1
|
Gammel MCM, Solari EL, Eiber M, Rauscher I, Nekolla SG. A Clinical Role of PET-MRI in Prostate Cancer? Semin Nucl Med 2024; 54:132-140. [PMID: 37652782 DOI: 10.1053/j.semnuclmed.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
PET/MRI is a relevant application field for prostate cancer management, offering advantages in early diagnosis, staging, and therapy planning. Despite drawbacks such as higher costs, longer acquisition time, and the need for skilled personnel, the technical integration of PET and MRI provides valuable information for detecting primary tumors, identifying metastases, and characterizing the disease, leading to more accurate staging and personalized treatment strategies. However, PET/MRI adoption has been slow, but ongoing technological advancements and AI integration might overcome challenges and improve clinical utility. As precision medicine gains importance in oncology, PET/MRI's multiparametric data can tailor treatment plans to individual patients, providing a comprehensive assessment of tumor biology and aggressiveness for more effective therapeutic strategies.
Collapse
Affiliation(s)
- Michael C M Gammel
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Esteban L Solari
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Isabel Rauscher
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Martin MD, Henry TS, Berry MF, Johnson GB, Kelly AM, Ko JP, Kuzniewski CT, Lee E, Maldonado F, Morris MF, Munden RF, Raptis CA, Shim K, Sirajuddin A, Small W, Tong BC, Wu CC, Donnelly EF. ACR Appropriateness Criteria® Incidentally Detected Indeterminate Pulmonary Nodule. J Am Coll Radiol 2023; 20:S455-S470. [PMID: 38040464 DOI: 10.1016/j.jacr.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
Incidental pulmonary nodules are common. Although the majority are benign, most are indeterminate for malignancy when first encountered making their management challenging. CT remains the primary imaging modality to first characterize and follow-up incidental lung nodules. This document reviews available literature on various imaging modalities and summarizes management of indeterminate pulmonary nodules detected incidentally. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Maria D Martin
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Mark F Berry
- Stanford University Medical Center, Stanford, California; Society of Thoracic Surgeons
| | - Geoffrey B Johnson
- Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Jane P Ko
- New York University Langone Health, New York, New York; IF Committee
| | | | - Elizabeth Lee
- University of Michigan Health System, Ann Arbor, Michigan
| | - Fabien Maldonado
- Vanderbilt University Medical Center, Nashville, Tennessee; American College of Chest Physicians
| | | | - Reginald F Munden
- Medical University of South Carolina, Charleston, South Carolina; IF Committee
| | | | - Kyungran Shim
- John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois; American College of Physicians
| | | | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois; Commission on Radiation Oncology
| | - Betty C Tong
- Duke University School of Medicine, Durham, North Carolina; Society of Thoracic Surgeons
| | - Carol C Wu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin F Donnelly
- Specialty Chair, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
3
|
Smeraldo A, Ponsiglione AM, Soricelli A, Netti PA, Torino E. Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: A Systematic Review. Int J Nanomedicine 2022; 17:3343-3359. [PMID: 35937076 PMCID: PMC9346926 DOI: 10.2147/ijn.s362192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
The recent advancements in hybrid positron emission tomography–magnetic resonance imaging systems (PET/MRI) have brought massive value in the investigation of disease processes, in the development of novel treatments, in the monitoring of both therapy response and disease progression, and, not least, in the introduction of new multidisciplinary molecular imaging approaches. While offering potential advantages over PET/CT, the hybrid PET/MRI proved to improve both the image quality and lesion detectability. In particular, it showed to be an effective tool for the study of metabolic information about lesions and pathological conditions affecting the brain, from a better tumor characterization to the analysis of metabolic brain networks. Based on the PRISMA guidelines, this work presents a systematic review on PET/MRI in basic research and clinical differential diagnosis on brain oncology and neurodegenerative disorders. The analysis includes literature works and clinical case studies, with a specific focus on the use of PET tracers and MRI contrast agents, which are usually employed to perform hybrid PET/MRI studies of brain tumors. A systematic literature search for original diagnostic studies is performed using PubMed/MEDLINE, Scopus and Web of Science. Patients, study, and imaging characteristics were extracted from the selected articles. The analysis included acquired data pooling, heterogeneity testing, sensitivity analyses, used tracers, and reported patient outcomes. Our analysis shows that, while PET/MRI for the brain is a promising diagnostic method for early diagnosis, staging and recurrence in patients with brain diseases, a better definition of the role of tracers and imaging agents in both clinical and preclinical hybrid PET/MRI applications is needed and further efforts should be devoted to the standardization of the contrast imaging protocols, also considering the emerging agents and multimodal probes.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
| | - Andrea Soricelli
- Department of Motor Sciences and Healthiness, University of Naples “Parthenope”, Naples, 80133, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
- Correspondence: Enza Torino, Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, Naples, 80125, Italy, Tel +39-328-955-8158, Email
| |
Collapse
|
4
|
Allen TJ, Bancroft LCH, Kumar M, Bradshaw TJ, Strigel RM, McMillan AB, Fowler AM. Gadolinium-Based Contrast Agent Attenuation Does Not Impact PET Quantification in Simultaneous Dynamic Contrast Enhanced Breast PET/MR. Med Phys 2022; 49:5206-5215. [PMID: 35621727 DOI: 10.1002/mp.