1
|
Lentzas A, Venekamp N, Beijnen JH, van Tellingen O. Development and validation of an LC-MS/MS method for simultaneous quantification of eight drugs in plasma and brain: Application in a pharmacokinetic study in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124308. [PMID: 39288576 DOI: 10.1016/j.jchromb.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
A selective and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantitation of a cassette of 8 drugs, including docetaxel, erlotinib, loperamide, riluzole, vemurafenib, verapamil, elacridar and tariquidar. Stable isotopically labeled compounds were available for use as internal standards for all compounds, except for tariquidar for which we used elacridar-d4. Sample pre-treatment involved liquid-liquid extraction using tert-butyl-methyl ether as this resulted in good recovery and low ion suppression. Chromatographic separation was achieved using a Zorbax Extend C18 analytical column and a linear gradient from 20 % to 95 % methanol in 0.1 % (v/v) formic acid in water. MS/MS detection using multiple reaction monitoring was done in positive ionization mode. We validated this assay for human and mouse plasma and mouse brain homogenates. The calibration curves were linear over a range 1-200 nM for each drug in the mix, except for tariquidar probably due to the lack of a stable isotope labeled analog. The intra-day and inter-day accuracies were within the 85-115 % range for all compounds at low, medium and high concentrations in the three different matrices. Similarly, the precision for all compounds at three different concentration levels ranged below 15 %, with the exception of tariquidar in mouse plasma and brain homogenate and riluzole in brain homogenate. Pilot studies have confirmed that the method is suitable for the analysis of mouse plasma samples and brain homogenates following cassette dosing of this mixture in mice.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99 3584 CG Utrecht, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Lentzas A, de Gooijer MC, Zuidema S, Meurs A, Çitirikkaya CH, Venekamp N, Beijnen JH, van Tellingen O. ATP-binding cassette transporter inhibitor potency and substrate drug affinity are critical determinants of successful drug delivery enhancement to the brain. Fluids Barriers CNS 2024; 21:62. [PMID: 39103921 DOI: 10.1186/s12987-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Pharmacotherapy for brain diseases is severely compromised by the blood-brain barrier (BBB). ABCB1 and ABCG2 are drug transporters that restrict drug entry into the brain and their inhibition can be used as a strategy to boost drug delivery and pharmacotherapy for brain diseases. METHODS We employed elacridar and tariquidar in mice to explore the conditions for effective inhibition at the BBB. Abcg2;Abcb1a/b knockout (KO), Abcb1a/b KO, Abcg2 KO and wild-type (WT) mice received a 3 h i.p. infusion of a cocktail of 8 typical substrate drugs in combination with elacridar or tariquidar at a range of doses. Abcg2;Abcb1a/b KO mice were used as the reference for complete inhibition, while single KO mice were used to assess the potency to inhibit the remaining transporter. Brain and plasma drug levels were measured by LC-MS/MS. RESULTS Complete inhibition of ABCB1 at the BBB is achieved when the elacridar plasma level reaches 1200 nM, whereas tariquidar requires at least 4000 nM. Inhibition of ABCG2 is more difficult. Elacridar inhibits ABCG2-mediated efflux of weak but not strong ABCG2 substrates. Strikingly, tariquidar does not enhance the brain uptake of any ABCG2-subtrate drug. Similarly, elacridar, but not tariquidar, was able to inhibit its own brain efflux in ABCG2-proficient mice. The plasma protein binding of elacridar and tariquidar was very high but similar in mouse and human plasma, facilitating the translation of mouse data to humans. CONCLUSIONS This work shows that elacridar is an effective pharmacokinetic-enhancer for the brain delivery of ABCB1 and weaker ABCG2 substrate drugs when a plasma concentration of 1200 nM is exceeded.
