gucht A, Guedj E, Abulizi M, Aoun-Sebaiti M, Lerman L, Verger A, Authier FJ, Itti E. Cerebral 18F-FDG PET in macrophagic myofasciitis: An individual SVM-based approach. PLoS One 2017; 12:e0181152. [PMID: 28704562 PMCID: PMC5509294 DOI: 10.1371/journal.pone.0181152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Macrophagic myofasciitis (MMF) is an emerging condition with highly specific myopathological alterations. A peculiar spatial pattern of a cerebral glucose hypometabolism involving occipito-temporal cortex and cerebellum have been reported in patients with MMF; however, the full pattern is not systematically present in routine interpretation of scans, and with varying degrees of severity depending on the cognitive profile of patients. Aim was to generate and evaluate a support vector machine (SVM) procedure to classify patients between healthy or MMF 18F-FDG brain profiles. METHODS 18F-FDG PET brain images of 119 patients with MMF and 64 healthy subjects were retrospectively analyzed. The whole-population was divided into two groups; a training set (100 MMF, 44 healthy subjects) and a testing set (19 MMF, 20 healthy subjects). Dimensionality reduction was performed using a t-map from statistical parametric mapping (SPM) and a SVM with a linear kernel was trained on the training set. To evaluate the performance of the SVM classifier, values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were calculated. RESULTS The SPM12 analysis on the training set exhibited the already reported hypometabolism pattern involving occipito-temporal and fronto-parietal cortices, limbic system and cerebellum. The SVM procedure, based on the t-test mask generated from the training set, correctly classified MMF patients of the testing set with following Se, Sp, PPV, NPV and Acc: 89%, 85%, 85%, 89%, and 87%. CONCLUSION We developed an original and individual approach including a SVM to classify patients between healthy or MMF metabolic brain profiles using 18F-FDG-PET. Machine learning algorithms are promising for computer-aided diagnosis but will need further validation in prospective cohorts.
Collapse
Affiliation(s)
- Paul Blanc-Durand
- Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
| | - Axel Van Der Gucht
- Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
| | - Eric Guedj
- Department of Nuclear Medicine, La Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
- Aix-Marseille University, INT, CNRS UMR 7289, Marseille, France
- Aix-Marseille University, CERIMED, Marseille, France
| | - Mukedaisi Abulizi
- Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
| | - Mehdi Aoun-Sebaiti
- INSERM U955-Team 10, Créteil, France
- Department of Neurology, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
| | - Lionel Lerman
- Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
| | - Antoine Verger
- CHU Nancy, Nuclear Medecine & Nancyclotep Experimental Imaging Platform, Nancy, France
| | - François-Jérôme Authier
- INSERM U955-Team 10, Créteil, France
- Department of Pathology, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
- Reference Center for Neuromuscular Disorders, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Emmanuel Itti
- Department of Nuclear Medicine, H. Mondor Hospital, Assistance Publique-Hôpitaux de Paris/Paris-Est University, Créteil, France
- INSERM U955-GRC Amyloid Research Institute, Créteil, France
| |
Collapse
|
37
|
Delva A, Thakore N, Pioro EP, Poesen K, Saunders-Pullman R, Meijer IA, Rucker JC, Kissel JT, Van Damme P. Finger extension weakness and downbeat nystagmus motor neuron disease syndrome: A novel motor neuron disorder? Muscle Nerve 2017; 56:1164-1168. [PMID: 28440863 PMCID: PMC5656559 DOI: 10.1002/mus.25669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
Introduction: Disturbances of eye movements are infrequently encountered in motor neuron diseases (MNDs) or motor neuropathies, and there is no known syndrome that combines progressive muscle weakness with downbeat nystagmus. Methods: To describe the core clinical features of a syndrome of MND associated with downbeat nystagmus, clinical features were collected from 6 patients. Results: All patients had slowly progressive muscle weakness and wasting in combination with downbeat nystagmus, which was clinically most obvious in downward and lateral gaze. Onset was in the second to fourth decade with finger extension weakness, progressing to other distal and sometimes more proximal muscles. Visual complaints were not always present. Electrodiagnostic testing showed signs of regional motor axonal loss in all patients. Discussion: The etiology of this syndrome remains elusive. Because finger extension weakness and downbeat nystagmus are the discriminating clinical features of this MND, we propose the name FEWDON‐MND syndrome. Muscle Nerve56: 1164–1168, 2017
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurology, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Nimish Thakore
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Erik P Pioro
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, University of Leuven (KU Leuven), Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, New York, USA
| | - Inge A Meijer
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, New York, USA
| | - Janet C Rucker
- Department of Neurology, Mount Sinai Beth Israel and Icahn School of Medicine at Mount Sinai, New York, USA
| | - John T Kissel
- Department of Neurology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, University of Leuven (KU Leuven), Leuven, Belgium.,Laboratory of Neurobiology, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
38
|
Reniers W, Schrooten M, Claeys KG, Tilkin P, D’Hondt A, Van Reijen D, Couwelier G, Lamaire N, Robberecht W, Fieuws S, Van Damme P. Prognostic value of clinical and electrodiagnostic parameters at time of diagnosis in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017. [DOI: 10.1080/21678421.2017.1288254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Kristl G. Claeys
- Neurology Department, University Hospitals, Leuven, Belgium,
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium,
| | - Petra Tilkin
- Neurology Department, University Hospitals, Leuven, Belgium,
| | - Ann D’Hondt
- Neurology Department, University Hospitals, Leuven, Belgium,
| | | | | | - Nikita Lamaire
- Neurology Department, University Hospitals, Leuven, Belgium,
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium,
| | - Steffen Fieuws
- Department of Public Health and Primary Care, I-BioStat, KU Leuven - University of Leuven & University of Hasselt, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, University Hospitals, Leuven, Belgium,
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium,
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium, and
| |
Collapse
|
39
|
Casquero-Veiga M, Hadar R, Pascau J, Winter C, Desco M, Soto-Montenegro ML. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats. PLoS One 2016; 11:e0168689. [PMID: 28033356 PMCID: PMC5199108 DOI: 10.1371/journal.pone.0168689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Javier Pascau
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manuel Desco
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
- * E-mail:
| | - María Luisa Soto-Montenegro
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
40
|
Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. Eur J Nucl Med Mol Imaging 2016; 44:533-547. [DOI: 10.1007/s00259-016-3587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
|
41
|
Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127:2643-60. [PMID: 27291884 DOI: 10.1016/j.clinph.2016.04.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
Abstract
Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS.
Collapse
|