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Simultaneous PET/MR imaging involves injection of a radiopharmaceutical and often also includes administration of a gadolinium-based contrast agent (GBCA). Phantom model studies indicate that attenuation of annihilation photons by GBCAs does not bias quantification metrics of PET radiopharmaceutical uptake. However, a direct comparison of attenuation corrected PET values before and after administration of GBCA has not been performed in patients imaged with simultaneous dynamic PET/MR. The purpose of this study was to investigate the attenuating effect of GBCAs on standardized uptake value (SUV) quantification of 18 F-fluorodeoxyglucose (FDG) uptake in invasive breast cancer and normal tissues using simultaneous PET/MR. METHODS The study included 13 women with newly diagnosed invasive breast cancer imaged using simultaneous dedicated prone breast PET/MR with FDG. PET data collection and two-point Dixon based MR attenuation correction sequences began simultaneously before the administration of GBCA to avoid a potential impact of GBCA on the attenuation correction map. A standard clinical dose of GBCA was intravenously administered for the dynamic contrast enhanced MR sequences obtained during the simultaneous PET data acquisition. PET data were dynamically reconstructed into 60 frames of 30 seconds each. Three timing windows were chosen consisting of a single frame (30 seconds), two frames (60 seconds), or four frames (120 seconds) immediately before and after contrast administration. SUVmax and SUVmean of the biopsy-proven breast malignancy, fibroglandular tissue of the contralateral normal breast, descending aorta, and liver were calculated prior to and following GBCA administration. Percent change in the SUV metrics were calculated to test for a statistically significant, non-zero percent change using Wilcoxon signed-rank tests. RESULTS No statistical change in SUVmax or SUVmean was found for the breast malignancies or normal anatomical regions during the timing windows before and after GBCA administration. CONCLUSIONS GBCAs do not significantly impact the results of PET quantification by means of additional attenuation. However, GBCAs may still affect quantification by affecting MR acquisitions used for MR-based attenuation correction which this study did not address. Corrections to account for attenuation due to clinical concentrations of GBCAs are not necessary in simultaneous PET/MR examinations when MR-based attenuation correction sequences are performed prior to GBCA administration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Timothy J Allen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Leah C Henze Bancroft
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Tyler J Bradshaw
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Roberta M Strigel
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA
| | - Amy M Fowler
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI, 53792-3252, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, WI, 53792, USA
| |
Collapse
|
5
|
Power JW, Dempsey PJ, Yates A, Fenlon H, Mulsow J, Shields C, Cronin CG. Peritoneal malignancy: anatomy, pathophysiology and an update on modern day imaging. Br J Radiol 2022; 95:20210217. [PMID: 34826229 PMCID: PMC9153709 DOI: 10.1259/bjr.20210217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With increasing subspecialised experience in radical cytoreductive surgery and intra-abdominal chemotherapy for peritoneal malignancy, outcomes have improved significantly in selected patients. The surgery and the treatment regimens are radical and therefore correct patient selection is critical. The radiologist plays a central role in this process by estimating, as precisely as possible, the pre-treatment disease burden. Because of the nature of the disease process, accurate staging is not an easy task. Tumour deposits may be very small and in locations where they are very difficult to detect. It must be acknowledged that no form of modern day imaging has the capability of detecting the smallest peritoneal nodules, which may only be visible to direct inspection or histopathological evaluation. Nonetheless, it behoves the radiologist to be as exact and precise as possible in the reporting of this disease process. This is both to select patients who are likely to benefit from radical treatment, and just as importantly, to identify patients who are unlikely to achieve adequate cytoreductive outcomes. In this review, we outline the patterns of spread of disease and the anatomic basis for this, as well as the essential aspects of reporting abdominal studies in this patient group. We provide an evidence-based update on the relative strengths and limitations of our available multimodality imaging techniques namely CT, MRI and positron emission tomography/CT.
Collapse
Affiliation(s)
- Jack W Power
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Philip J Dempsey
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Andrew Yates
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Helen Fenlon
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Conor Shields
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Carmel G Cronin
- University College Dublin (UCD) School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Tanaka A, Sekine T, Ter Voert EEGW, Zeimpekis KG, Delso G, de Galiza Barbosa F, Warnock G, Kumita SI, Veit Haibach P, Huellner M. Reproducibility of Standardized Uptake Values Including Volume Metrics Between TOF-PET-MR and TOF-PET-CT. Front Med (Lausanne) 2022; 9:796085. [PMID: 35308500 PMCID: PMC8924656 DOI: 10.3389/fmed.2022.796085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the reproducibility of tracer uptake measurements, including volume metrics, such as metabolic tumor volume (MTV) and tumor lesion glycolysis (TLG) obtained by TOF-PET-CT and TOF-PET-MR. Materials and Methods Eighty consecutive patients with different oncologic diagnoses underwent TOF-PET-CT (Discovery 690; GE Healthcare) and TOF-PET-MR (SIGNA PET-MR; GE Healthcare) on the same day with single dose−18F-FDG injection. The scan order, PET-CT following or followed by PET-MR, was randomly assigned. A spherical volume of interest (VOI) of 30 mm was placed on the liver in accordance with the PERCIST criteria. For liver, the maximum and mean standard uptake value for body weight (SUV) and lean body mass (SUL) were obtained. For tumor delineation, VOI with a threshold of 40 and 50% of SUVmax was used (VOI40 and VOI50). The SUVmax, SUVmean, SUVpeak, MTV and TLG were calculated. The measurements were compared between the two scanners. Results In total, 80 tumor lesions from 35 patients were evaluated. There was no statistical difference observed in liver regions, whereas in tumor lesions, SUVmax, SUV mean, and SUVpeak of PET-MR were significantly underestimated (p < 0.001) in both VOI40 and VOI50. Among volume metrics, there was no statistical difference observed except TLG on VOI50 (p = 0.03). Correlation between PET-CT and PET-MR of each metrics were calculated. There was a moderate correlation of the liver SUV and SUL metrics (r = 0.63–0.78). In tumor lesions, SUVmax and SUVmean had a stronger correlation with underestimation in PET-MR on VOI 40 (SUVmax and SUVmean; r = 0.92 and 0.91 with slope = 0.71 and 0.72, respectively). In the evaluation of MTV and TLG, the stronger correlations were observed both on VOI40 (MTV and TLG; r = 0.75 and 0.92) and VOI50 (MTV and TLG; r = 0.88 and 0.95) between PET-CT and PET-MR. Conclusion PET metrics on TOF-PET-MR showed a good correlation with that of TOF-PET-CT. SUVmax and SUVpeak of tumor lesions were underestimated by 16% on PET-MRI. MTV with % threshold can be regarded as identical volumetric markers for both TOF-PET-CT and TOF-PET-MR.