Collapse
Affiliation(s)
- Aristeidis Lentzas
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M1 3WE, UK
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Stefanie Zuidema
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Amber Meurs
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ceren H Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Nikkie Venekamp
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Room H3.010, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
4
|
Uceda-Castro R, Margarido AS, Song JY, de Gooijer MC, Messal HA, Chambers CR, Nobis M, Çitirikkaya CH, Hahn K, Seinstra D, Herrmann D, Timpson P, Wesseling P, van Tellingen O, Vennin C, van Rheenen J. BCRP drives intrinsic chemoresistance in chemotherapy-naïve breast cancer brain metastasis. SCIENCE ADVANCES 2023; 9:eabp9530. [PMID: 37851804 PMCID: PMC10584345 DOI: 10.1126/sciadv.abp9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mark C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ceren H. Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
5
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|
6
|
Ekman S, Cselényi Z, Varrone A, Jucaite A, Martin H, Schou M, Johnström P, Laus G, Lewensohn R, Brown AP, van der Aart J, Vishwanathan K, Farde L. Brain exposure of osimertinib in patients with epidermal growth factor receptor mutation non-small cell lung cancer and brain metastases: A positron emission tomography and magnetic resonance imaging study. Clin Transl Sci 2023. [PMID: 36808835 DOI: 10.1111/cts.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Brain metastases (BMs) are associated with poor prognosis in epidermal growth factor receptor mutation-positive (EGFRm) non-small cell lung cancer (NSCLC). Osimertinib is a third-generation, irreversible, EGFR-tyrosine kinase inhibitor that potently and selectively inhibits EGFR-sensitizing and T790M resistance mutations with efficacy in EGFRm NSCLC including central nervous system (CNS) metastases. The open-label phase I positron emission tomography (PET) and magnetic resonance imaging (MRI) study (ODIN-BM) assessed [11 C]osimertinib brain exposure and distribution in patients with EGFRm NSCLC and BMs. Three dynamic 90-min [11 C]osimertinib PET examinations were acquired together with metabolite-corrected arterial plasma input functions at: baseline, after first oral osimertinib 80 mg dose, and after greater than or equal to 21 days of osimertinib 80 mg q.d. treatment. Contrast-enhanced MRI was performed at screening and after 25-35 days of osimertinib 80 mg q.d.; treatment effect was assessed per CNS Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and per volumetric changes in total BM using a novel analysis approach. Four patients (aged 51-77 years) completed the study. At baseline, ~1.5% injected radioactivity reached the brain (IDmax[brain] ) 22 min (median, Tmax[brain] ) after injection. Total volume of distribution (VT ) in whole brain was numerically higher compared with the BM regions. After a single oral osimertinib 80 mg dose, there was no consistent decrease in VT in whole brain or BMs. After greater than or equal to 21 days' daily treatment, VT in whole brain and BMs were numerically higher versus baseline. MRI revealed 56%-95% reduction in total BMs volume after 25-35 days of osimertinib 80 mg q.d. treatment. The [11 C]osimertinib crossed the blood-brain and brain-tumor barriers and had a high, homogeneous brain distribution in patients with EGFRm NSCLC and BMs.
Collapse
Affiliation(s)
- Simon Ekman
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital/Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Aurelija Jucaite
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Heather Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Gianluca Laus
- Late Development Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Rolf Lewensohn
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital/Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew P Brown
- Late Development Oncology, R&D, AstraZeneca, Cambridge, UK
| | | | - Karthick Vishwanathan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, AstraZeneca, Waltham, Massachusetts, USA
| | - Lars Farde
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
7
|
Van De Stadt E, Yaqub M, Jahangir AA, Hendrikse H, Bahce I. Radiolabeled EGFR TKI as predictive imaging biomarkers in NSCLC patients – an overview. Front Oncol 2022; 12:900450. [PMID: 36313723 PMCID: PMC9597357 DOI: 10.3389/fonc.2022.900450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has one of the highest cancer-related mortality rates worldwide. In a subgroup of NSCLC, tumor growth is driven by epidermal growth factor receptors (EGFR) that harbor an activating mutation. These patients are best treated with EGFR tyrosine kinase inhibitors (EGFR TKI). Identifying the EGFR mutational status on a tumor biopsy or a liquid biopsy using tumor DNA sequencing techniques is the current approach to predict tumor response on EGFR TKI therapy. However, due to difficulty in reaching tumor sites, and varying inter- and intralesional tumor heterogeneity, biopsies are not always possible or representative of all tumor lesions, highlighting the need for alternative biomarkers that predict tumor response. Positron emission tomography (PET) studies using EGFR TKI-based tracers have shown that EGFR mutational status could be identified, and that tracer uptake could potentially be used as a biomarker for tumor response. However, despite their likely predictive and monitoring value, the EGFR TKI-PET biomarkers are not yet qualified to be used in the routine clinical practice. In this review, we will discuss the currently investigated EGFR-directed PET biomarkers, elaborate on the typical biomarker development process, and describe how the advances, challenges, and opportunities of EGFR PET biomarkers relate to this process on their way to qualification for routine clinical practice.