Collapse
Affiliation(s)
- Aruki Tanaka
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan.,Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan.,Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Edwin E G W Ter Voert
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Konstantinos G Zeimpekis
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Felipe de Galiza Barbosa
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Geoffrey Warnock
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,PMOD Technologies Ltd., Zurich, Switzerland
| | | | - Patrick Veit Haibach
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Martin Huellner
- Departments of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
8
|
Currie GM, Leon JL, Nevo E, Kamvosoulis PV. PET/MR Part 4: Clinical Applications of PET/MRI. J Nucl Med Technol 2021; 50:jnmt.121.263288. [PMID: 34872917 DOI: 10.2967/jnmt.121.263288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Position emission tomography (PET) and magnetic resonance imaging (MRI) as a hybrid modality provides novel imaging opportunities. While there are a very broad array of pathologies that could benefit from PET/MRI, there is only a narrow range of applications where benefit over standard care justifies the higher resource utilization and, in particular, offers a net positive trade-off over PET/CT. This benefit is generally associated with the omission of CT and the associated radiation dose from the patient workup. This manuscript provides a summary of the generally accepted clinical applications of PET/MRI in both adult and pediatric populations. While there are a number of potential applications and certainly exciting research that may expand applications in the future, the purpose of this paper was to focus on current, mainstream applications. This is the final manuscript in a four-part integrated series sponsored by the SNMMI-TS PET/MR Task Force in conjunction with the SNMMI-TS Publication Committee.
Collapse
Affiliation(s)
| | | | - Elad Nevo
- Lucile Packard Children's Hospital, United States
| | | |
Collapse
|
9
|
Abstract
A decade of PET/MRI clinical imaging has passed and many of the pitfalls are similar to those on earlier studies. However, techniques to overcome them have emerged and continue to develop. Although clinically significant lung nodules are demonstrable, smaller nodules may be detected using ultrashort/zero echo-time (TE) lung MRI. Fast reconstruction ultrashort TE sequences have also been used to achieve high-resolution lung MRI even with free-breathing. The introduction and improvement of time-of-flight scanners and increasing the axial length of the PET detector arrays have more than doubled the sensitivity of the PET part of the system. MRI for attenuation correction has provided many potential pitfalls, including misclassification of tissue classes based on MRI information for attenuation correction. Although the use of short echo times have helped to address these pitfalls, one of the most exciting developments has been the use of deep learning algorithms and computational neural networks to rapidly provide soft tissue, fat, bone and air information for the attenuation correction as a supplement to the attenuation correction information from fat-water imaging. Challenges with motion correction, particularly respiratory and cardiac remain but are being addressed with respiratory monitors and using PET data. In order to address truncation artefacts, the system manufacturers have developed methods to extend the MR field-of-view for the purpose of the attenuation and scatter corrections. General pitfalls like stitching of body sections for individual studies, optimum delivery of images for viewing and reporting, and resource implications for the sheer volume of data generated remain Methods to overcome these pitfalls serve as a strong foundation for the future of PET/MRI. Advances in the underlying technology with significant evolution in hard-ware and software and the exiting developments in use of deep learning algorithms and computational neural networks will drive the next decade of PET/MRI imaging.
Collapse
Affiliation(s)
- Asim Afaq
- University of Iowa Carver College of Medicine, Iowa City; Institute of Nuclear Medicine, UCL/ UCLH London, UK
| | | | | | - Simon Wan
- Institute of Nuclear Medicine, UCL/ UCLH London, UK
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Patrick Veit Haibach
- Toronto Joint Dept. Medical Imaging, University Health Network, Sinai Health System, Women's College University of Toronto, Canada
| | | |
Collapse
|
10
|
Currie GM, Kamvosoulis P, Bushong S. PET/MRI, Part 2: Technologic Principles. J Nucl Med Technol 2021; 49:217-225. [PMID: 33722925 DOI: 10.2967/jnmt.120.261862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
The challenges of hybridizing PET and MRI as a simultaneous modality have been largely overcome in recent times. PET hybridized with MRI has seen the emergence of PET/MRI systems in the clinical setting, and with it comes a responsibility to adapt appropriate facility design, safety practices, protocols and procedures, and clinical opportunity. This article provides an insight into the considerations and challenges associated with PET/MR technology. Given that the nature of PET is well established among the readership of this journal, the article provides an introduction to the foundations of MRI instrumentation and emphasis on specific technologic aspects of PET/MR systems. This article is the second in a 4-part integrated series sponsored by the PET/MR and Publication Committees of the Society of Nuclear Medicine and Molecular Imaging-Technologist Section, building on the previous article (part 1), which was on establishing a facility. In subsequent parts, PET/MRI will be explored on the basis of protocols and procedures (part 3) and applications and clinical cases (part 4).
Collapse
Affiliation(s)
- Geoffrey M Currie
- School of Dentistry and Health Science, Charles Sturt University, Wagga Wagga, Australia; .,Department of Radiology, Baylor College of Medicine, Houston, Texas; and
| | - Peter Kamvosoulis
- Magnetic Resonance Department, New York-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Stewart Bushong
- Department of Radiology, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
11
|
Gassert FG, Rübenthaler J, Cyran CC, Rink JS, Schwarze V, Luitjens J, Gassert FT, Makowski MR, Schoenberg SO, Mayerhoefer ME, Tamandl D, Froelich MF. 18F FDG PET/MRI with hepatocyte-specific contrast agent for M staging of rectal cancer: a primary economic evaluation. Eur J Nucl Med Mol Imaging 2021; 48:3268-3276. [PMID: 33686457 PMCID: PMC8426298 DOI: 10.1007/s00259-021-05193-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Purpose Rectal cancer is one of the most frequent causes of cancer-related morbidity and mortality in the world. Correct identification of the TNM state in primary staging of rectal cancer has critical implications on patient management. Initial evaluations revealed a high sensitivity and specificity for whole-body PET/MRI in the detection of metastases allowing for metastasis-directed therapy regimens. Nevertheless, its cost-effectiveness compared with that of standard-of-care imaging (SCI) using pelvic MRI + chest and abdominopelvic CT is yet to be investigated. Therefore, the aim of this study was to analyze the cost-effectiveness of whole-body 18F FDG PET/MRI as an alternative imaging method to standard diagnostic workup for initial staging of rectal cancer. Methods For estimation of quality-adjusted life years (QALYs) and lifetime costs of diagnostic modalities, a decision model including whole-body 18F FDG PET/MRI with a hepatocyte-specific contrast agent and pelvic MRI + chest and abdominopelvic CT was created based on Markov simulations. For obtaining model input parameters, review of recent literature was performed. Willingness to pay (WTP) was set to $100,000/QALY. Deterministic sensitivity analysis of diagnostic parameters and costs was applied, and probabilistic sensitivity was determined using Monte Carlo modeling. Results In the base-case scenario, the strategy whole-body 18F FDG PET/MRI resulted in total costs of $52,186 whereas total costs of SCI were at $51,672. Whole-body 18F FDG PET/MRI resulted in an expected effectiveness of 3.542 QALYs versus 3.535 QALYs for SCI. This resulted in an incremental cost-effectiveness ratio of $70,291 per QALY for PET/MRI. Thus, from an economic point of view, whole-body 18F FDG PET/MRI was identified as an adequate diagnostic alternative to SCI with high robustness of results to variation of input parameters. Conclusion Based on the results of the analysis, use of whole-body 18F FDG PET/MRI was identified as a feasible diagnostic strategy for initial staging of rectal cancer from a cost-effectiveness perspective.