Collapse
Affiliation(s)
- Eveline Van De Stadt
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
- *Correspondence: Eveline Van De Stadt,
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - A. A. Jahangir
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Idris Bahce
- Department of Pulmonology, Amsterdam University Medical Centers (UMC), VU University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| |
Collapse
|
8
|
Högnäsbacka A, Poot AJ, Vugts DJ, van Dongen GAMS, Windhorst AD. The Development of Positron Emission Tomography Tracers for In Vivo Targeting the Kinase Domain of the Epidermal Growth Factor Receptor. Pharmaceuticals (Basel) 2022; 15:ph15040450. [PMID: 35455447 PMCID: PMC9033078 DOI: 10.3390/ph15040450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple small molecule PET tracers have been developed for the imaging of the epidermal growth factor receptor (EGFR). These tracers target the tyrosine kinase (TK) domain of the receptor and have been used for both quantifying EGFR expression and to differentiate between EGFR mutational statuses. However, the approaches for in vivo evaluation of these tracers are diverse and have resulted in data that are hard to compare. In this review, we analyze the historical development of the in vivo evaluation approaches, starting from the first EGFR TK PET tracer [11C]PD153035 to tracers developed based on TK inhibitors used for the clinical treatment of mutated EGFR expressing non-small cell lung cancer like [11C]erlotinib and [18F]afatinib. The evaluation of each tracer has been compiled to allow for a comparison between studies and ultimately between tracers. The main challenges for each group of tracers are thereafter discussed. Finally, this review addresses the challenges that need to be overcome to be able to efficiently drive EGFR PET imaging forward.
Collapse
Affiliation(s)
- Antonia Högnäsbacka
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.P.); (D.J.V.); (G.A.M.S.v.D.)
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
- Correspondence: (A.H.); (A.D.W.)
| |
Collapse
|
9
|
Tournier N, Goutal S, Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Caillé F, Breuil L, Stanek J, Freeman AF, Novarino G, Truillet C, Wanek T, Langer O. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [ 11C]erlotinib. J Cereb Blood Flow Metab 2021; 41:1634-1646. [PMID: 33081568 PMCID: PMC8221757 DOI: 10.1177/0271678x20965500] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict at the blood-brain barrier (BBB) the brain distribution of the majority of currently known molecularly targeted anticancer drugs. To improve brain delivery of dual ABCB1/ABCG2 substrates, both ABCB1 and ABCG2 need to be inhibited simultaneously at the BBB. We examined the feasibility of simultaneous ABCB1/ABCG2 inhibition with i.v. co-infusion of erlotinib and tariquidar by studying brain distribution of the model ABCB1/ABCG2 substrate [11C]erlotinib in mice and rhesus macaques with PET. Tolerability of the erlotinib/tariquidar combination was assessed in human embryonic stem cell-derived cerebral organoids. In mice and macaques, baseline brain distribution of [11C]erlotinib was low (brain distribution volume, VT,brain < 0.3 mL/cm3). Co-infusion of erlotinib and tariquidar increased VT,brain in mice by 3.0-fold and in macaques by 3.4- to 5.0-fold, while infusion of erlotinib alone or tariquidar alone led to less pronounced VT,brain increases in both species. Treatment of cerebral organoids with erlotinib/tariquidar led to an induction of Caspase-3-dependent apoptosis. Co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition at the BBB, while simultaneously achieving brain-targeted EGFR inhibition. Our protocol may be applicable to enhance brain delivery of molecularly targeted anticancer drugs for a more effective treatment of brain tumors.