Collapse
Affiliation(s)
- Felix G Gassert
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Johannes Rübenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Johann S Rink
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Vincent Schwarze
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Johanna Luitjens
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Florian T Gassert
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York City, NY, USA
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
12
|
Massa HA, Johnson JM, McMillan AB. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs. Phys Med Biol 2020; 65:23NT03. [PMID: 33120371 DOI: 10.1088/1361-6560/abc5cb] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There has been substantial interest in developing techniques for synthesizing CT-like images from MRI inputs, with important applications in simultaneous PET/MR and radiotherapy planning. Deep learning has recently shown great potential for solving this problem. The goal of this research was to investigate the capability of four common clinical MRI sequences (T1-weighted gradient-echo [T1], T2-weighted fat-suppressed fast spin-echo [T2-FatSat], post-contrast T1-weighted gradient-echo [T1-Post], and fast spin-echo T2-weighted fluid-attenuated inversion recovery [CUBE-FLAIR]) as inputs into a deep CT synthesis pipeline. Data were obtained retrospectively in 92 subjects who had undergone an MRI and CT scan on the same day. The patient's MR and CT scans were registered to one another using affine registration. The deep learning model was a convolutional neural network encoder-decoder with skip connections similar to the U-net architecture and Inception V3 inspired blocks instead of sequential convolution blocks. After training with 150 epochs and a batch size of 6, the model was evaluated using structural similarity index (SSIM), peak SNR (PSNR), mean absolute error (MAE), and dice coefficient. We found that feasible results were attainable for each image type, and no single image type was superior for all analyses. The MAE (in HU) of the resulting synthesized CT in the whole brain was 51.236 ± 4.504 for CUBE-FLAIR, 45.432 ± 8.517 for T1, 44.558 ± 7.478 for T1-Post, and 45.721 ± 8.7767 for T2, showing not only feasible, but also very compelling results on clinical images. Deep learning-based synthesis of CT images from MRI is possible with a wide range of inputs, suggesting that viable images can be created from a wide range of clinical input types.
Collapse
Affiliation(s)
- Haley A Massa
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, United States of America. Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
13
|
Ando T, Kemp B, Warnock G, Sekine T, Kaushik S, Wiesinger F, Delso G. Zero Echo Time MRAC on FDG-PET/MR Maintains Diagnostic Accuracy for Alzheimer's Disease; A Simulation Study Combining ADNI-Data. Front Neurosci 2020; 14:569706. [PMID: 33324141 PMCID: PMC7725704 DOI: 10.3389/fnins.2020.569706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Aim Attenuation correction using zero-echo time (ZTE) - magnetic resonance imaging (MRI) (ZTE-MRAC) has become one of the standard methods for brain-positron emission tomography (PET) on commercial PET/MR scanners. Although the accuracy of the net tracer-uptake quantification based on ZTE-MRAC has been validated, that of the diagnosis for dementia has not yet been clarified, especially in terms of automated statistical analysis. The aim of this study was to clarify the impact of ZTE-MRAC on the diagnosis of Alzheimer's disease (AD) by performing simulation study. Methods We recruited 27 subjects, who underwent both PET/computed tomography (CT) and PET/MR (GE SIGNA) examinations. Additionally, we extracted 107 subjects from the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset. From the PET raw data acquired on PET/MR, three FDG-PET series were generated, using two vendor-provided MRAC methods (ZTE and Atlas) and CT-based AC. Following spatial normalization to Montreal Neurological Institute (MNI) space, we calculated each patient's specific error maps, which correspond to the difference between the PET image corrected using the CTAC method and the PET images corrected using the MRAC methods. To simulate PET maps as if ADNI data had been corrected using MRAC methods, we multiplied each of these 27 error maps with each of the 107 ADNI cases in MNI space. To evaluate the probability of AD in each resulting image, we calculated a cumulative t-value using a fully automated method which had been validated not only in the original ADNI dataset but several multi-center studies. In the method, PET score = 1 is the 95% prediction limit of AD. PET score and diagnostic accuracy for the discrimination of AD were evaluated in simulated images using the original ADNI dataset as reference. Results Positron emission tomography score was slightly underestimated both in ZTE and Atlas group compared with reference CTAC (-0.0796 ± 0.0938 vs. -0.0784 ± 0.1724). The absolute error of PET score was lower in ZTE than Atlas group (0.098 ± 0.075 vs. 0.145 ± 0.122, p < 0.001). A higher correlation to the original PET score was observed in ZTE vs. Atlas group (R 2: 0.982 vs. 0.961). The accuracy for the discrimination of AD patients from normal control was maintained in ZTE and Atlas compared to CTAC (ZTE vs. Atlas. vs. original; 82.5% vs. 82.1% vs. 83.2% (CI 81.8-84.5%), respectively). Conclusion For FDG-PET images on PET/MR, attenuation correction using ZTE-MRI had superior accuracy to an atlas-based method in classification for dementia. ZTE maintains the diagnostic accuracy for AD.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Bradley Kemp
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Geoffrey Warnock
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,PMOD Technologies Ltd., Zurich, Switzerland
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School, Tokyo, Japan.,Department of Radiology, Nippon Medical School Musashi-Kosugi Hospital, Kawasaki, Japan.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