Collapse
Affiliation(s)
- Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sebastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France.,MIRCen, CEA/IBFJ/DRF-JACOB/LMN, UMR CEA CNRS 9199-Université Paris Saclay, Fontenay-aux-Roses, France
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | | | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Anna F Freeman
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Pleiotropic Roles of ABC Transporters in Breast Cancer. Int J Mol Sci 2021; 22:ijms22063199. [PMID: 33801148 PMCID: PMC8004140 DOI: 10.3390/ijms22063199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.
Collapse
|
11
|
Gonçalves J, Silva S, Gouveia F, Bicker J, Falcão A, Alves G, Fortuna A. A combo-strategy to improve brain delivery of antiepileptic drugs: Focus on BCRP and intranasal administration. Int J Pharm 2020; 593:120161. [PMID: 33307160 DOI: 10.1016/j.ijpharm.2020.120161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
The breast cancer resistance protein (BCRP) is an efflux transporter expressed at the apical surface of human brain endothelial cells of the blood-brain barrier (BBB). It was proposed as one of the transporters responsible for the development of drug resistance to several central nervous system (CNS) drugs, including antiepileptic drugs (AEDs). In this context, the present work aimed to characterize the interaction between new-generation AEDs, lacosamide, levetiracetam and zonisamide, and BCRP, in order to investigate whether intranasal administration can successfully avoid the impact of BCRP on brain drug distribution, preventing the development of refractory epilepsy. Firstly, BCRP substrates and/or inhibitors were identified resorting to intracellular accumulation and bidirectional transport assays on Madin-Darby canine kidney (MDCK) cells and the transfected cell line with human ABCG2 (MDCK-BCRP). Furthermore, in vivo pharmacokinetic studies were carried out for BCRP substrates with and without elacridar, a well-known P-gp and BCRP modulator, to assess the impact of efflux inhibition on brain drug distribution. The extent of drug equilibration between plasma and brain was compared after intravenous (IV) and intranasal administration to mice. Among the three tested AEDs, zonisamide was the only AED identified as BCRP substrate in vitro, as demonstrated by the net flux ratio of 2.73, which decreased 53.85 % in the presence of a BCRP inhibitor, Ko143. Lacosamide revealed to inhibit BCRP in all tested concentrations (2.5-75 µM), exhibiting a significant increase (p < 0.001) of the intracellular accumulation of a BCRP substrate (Hoechst 33342) in MDCK-BCRP cells. Levetiracetam did not behave as a BCRP substrate nor inhibitor. After IV administration, the plasma concentrations of zonisamide were unaffected by elacridar, but its extent of brain exposure increased three-fold (as assessed by AUCt, 674.12 vs 284.47 µg.min/mL). These results corroborate the previous in vitro findings, suggesting that BCRP is involved in the transport of zonisamide through the BBB. In opposition, no significant changes were found in plasma or brain concentrations after the administration of zonisamide by intranasal route, indicating that the influence of BCRP is less relevant than for IV route. In addition, direct nose-to-brain delivery of zonisamide, given by the direct transport percentage, was approximately 49 %. Altogether, these assays demonstrated that the impact of BCRP on the delivery of zonisamide to the brain is lower after intranasal administration, probably due to direct nose-to-brain transport. Therefore, the intranasal administration of AEDs may be a relevant strategy to avoid the impact of efflux transporters at the BBB and the development of drug resistance.