14
|
Annunziata S, Bauckneht M, Albano D, Argiroffi G, Calabrò D, Abenavoli E, Linguanti F, Laudicella R. Impact of the COVID-19 pandemic in nuclear medicine departments: preliminary report of the first international survey. Eur J Nucl Med Mol Imaging 2020; 47:2090-2099. [PMID: 32462398 PMCID: PMC7251803 DOI: 10.1007/s00259-020-04874-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Coronavirus disease-19 (COVID-19) pandemic is challenging the availability of hospital resources worldwide. The Young Group of the Italian Association of Nuclear Medicine (AIMN) developed the first international survey to evaluate the impact of COVID-19 in nuclear medicine (NM). The aim of this study was to perform a preliminary report of the ongoing survey. METHODS A questionnaire of thirty questions was prepared for all NM professionals addressing three main issues: (1) new scheduling praxes for NM diagnostic and therapeutic procedures, (2) assistance of patients with diagnosed or suspected COVID-19, and (3) prevention of COVID-19 spreading in the departments. An invitation to the survey was sent to the corresponding authors of NM scientific papers indexed in SCOPUS in 2019. Personal data were analysed per individual responder. Organisation data were evaluated per single department. RESULTS Two-hundred and ninety-six individual responders from 220 departments were evaluated. Most of the responders were from Europe (199/296, 67%). Approximately, all departments already changed their scheduling praxes due to the pandemic (213/220, 97%). In most departments, scheduled diagnostic and therapeutic procedures were allowed but quantitatively reduced (112/220, 51%). A significant reduction of diagnostic and therapeutic procedures (more than 20%) affected 198/220 (90%) and 158/220 (72%) departments, respectively. Incidental COVID-19 signs in NM exams occurred in 106/220 departments (48%). Few departments were closed or shifted to assist patients with COVID-19 (36/220, 16%). Most of the responders thought that pandemic would not permanently change the work of NM departments in the future (189/296, 64%). CONCLUSIONS According to this preliminary report of the first international survey, COVID-19 heavily impacted NM departments and professionals. New praxes for NM procedures, assistance, and prevention of COVID-19 have been applied during the pandemic.
Collapse
Affiliation(s)
- Salvatore Annunziata
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Domenico Albano
- Department of Nuclear Medicine, University of Brescia and Spedali Civili Brescia, Brescia, Italy
| | | | - Diletta Calabrò
- Nuclear Medicine, DIMES University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
| |
Collapse
|
15
|
PET/MRI in breast cancer patients: Added value, barriers to implementation, and solutions. Clin Imaging 2020; 68:24-28. [PMID: 32562923 DOI: 10.1016/j.clinimag.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
|
16
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
17
|
Créhange G, Soussan M, Gensanne D, Decazes P, Thariat J, Thureau S. Interest of positron-emission tomography and magnetic resonance imaging for radiotherapy planning and control. Cancer Radiother 2020; 24:398-402. [PMID: 32247688 DOI: 10.1016/j.canrad.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
Computed tomography (CT) in the treatment position is currently indispensable for planning radiation therapy. Other imaging modalities, such as magnetic resonance imaging (MRI) and positron emission-tomography (PET), can be used to improve the definition of the tumour and/or healthy tissue but also to provide functional data of the target volume. Accurate image registration is essential for treatment planning, so MRI and PET scans should be registered at the planning CT scan. Hybrid PET/MRI scans with a hard plane can be used but pose the problem of the absence of CT scans. Finally, techniques for moving the patient on a rigid air-cushioned table allow PET/CT/MRI scans to be performed in the treatment position while limiting the patient's movements exist. At the same time, the advent of MRI-linear accelerator systems allows to redefine image-guided radiotherapy and to propose treatments with daily recalculation of the dose. The place of PET during treatment remains more confidential and currently only in research and prototype status. The same development of imaging during radiotherapy is underway in proton therapy.
Collapse
Affiliation(s)
- G Créhange
- Département de radiothérapie oncologique, institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - M Soussan
- Service de médecine nucléaire, hôpital Avicenne, AP-HP, hôpitaux universitaires, 125, rue de Stalingrad, 93000 Bobigny, France
| | - D Gensanne
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France; Quantif-Litis EA4108, université de Rouen Normandie, rue d'Amiens, 76000 Rouen, France
| | - P Decazes
- Quantif-Litis EA4108, université de Rouen Normandie, rue d'Amiens, 76000 Rouen, France; Département d'imagerie-médecine nucléaire, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - J Thariat
- Département d'onco-radiothérapie, centre François-Baclesse, 3, avenue General-Harris, 14000 Caen, France; Association Advance Resource Centre for Hadrontherapy in Europe (Archade), 3, avenue General-Harris, 14000 Caen, France; Université de Caen Normandie (Unicaen), 3, avenue General-Harris, 14000 Caen, France; Laboratoire de physique corpusculaire, Institut national de physique nucléaire et de physique des particules (IN2P3), 6, boulevard Maréchal-Juin, 14000 Caen, France
| | - S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France; Quantif-Litis EA4108, université de Rouen Normandie, rue d'Amiens, 76000 Rouen, France; Département d'imagerie-médecine nucléaire, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France; Laboratoire de physique corpusculaire, Institut national de physique nucléaire et de physique des particules (IN2P3), 6, boulevard Maréchal-Juin, 14000 Caen, France.
| |
Collapse
|
18
|
Thientunyakit T, Sethanandha C, Muangpaisan W, Chawalparit O, Arunrungvichian K, Siriprapa T, Vichianin Y, Kamal S, Suppasilp C, Thongpraparn T, Chanachai R, Gelovani JG. Relationships between amyloid levels, glucose metabolism, morphologic changes in the brain and clinical status of patients with Alzheimer's disease. Ann Nucl Med 2020; 34:337-348. [PMID: 32152925 DOI: 10.1007/s12149-020-01453-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/22/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The current study was conducted to improve the understanding of relationships between regional cortical amyloid load, glucose metabolism, cortical morphology (volume), and severity of clinical symptoms in patients with AD, MCI, and age-matched controls. METHODS To objectivize the radiological evaluation of patients with suspected AD, head-to-head multi-modality imaging studies were conducted using MRI and PET/CT with [18F]FDG and [18F]AV45 for visualization and quantitation of brain morphology, glucose metabolism, and amyloid levels, respectively. A total of 84 subjects was studied, including 33 patients with AD, 31 patients with MCI, and 20 age-matched healthy controls (HC). A new quantitative index was calculated as a ratio of regional SUV of [18F]AV45 (normalized to cerebellar cortex) over the corresponding regional SUV of [18F]FDG, divided by the corresponding regional volume, measured from the co-registered MRI and normalized to the normal age-matched control group (AV45/FDG/NVol index). Relationships between clinical scores (TMSE, ADAS) and AV45/FDG/NVol indices for different structures of the brain in study groups were determined using linear regression analyses. RESULTS A significant direct linear correlation was observed between the AV45/FDG/NVol index and ADAS-Cog test score and an inverse correlation with TMSE score at baseline and with the degree of changes in ADAS and TMSE scores assessed one year later (disease progression). The observed correlations between AV45/FDG/NVol index and clinical scores were higher than those with MRI-based cortical volumes, FDG SUV, or cerebellum-normalized AV45 SUV alone. CONCLUSIONS Current study demonstrated that AV45/FDG/NVol index mapping of the brain is a novel quantitative molecular imaging biomarker that correlates with clinical neurocognitive status and may facilitate more accurate diagnosis, staging, and prognosis of AD. Additional larger scale clinical studies are required to further evaluate the efficacy of this new quantitative index as a diagnostic and prognostic biomarker of AD as well as for the evaluation of safety and efficacy of novel agents undergoing clinical trials for therapy of AD.
Collapse
Affiliation(s)
- Tanyaluck Thientunyakit
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand.
| | - Chakmeedaj Sethanandha
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Weerasak Muangpaisan
- Department of Preventive and Social Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Orasa Chawalparit
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Kuntarat Arunrungvichian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Tossaporn Siriprapa
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Yudthaphon Vichianin
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Swatabdi Kamal
- Departments of Neurosurgery, Oncology, OBGYN, Biomedical Engineering, School of Medicine, College of Engineering, and Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Chaiyawat Suppasilp
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Thonnapong Thongpraparn
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Rujaporn Chanachai
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Juri G Gelovani
- Department of Radiology, Her Majesty's Cardiac Center, Division of Nuclear Medicine, Faculty of Medicine, Siriraj Hospital, Building Fl.12th, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand.,Departments of Neurosurgery, Oncology, OBGYN, Biomedical Engineering, School of Medicine, College of Engineering, and Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Hensbergen A, van Willigen DM, van Beurden F, van Leeuwen PJ, Buckle T, Schottelius M, Maurer T, Wester HJ, van Leeuwen FWB. Image-Guided Surgery: Are We Getting the Most Out of Small-Molecule Prostate-Specific-Membrane-Antigen-Targeted Tracers? Bioconjug Chem 2020; 31:375-395. [PMID: 31855410 PMCID: PMC7033908 DOI: 10.1021/acs.bioconjchem.9b00758] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Expressed on virtually all prostate cancers and their metastases, the transmembrane protein prostate-specific membrane antigen (PSMA) provides a valuable target for the imaging of prostate cancer. Not only does PSMA provide a target for noninvasive diagnostic imaging, e.g., PSMA-positron emission tomography (PSMA-PET), it can also be used to guide surgical resections of PSMA-positive lesions. The latter characteristic has led to the development of a plethora of PSMA-targeted tracers, i.e., radiolabeled, fluorescent, or hybrid. With image-guided surgery applications in mind, this review discusses these compounds based on clinical need. Here, the focus is on the chemical aspects (e.g., imaging label, spacer moiety, and targeting vector) and their impact on in vitro and in vivo tracer characteristics (e.g., affinity, tumor uptake, and clearance pattern).
Collapse
Affiliation(s)
- Albertus
Wijnand Hensbergen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Florian van Beurden
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Pim J. van Leeuwen
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational
Radiopharmaceutical Sciences, Department of Nuclear Medicine, Centre
Hospitalier Universitaire Vaudois (CHUV) and Department of Oncology, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Tobias Maurer
- Department
of Urology and Martini-Klinik, Universitätsklinikum
Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hans-Jürgen Wester
- Pharmazeutische
Radiochemie, Technische Universität
München, 85748 Garching, Germany
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
20
|
Mada MO, Hindmarch P, Stirling J, Davies J, Brian D, Barnes A, Hammers A, Gulliver N, Herholz K, O’Brien J, Taylor JP. Competencies and training of radiographers and technologists for PET/MR imaging - a study from the UK MR-PET network. Eur J Hybrid Imaging 2020; 4:1. [PMID: 32025619 PMCID: PMC6976550 DOI: 10.1186/s41824-019-0070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After the success of PET/CT as a clinical diagnostic tool, the introduction of PET/MRI is a natural development aimed at further improving combined diagnostic imaging and reduced ionising radiation dose for half-body imaging. As with PET and CT, the combination of PET and MRI presents a series of issues that need to be addressed regarding workforce training and education. At present, there is a lack of agreement over the competencies, training requirements and educational pathways needed for PET/MRI operation. In the UK, following the establishment of the MR-PET imaging network, a task force was created to investigate the status of the workforce training, identify gaps and make recommendations regarding staff training. To do this, we ran a national survey on the status of the workforce training and the local practices across the UK's seven PET/MRI sites, reviewed the literature, and convened a panel of experts, to assess all the evidence and make recommendations regarding PET/MRI competencies and training of nuclear medicine technologists and radiographers. RESULTS There is limited literature available specifically on competencies and training for technologists and radiographers. The recommendations on the topic needed revisiting and adapting to the UK MR-PET network. The online survey confirmed the need for developing PET/MRI competencies and training pathways. Local organisational structures and practices were shared across the seven sites, based on models derived from experience outside the UK. The panel of experts agreed on the need for PET/MRI competencies and training strategies. Professional organisations started collaborative discussions with partners from both Nuclear Medicine and Radiography to set training priorities. Multidisciplinary collaboration and partnership were suggested as a key to a successful implementation of competencies and training. CONCLUSIONS The report identified the need for establishing competencies for the PET/MRI workforce, particularly for technologists and radiographers. It also helped defining these competencies as well as identifying the demand for bespoke training and the development of local and national courses to be implemented to fulfil this new training need.