Collapse
Affiliation(s)
- Joana Gonçalves
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Soraia Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Filipa Gouveia
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
12
|
Gampa G, Kenchappa RS, Mohammad AS, Parrish KE, Kim M, Crish JF, Luu A, West R, Hinojosa AQ, Sarkaria JN, Rosenfeld SS, Elmquist WF. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Sci Rep 2020; 10:6524. [PMID: 32300151 PMCID: PMC7162859 DOI: 10.1038/s41598-020-63494-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, the most lethal primary brain cancer, is extremely proliferative and invasive. Tumor cells at tumor/brain-interface often exist behind a functionally intact blood-brain barrier (BBB), and so are shielded from exposure to therapeutic drug concentrations. An ideal glioblastoma treatment needs to engage targets that drive proliferation as well as invasion, with brain penetrant therapies. One such target is the mitotic kinesin KIF11, which can be inhibited with ispinesib, a potent molecularly-targeted drug. Although, achieving durable brain exposures of ispinesib is critical for adequate tumor cell engagement during mitosis, when tumor cells are vulnerable, for efficacy. Our results demonstrate that the delivery of ispinesib is restricted by P-gp and Bcrp efflux at BBB. Thereby, ispinesib distribution is heterogeneous with concentrations substantially lower in invasive tumor rim (intact BBB) compared to glioblastoma core (disrupted BBB). We further find that elacridar—a P-gp and Bcrp inhibitor—improves brain accumulation of ispinesib, resulting in remarkably reduced tumor growth and extended survival in a rodent model of glioblastoma. Such observations show the benefits and feasibility of pairing a potentially ideal treatment with a compound that improves its brain accumulation, and supports use of this strategy in clinical exploration of cell cycle-targeting therapies in brain cancers.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James F Crish
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Amanda Luu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Rita West
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Peng X, Li L, Ren Y, Xue H, Liu J, Wen S, Chen J. Synthesis of
N
‐Carbonyl Acridanes as Highly Potent Inhibitors of Tubulin Polymerization
via
One‐Pot Copper‐Catalyzed Dual Arylation of Nitriles with Cyclic Diphenyl Iodoniums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Ling Li
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Yichang Ren
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Huanxin Xue
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Jin Liu
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative innovation Center for Cancer MedicineSun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Jianjun Chen
- School of Pharmaceutical SciencesSouthern Medical University Guangzhou 510060 People's Republic of China
| |
Collapse
|
14
|
van de Stadt EA, Yaqub M, Bahce I, Hendrikse N. ABCG2- and ABCB1 Inhibition Using Supratherapeutic Doses of Erlotinib: Clinical Implications in the Treatment of Central Nervous System Metastases. J Nucl Med 2020; 61:305. [DOI: 10.2967/jnumed.119.235705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Strope JD, Peer CJ, Sissung TM, Hall OM, Huang PA, Harris EM, Gustafson KR, Henrich CJ, Sigano DM, Pauly GT, Schneider JP, Bates SE, Figg WD. Botryllamide G is an ABCG2 inhibitor that improves lapatinib delivery in mouse brain. Cancer Biol Ther 2019; 21:223-230. [PMID: 31709896 PMCID: PMC7012088 DOI: 10.1080/15384047.2019.1683324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Transporters comprising the blood-brain barrier complicate delivery of many therapeutics to the central nervous system. The present study ascertained whether the natural product botryllamide G is viable for in vivo inhibition of ABCG2 using lapatinib as a probe for ABCB1 and ABCG2-mediated efflux from the brain. Methods: Wild-type and Mdr1a/Mdr1b (-/-) mice were treated with botryllamide G and lapatinib ("doublet therapy"), and while a separate cohort of wild-type mice was treated with botryllamide, tariquidar and lapatinib ("triplet therapy"). Results: Botryllamide G demonstrates biphasic elimination with a rapid distribution, decreasing below the in vitro IC50 of 6.9 µM within minutes, yet with a relatively slower terminal half-life (4.6 h). In Mdr1a/Mdr1b (-/-) mice, doublet therapy resulted in a significant increase in brain lapatinib AUC at 8 h (2058 h*ng/mL vs 4007 h*ng/mL; P = .031), but not plasma exposure (P = .15). No significant differences were observed after 24 h. Lapatinib brain exposure was greater through 1 h when wild-type mice were administered triplet therapy (298 h*pg/mg vs 120 h*pg/mg; P < .001), but the triplet decreased brain AUC through 24 h vs. mice administered lapatinib alone (2878 h*pg/mg vs 4461hr*ng/mL; P < .001) and did not alter the brain:plasma ratio. Conclusions: In summary, the ABCG2 inhibitor, botryllamide G, increases brain exposure to lapatinib in mice lacking Abcb1, although the combination of botryllamide G and tariquidar increases brain exposure in wild-type mice only briefly (1 h). Additional research is needed to find analogs of this compound that have better pharmacokinetics and pharmacodynamic effects on ABCG2 inhibition.