Collapse
Affiliation(s)
- Marius Ovidiu Mada
- University of Cambridge, Wolfson Brain Imaging Centre, Box 65, Adrian Way, Cambridge, CB20QQ UK
| | - Paula Hindmarch
- Positron Emission Tomography Centre, Newcastle University, Building 15, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 6BE UK
| | - James Stirling
- King’s College London, PET Centre, 1st Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - James Davies
- Invicro, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - David Brian
- University of Edinburgh, Edinburgh Imaging Facility QMRI, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Anna Barnes
- UCL Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU UK
| | - Alexander Hammers
- King’s College London, PET Centre, 1st Floor Lambeth Wing, St Thomas’ Hospital, London, SE1 7EH UK
| | - Nick Gulliver
- Department of Nuclear Medicine & PET-CT, King’s College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS UK
| | - Karl Herholz
- University of Manchester, Wolfson Molecular Imaging Centr, 27 Palantine Road, Manchester, M20 3LJ UK
| | - John O’Brien
- University Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Box 189, Adrian Way, Cambridge, CB20QQ UK
| | - John-Paul Taylor
- Newcastle University, Institute of Neuroscience, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| |
Collapse
|
21
|
Saravana-Bawan B, Koumna S, Wieler M, McEwan A, McMullen T. Comparison and clinical implementation of quality of life tools in patients with small bowel neuroendocrine tumors treated with Lu-DOTA-TATE PRRT. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2019. [DOI: 10.2217/ije-2019-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study assesses if clinically developed quality of life (QoL) tools are as effective in small bowel neuroendocrine tumors (NETs) as NET-specific research questionnaires. Methods: QoL in patients with small bowel NETs treated with Lu-DOTA-TATE was assessed with The European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, QLQ-GI.NET21 and Edmonton Symptom Assessment System Revised (ESAS-r) at baseline and after four treatments. Repeated measures ANOVA was performed. Results: Both EORTC and ESAS-r demonstrated maintained overall QoL. EORTC demonstrated statistically and clinically significant improvement in insomnia, diarrhea, gastrointestinal, endocrine symptoms and social function. ESAS-r demonstrated statistically and clinically significant improvement in overall total symptom distress score. Conclusion: ESAS-r is quick and easy to interpret. It is not as sensitive to individual symptoms but does track overall function. EORTC assessment is more complex, but better reflects QoL for NET specific symptoms.
Collapse
Affiliation(s)
| | - Stella Koumna
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Marguerite Wieler
- Department of Physical Therapy, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Alexander McEwan
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
22
|
Laurent C, Ricard L, Fain O, Buvat I, Adedjouma A, Soussan M, Mekinian A. PET/MRI in large-vessel vasculitis: clinical value for diagnosis and assessment of disease activity. Sci Rep 2019; 9:12388. [PMID: 31455785 PMCID: PMC6711961 DOI: 10.1038/s41598-019-48709-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Diagnosis of large vessel vasculitis (LVV) and evaluation of its inflammatory activity can be challenging. Our aim was to investigate the value of hybrid positron-emission tomography/magnetic resonance imaging (PET/MRI) in LVV. All consecutive patients with LVV from the Department of Internal Medicine who underwent PET/MRI were included. Three PET/MRI patterns were defined: (i) "inflammatory," with positive PET (>liver uptake) and abnormal MRI (stenosis and/or wall thickening); (ii) "fibrous", negative PET (≤liver uptake) and abnormal MRI; and (iii) "normal". Thirteen patients (10 female; median age: 67-years [range: 23-87]) underwent 18 PET/MRI scans. PET/MRI was performed at diagnosis (n = 4), at relapse (n = 7), or during remission (n = 7). Among the 18 scans, eight (44%) showed an inflammatory pattern and three (17%) a fibrous pattern; the other seven were normal. The distribution of the three patterns did not differ between patients with Takayasu arteritis (TA, n = 10 scans) and those with giant cell arteritis (GCA, n = 8 scans). PET/MRI findings were normal in 2/10 (20%) TA scans vs. 5/8 (62%) GCA scans (p = 0.3). Median SUVmax was 4.7 [2.1-8.6] vs. 2 [1.8-2.6] in patients with active disease vs. remission, respectively (p = 0.003). PET/MRI is a new hybrid imaging modality allowing comprehensive and multimodal analysis of vascular wall inflammation and the vascular lumen. This technique offers promising perspectives for the diagnosis and monitoring of LVV.
Collapse
Affiliation(s)
- Charlotte Laurent
- AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75012, Paris, France
| | - Laure Ricard
- AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75012, Paris, France
| | - Olivier Fain
- AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75012, Paris, France
| | - Irene Buvat
- IMIV, CEA, INSERM, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France
| | - Amir Adedjouma
- AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75012, Paris, France
| | - Michael Soussan
- IMIV, CEA, INSERM, Université Paris Sud, CNRS, Université Paris Saclay, Orsay, France
- APHP, Hôpital Avicenne, Service de Médecine Nucléaire, Paris 13 University, Bobigny, France
| | - Arsène Mekinian
- AP-HP, Sorbonne Université, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), F-75012, Paris, France.