Collapse
Affiliation(s)
- Jonathan D. Strope
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Cody J. Peer
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - Tristan M. Sissung
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - O. Morgan Hall
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| | - Phoebe A. Huang
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Emily M. Harris
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Curtis J. Henrich
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dina M. Sigano
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Gary T. Pauly
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Susan E. Bates
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY, USA
| | - William D. Figg
- Molecular Pharmacology Section, National Cancer Institute, Bethesda, MD, USA
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
16
|
Roux GL, Jarray R, Guyot AC, Pavoni S, Costa N, Théodoro F, Nassor F, Pruvost A, Tournier N, Kiyan Y, Langer O, Yates F, Deslys JP, Mabondzo A. Proof-of-Concept Study of Drug Brain Permeability Between in Vivo Human Brain and an in Vitro iPSCs-Human Blood-Brain Barrier Model. Sci Rep 2019; 9:16310. [PMID: 31690750 PMCID: PMC6831611 DOI: 10.1038/s41598-019-52213-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
The development of effective central nervous system (CNS) drugs has been hampered by the lack of robust strategies to mimic the blood-brain barrier (BBB) and cerebrovascular impairments in vitro. Recent technological advancements in BBB modeling using induced pluripotent stem cells (iPSCs) allowed to overcome some of these obstacles, nonetheless the pertinence for their use in drug permeation study remains to be established. This mandatory information requires a cross comparison of in vitro and in vivo pharmacokinetic data in the same species to avoid failure in late clinical drug development. Here, we measured the BBB permeabilities of 8 clinical positron emission tomography (PET) radioligands with known pharmacokinetic parameters in human brain in vivo with a newly developed in vitro iPSC-based human BBB (iPSC-hBBB) model. Our findings showed a good correlation between in vitro and in vivo drug brain permeability (R2 = 0.83; P = 0.008) which contrasted with the limited correlation between in vitro apparent permeability for a set of 18 CNS/non-CNS compounds using the in vitro iPSCs-hBBB model and drug physicochemical properties. Our data suggest that the iPSC-hBBB model can be integrated in a flow scheme of CNS drug screening and potentially used to study species differences in BBB permeation.
Collapse
Affiliation(s)
- Gwenaëlle Le Roux
- Service de Pharmacologie et d'Immunoanalyse, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Rafika Jarray
- Service d'Etude des Prions et des Infections Atypiques, CEA, F-92265, Fontenay-aux-Roses, France.,Sup'Biotech, F-94800, Villejuif, France
| | - Anne-Cécile Guyot
- Service de Pharmacologie et d'Immunoanalyse, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Serena Pavoni
- Service d'Etude des Prions et des Infections Atypiques, CEA, F-92265, Fontenay-aux-Roses, France
| | - Narciso Costa
- Service de Pharmacologie et d'Immunoanalyse, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Frédéric Théodoro
- Service de Pharmacologie et d'Immunoanalyse (SPI), Plateforme Smart-MS, CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Ferid Nassor
- Service d'Etude des Prions et des Infections Atypiques, CEA, F-92265, Fontenay-aux-Roses, France.,Sup'Biotech, F-94800, Villejuif, France
| | - Alain Pruvost
- Service de Pharmacologie et d'Immunoanalyse (SPI), Plateforme Smart-MS, CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Nicolas Tournier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Univ. Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Yulia Kiyan
- Medizinische Hochschule Hannover, DE-30625, Hannover, Germany
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090, Vienna, Austria.,Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, A-2444, Seibersdorf, Austria
| | - Frank Yates
- Service d'Etude des Prions et des Infections Atypiques, CEA, F-92265, Fontenay-aux-Roses, France.,Sup'Biotech, F-94800, Villejuif, France
| | - Jean Philippe Deslys
- Service d'Etude des Prions et des Infections Atypiques, CEA, F-92265, Fontenay-aux-Roses, France
| | - Aloïse Mabondzo
- Service de Pharmacologie et d'Immunoanalyse, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
17
|
The influence of the coadministration of the p-glycoprotein modulator elacridar on the pharmacokinetics of lapatinib and its distribution in the brain and cerebrospinal fluid. Invest New Drugs 2019; 38:574-583. [PMID: 31177402 PMCID: PMC7211195 DOI: 10.1007/s10637-019-00806-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
Abstract
Background Lapatinib is a small-molecule tyrosine kinase inhibitor of human epidermal receptor 2 (HER2) and EGFR that has currently been approved for the treatment of HER2-positive advanced and metastatic breast cancer (BC). The ATP-binding cassette (ABC) family of transporters includes P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2), which substantially restrict the penetration of drugs, including chemotherapeutics, through the blood-brain barrier and blood-cerebrospinal fluid barrier. The aim of this study was to investigate the effects of elacridar, an ABCB1 and ABCG2 inhibitor, on the brain and cerebrospinal fluid uptake of lapatinib. Methods Rats were divided into two groups: one group received 5 mg/kg elacridar and 100 mg/kg lapatinib (an experimental group), and the other group received 100 mg/kg lapatinib (a control group). Lapatinib concentrations in the blood plasma (BP), cerebrospinal fluid (CSF) and brain tissue (BT) were measured by liquid chromatography coupled with tandem mass spectrometry. Results Elacridar significantly increased lapatinib penetration into the CSF and BT (Cmax increase of 136.4% and 54.7% and AUC0-∞ increase of 53.7% and 86.5%, respectively). The Cmax of lapatinib in BP was similar in both experimental groups (3057.5 vs. 3257.5 ng/mL, respectively). Conclusion This study showed that elacridar influenced the pharmacokinetics of lapatinib. The inhibition of ABCB1 and ABCG2 transporters by elacridar substantially enhanced the penetration of lapatinib into the CSF and BT. The blocking of protein transporters could become indispensable in the treatment of patients with breast cancer and brain metastases.
Collapse
|
18
|
Matzneller P, Kussmann M, Eberl S, Maier-Salamon A, Jäger W, Bauer M, Langer O, Zeitlinger M, Poeppl W. Pharmacokinetics of the P-gp Inhibitor Tariquidar in Rats After Intravenous, Oral, and Intraperitoneal Administration. Eur J Drug Metab Pharmacokinet 2019; 43:599-606. [PMID: 29616423 PMCID: PMC6133083 DOI: 10.1007/s13318-018-0474-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background and objective P-glycoprotein (P-gp), a transmembrane transporter expressed at the blood–brain barrier, restricts the distribution of diverse central nervous system-targeted drugs from blood into brain, reducing their therapeutic efficacy. The third-generation P-gp inhibitor tariquidar (XR9576) was shown to enhance brain distribution of P-gp substrate drugs in humans. Oral bioavailability of tariquidar was found to be low in humans requiring the compound to be administered intravenously, which hinders a broader clinical use. The objective of the present study was to investigate the plasma pharmacokinetics of tariquidar in rats after single intravenous, oral, and intraperitoneal administration. Methods Two different tariquidar formulations (A and B) were used, both at a dosage of 15 mg/kg, respectively. Formulation A was a solution and formulation B was a microemulsion which was previously shown to improve the oral bioavailability of the structurally related P-gp inhibitor elacridar in mice. Results In contrast to human data, the present study found a high bioavailability of tariquidar in rats after oral dosing. Oral bioavailability was significantly higher (p = 0.032) for formulation B (86.3%) than for formulation A (71.6%). After intraperitoneal dosing bioavailability was 91.4% for formulation A and 99.6% for formulation B. Conclusion The present findings extend the available information on tariquidar and provide a basis for future studies involving oral administration of this compound.