| |
Collapse
|
23
|
Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, Berzaczy D, Raderer M, Preusser M, Hochmair M, Kiesewetter B, Scheuba C, Ba-Ssalamah A, Karanikas G, Kesselbacher J, Prager G, Dieckmann K, Polterauer S, Weber M, Rausch I, Brauner B, Eidherr H, Wadsak W, Haug AR. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging 2019; 47:51-60. [PMID: 31410538 PMCID: PMC6885019 DOI: 10.1007/s00259-019-04452-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022]
Abstract
Purpose PET/MRI has recently been introduced into clinical practice. We prospectively investigated the clinical impact of PET/MRI compared with PET/CT, in a mixed population of cancer patients, and performed an economic evaluation of PET/MRI. Methods Cancer patients referred for routine staging or follow-up by PET/CT underwent consecutive PET/CT and PET/MRI, using single applications of [18F]FDG, [68Ga]Ga-DOTANOC, or [18F]FDOPA, depending on tumor histology. PET/MRI and PET/CT were rated separately, and lesions were assessed per anatomic region; based on regions, per-examination and per-patient accuracies were determined. A simulated, multidisciplinary team meeting served as reference standard and determined whether differences between PET/CT and PET/MRI affected patient management. The McNemar tests were used to compare accuracies, and incremental cost-effectiveness ratios (ICERs) for PET/MRI were calculated. Results Two hundred sixty-three patients (330 same-day PET/CT and PET/MRI examinations) were included. PET/MRI was accurate in 319/330 examinations and PET/CT in 277/330 examinations; the respective accuracies of 97.3% and 83.9% differed significantly (P < 0.001). The additional findings on PET/MRI—mainly liver and brain metastases—had implications for patient management in 21/263 patients (8.0%). The per-examination cost was 596.97 EUR for PET/MRI and 405.95 EUR for PET/CT. ICERs for PET/MRI were 14.26 EUR per percent of diagnostic accuracy and 23.88 EUR per percent of correctly managed patients. Conclusions PET/MRI enables more appropriate management than PET/CT in a nonnegligible fraction of cancer patients. Since the per-examination cost is about 50% higher for PET/MRI than for PET/CT, a histology-based triage of patients to either PET/MRI or PET/CT may be meaningful.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York City, NY, USA.
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Beyer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine and Ludwig Boltzmann Institute for COPD and Respiratory Epidemiology, Otto Wagner Hospital, Vienna, Austria
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Scheuba
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Julia Kesselbacher
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gerald Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Bernhard Brauner
- Siemens Healthineers, Siemens Healthcare Diagnostics GmbH, Vienna, Austria
| | - Harald Eidherr
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine-CBmed, Graz, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Ropella-Panagis KM, Seiberlich N, Gulani V. Magnetic Resonance Fingerprinting: Implications and Opportunities for PET/MR. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:388-399. [PMID: 32864537 DOI: 10.1109/trpms.2019.2897425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic Resonance Imaging (MRI) can be used to assess anatomical structure, and its sensitivity to a variety of tissue properties enables superb contrast between tissues as well as the ability to characterize these tissues. However, despite vast potential for quantitative and functional evaluation, MRI is typically used qualitatively, in which the underlying tissue properties are not measured, and thus the brightness of each pixel is not quantitatively meaningful. Positron Emission Tomography (PET) is an inherently quantitative imaging modality that interrogates functional activity within a tissue, probed by a molecule of interest coupled with an appropriate tracer. These modalities can complement one another to provide clinical information regarding both structure and function, but there are still technical and practical hurdles in the way of the integrated use of both modalities. Recent advances in MRI have moved the field in an increasingly quantitative direction, which is complementary to PET, and could also potentially help solve some of the challenges in PET/MR. Magnetic Resonance Fingerprinting (MRF) is a recently described MRI-based technique which can efficiently and simultaneously quantitatively map several tissue properties in a single exam. Here, the basic principles behind the quantitative approach of MRF are laid out, and the potential implications for combined PET/MR are discussed.
Collapse
Affiliation(s)
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
25
|
Spuhler KD, Gardus J, Gao Y, DeLorenzo C, Parsey R, Huang C. Synthesis of Patient-Specific Transmission Data for PET Attenuation Correction for PET/MRI Neuroimaging Using a Convolutional Neural Network. J Nucl Med 2018; 60:555-560. [PMID: 30166355 DOI: 10.2967/jnumed.118.214320] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Karl D Spuhler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - John Gardus
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Yi Gao
- Health Science Center, Shenzhen University, Guangdong, China; and
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Ramin Parsey
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
- Department of Radiology, Stony Brook University Medical Center, Stony Brook, New York
| |
Collapse
|
26
|
Abstract
OBJECTIVE The purpose of this article is to provide an update on clinical PET/MRI, including current and developing clinical indications and technical developments. CONCLUSION PET/MRI is evolving rapidly, transitioning from a predominant research focus to exciting clinical practice. Key technical obstacles have been overcome, and further technical advances promise to herald significant advancements in image quality. Further optimization of protocols to address challenges posed by this hybrid modality will ensure the long-term success of PET/MRI.
Collapse
|
27
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
28
|
Wibmer AG, Hricak H, Ulaner GA, Weber W. Trends in oncologic hybrid imaging. Eur J Hybrid Imaging 2018; 2:1. [PMID: 29782605 PMCID: PMC5954767 DOI: 10.1186/s41824-017-0019-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022] Open
Abstract
Hybrid imaging plays a central role in the diagnosis and management of a wide range of malignancies at all stages. In this article, we review the most pertinent historical developments, emerging clinical applications of novel radiotracers and imaging technologies, and potential implications for training and practice. This includes an overview of novel tracers for prostate, breast, and neuroendocrine tumors, assessment of tumor heterogeneity, the concept of image-guided ‘biologically relevant dosing’, and theranostic applications. Recent technological advancements, including time-of-flight PET, PET/MRI, and ‘one-minute whole-body PET’, are also covered. Finally, we discuss how these rapidly evolving applications might affect current training curricula and how imaging-derived big data could be harnessed to the benefit of our patients.
Collapse
Affiliation(s)
- Andreas G Wibmer
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.,2Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Hedvig Hricak
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Gary A Ulaner
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.,2Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Wolfgang Weber
- 1Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA.,2Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
29
|
Esser L, Lengkeek NA, Moffat BA, Vu MN, Greguric I, Quinn JF, Davis TP, Whittaker MR. A tunable one-pot three-component synthesis of an125I and Gd-labelled star polymer nanoparticle for hybrid imaging with MRI and nuclear medicine. Polym Chem 2018. [DOI: 10.1039/c8py00621k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bimodal radioiodine/Gd labelled polymeric nanoparticles prepared using a versatile one-step three-component click reaction.
Collapse
Affiliation(s)
- Lars Esser
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Nigel A. Lengkeek
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | | | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Kirrawee DC
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| |
Collapse
|
30
|
Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 2017; 155:245-256. [DOI: 10.1016/j.neuroimage.2017.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023] Open
|