Collapse
Affiliation(s)
- Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Manuel Kussmann
- Department of Internal Medicine I, Clinical Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Biomedical Systems, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria. .,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Poeppl
- Department of Internal Medicine I, Clinical Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria.,Department of Dermatology and Tropical Medicine, Military Medical Cluster East, Austrian Armed Forces, Vienna, Austria
| |
Collapse
|
19
|
Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292:210-220. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Overcoming the efflux mediated by ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) remains a challenge for the delivery of small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib to the brain. Inhibition of ABCB1 and ABCG2 at the mouse BBB improved the BBB permeation of erlotinib but could not be achieved in humans. BBB disruption induced by focused ultrasound (FUS) was investigated as a strategy to overcome the efflux transport of erlotinib in vivo. In rats, FUS combined with microbubbles allowed for a large and spatially controlled disruption of the BBB in the left hemisphere. ABCB1/ABCG2 inhibition was performed using elacridar (10 mg/kg i.v). The brain kinetics of erlotinib was studied using 11C-erlotinib Positron Emission Tomography (PET) imaging in 5 groups (n = 4-5 rats per group) including a baseline group, immediately after sonication (FUS), 48 h after FUS (FUS + 48 h), elacridar (ELA) and their combination (FUS + ELA). BBB integrity was assessed using the Evan's Blue (EB) extravasation test. Brain exposure to 11C-erlotinib was measured as the area under the curve (AUC) of the brain kinetics (% injected dose (%ID) versus time (min)) in volumes corresponding to the disrupted (left) and the intact (right) hemispheres, respectively. EB extravasation highlighted BBB disruption in the left hemisphere of animals of the FUS and FUS + ELA groups but not in the control and ELA groups. EB extravasation was not observed 48 h after FUS suggesting recovery of BBB integrity. Compared with the control group (AUCBaseline = 1.4 ± 0.5%ID.min), physical BBB disruption did not impact the brain kinetics of 11C-erlotinib in the left hemisphere (p > .05) either immediately (AUCFUS = 1.2 ± 0.1%ID.min) or 48 h after FUS (AUCFUS+48h = 1.1 ± 0.3%ID.min). Elacridar similarly increased 11C-erlotinib brain exposure to the left hemisphere in the absence (AUCELA = 2.2 ± 0.5%ID.min, p < .001) and in the presence of BBB disruption (AUCFUS+ELA = 2.1 ± 0.5%ID.min, p < .001). AUCleft was never significantly different from AUCright (p > .05), in any of the tested conditions. BBB integrity is not the rate limiting step for erlotinib delivery to the brain which is mainly governed by ABC-mediated efflux. Efflux transport of erlotinib persisted despite BBB disruption.
Collapse
Affiliation(s)
- Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France; Molecular Imaging Research Center, MIRCen, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Fontenay-Aux-Roses, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Sébastien Mériaux
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Larrat
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.
| |
Collapse
|
20
|
Bauer M, Karch R, Wulkersdorfer B, Philippe C, Nics L, Klebermass EM, Weber M, Poschner S, Haslacher H, Jäger W, Tournier N, Wadsak W, Hacker M, Zeitlinger M, Langer O. A Proof-of-Concept Study to Inhibit ABCG2- and ABCB1-Mediated Efflux Transport at the Human Blood-Brain Barrier. J Nucl Med 2018; 60:486-491. [PMID: 30237210 DOI: 10.2967/jnumed.118.216432] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The adenosine triphosphate-binding cassette transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are 2 efflux transporters at the blood-brain barrier (BBB) that effectively restrict brain distribution of dual ABCB1/ABCG2 substrate drugs, such as tyrosine kinase inhibitors. Pharmacologic inhibition of ABCB1/ABCG2 may improve the efficacy of dual-substrate drugs for treatment of brain tumors, but no marketed ABCB1/ABCG2 inhibitors are currently available. In the present study, we examined the potential of supratherapeutic-dose oral erlotinib to inhibit ABCB1/ABCG2 activity at the human BBB. Methods: Healthy men underwent 2 consecutive PET scans with 11C-erlotinib: a baseline scan and a second scan either with concurrent intravenous infusion of the ABCB1 inhibitor tariquidar (3.75 mg/min, n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, n = 7; 650 mg, n = 8; or 1,000 mg, n = 2). Results: Although tariquidar administration had no effect on 11C-erlotinib brain distribution, oral erlotinib led, at the 650-mg dose, to significant increases in volume of distribution (23% ± 13%, P = 0.008), influx rate constant of radioactivity from plasma into brain (58% ± 26%, P = 0.008), and area under the brain time-activity curve (78% ± 17%, P = 0.008), presumably because of combined partial saturation of ABCG2 and ABCB1 activity. Inclusion of further subjects into the 1,000-mg dose group was precluded by adverse skin events (rash). Conclusion: Supratherapeutic-dose erlotinib may be used to enhance brain delivery of ABCB1/ABCG2 substrate anticancer drugs, but its clinical applicability for continuous ABCB1/ABCG2 inhibition at the BBB may be limited by safety concerns.
Collapse
Affiliation(s)
- Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Karch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- IMIV, CEA, INSERM, CNRS, Université Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria; and
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging und Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Health and Bioresources, Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|