1
|
Harsini S, Martineau P, Plaha S, Saprunoff H, Chen C, Bishop J, Tyldesley S, Wilson D, Bénard F. Prognostic significance of a negative PSMA PET/CT in biochemical recurrence of prostate cancer. Cancer Imaging 2024; 24:117. [PMID: 39210431 PMCID: PMC11363643 DOI: 10.1186/s40644-024-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) is becoming standard of care for men with biochemical recurrence (BCR) of prostate cancer. The implications of a negative PSMA PET/CT scan in this population remain unclear. This study aims to assess the outcome of patients with BCR post radical prostatectomy (RP) who have negative [18F]DCFPyL PET/CT scan at relapse. METHODS This is a post-hoc subgroup analysis of a prospective non randomized clinical trial. One hundred and one patients (median age, 75 years) with BCR after RP, who tested negative on [18F]DCFPyL PET/CT and subsequently either underwent salvage radiotherapy (sRT) with or without androgen deprivation therapy (ADT) or were followed without active treatment, were included. Freedom from progression (FFP) after negative PSMA PET/CT was determined based on follow-up imaging selected as per clinical practice. Uni- and multivariate Cox regression analyses were performed to examine the association of patients' characteristics, tumor-specific variables, and treatment with clinical progression at the last follow-up. FFP at 1-, 2-, and 3-year were reported using Kaplan Meier analysis. RESULTS The median PSA level at PET/CT was 0.56 ng/mL (range, 0.4-11.3). Sixty five (64%) patients were followed without receiving further treatment, and 36 (36%) received sRT (18% to the prostate bed only and 18% to the prostate bed and pelvic lymph nodes) within 3 months of the PSMA PET. Seventeen of the sRT patients (17 of 36, 47%) received concomitant androgen deprivation therapy (ADT). Median follow-up was 39 months. Subsequent clinical progression was detected in 21 patients (21%), with 52% in pelvic lymph nodes, 52% in the prostatic fossa, 19% in distant lymph nodes, 14% in lungs, and 10% in bones. The FFP was 95% (95% CI: 91%-99%) at 12 months, 87% (95% CI: 81%-94%) at 24 months, and 79% (95% CI: 71%-88%) at 36 months. Multivariate Cox regression analysis revealed that an initial International Society of Urological Pathology (ISUP) grade 5 was significantly associated with clinical progression at the last follow-up (hazard ratio, 5.1, P value, 0.04). Furthermore, the receipt of sRT correlated significantly with lower clinical progression at the last follow-up (hazard ratio, 0.2, P value, 0.03), whereas other clinical and tumor-specific parameters did not. Following surveillance-only and sRT, 29% (19 of 65) and 6% (2 of 36) of patients, respectively, showed clinical progression. In the sRT group, no significant difference was observed in FFP between patients who underwent sRT to the prostatic fossa versus those who received sRT to the prostatic fossa and pelvic lymph nodes, although the numbers in these groups were small. CONCLUSIONS This study suggests that salvage radiotherapy is associated with a decreased or delayed clinical progression in patients with biochemical recurrence following radical prostatectomy who have negative PSMA PET/CT scan results. The analysis also underscores the prognostic significance of the initial ISUP grade, with ISUP grade 5 being associated with worse outcomes. TRIAL REGISTRATION Registered September 14, 2016; NCT02899312 .
Collapse
Affiliation(s)
- Sara Harsini
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
| | - Patrick Martineau
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Plaha
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
| | - Heather Saprunoff
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
| | - Catherine Chen
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
| | - Julia Bishop
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
| | - Scott Tyldesley
- Department of Radiation Oncology, BC Cancer, Vancouver, BC, Canada
| | - Don Wilson
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - François Bénard
- Department of Molecular Imaging and Therapy, BC Cancer Research Institute, 675 West 10th Ave, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Pantel AR, Bae SW, Li EJ, O'Brien SR, Manning HC. PET Imaging of Metabolism, Perfusion, and Hypoxia: FDG and Beyond. Cancer J 2024; 30:159-169. [PMID: 38753750 PMCID: PMC11101148 DOI: 10.1097/ppo.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.
Collapse
Affiliation(s)
- Austin R Pantel
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Li
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Sophia R O'Brien
- From the Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Virarkar MK, Gruschkus SK, Ravizzini GC, Vulasala SSR, Javadi S, Bhosale P. Assessing the effectiveness of MRI, 18F-fluciclovine PET, SUV max, and PSA in detecting local recurrence of prostate cancer after prostatectomy. Pol J Radiol 2024; 89:e196-e203. [PMID: 38783912 PMCID: PMC11112415 DOI: 10.5114/pjr.2024.139007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024] Open
Abstract
Purpose The primary objective of this study was to evaluate the discriminatory utility of magnetic resonance imaging (MRI), 18F-fluciclovine positron emission tomography (PET), maximum standardized uptake value (SUVmax), prostate-specific antigen (PSA), and combinations of these diagnostic modalities for detecting local prostate cancer recurrence in the setting of rising PSA after radical prostatectomy. Material and methods Patients were characterised for clinical features such as Gleason score, PSA at surgery, PSA at follow-up, follow-up MRI result, follow-up PET result, follow-up SUVmax, and follow-up disease status. The utility of diagnostic parameters for detecting disease recurrence at the prostatectomy bed was assessed using receiver operating characteristics (ROC) analysis to determine the area under the curve (AUC) for each model. Sensitivity, specificity, and positive/negative predictive values were also calculated. Optimal cut-off points for continuous variables were determined based on maximum Youden's J statistics. Results The study found that MRI had the highest concordance (96%), sensitivity (100%), specificity (91%), positive predictive value (93%), and negative predictive value (100%) among the diagnostic modalities. The AUC for MRI was 0.9545, indicating a high discriminatory ability for detecting prostate cancer local recurrence. When combined, PET and SUVmax (cut-off value of 2.85) showed an improved performance compared to using them individually, with an AUC of 0.8925. Conclusions The analysis suggests that MRI is the most effective imaging modality for detecting local prostate cancer recurrence, with 18F-fluciclovine PET and SUVmax also showing promising combined results. PSA has moderate discriminatory utility at follow-up but can still provide valuable information in detecting prostate cancer recurrence. Further research and recent references are needed to support these findings.
Collapse
Affiliation(s)
- Mayur K. Virarkar
- Department of Diagnostic Radiology, University of Florida College of Medicine, Jacksonville, USA
| | - Stephen K. Gruschkus
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Gregory C. Ravizzini
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sai Swarupa R. Vulasala
- Department of Diagnostic Radiology, University of Florida College of Medicine, Jacksonville, USA
| | - Sanaz Javadi
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Priya Bhosale
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
4
|
Sun Y, Cheng Z, Qiu J, Lu W. Performance and application of the total-body PET/CT scanner: a literature review. EJNMMI Res 2024; 14:38. [PMID: 38607510 PMCID: PMC11014840 DOI: 10.1186/s13550-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The total-body positron emission tomography/computed tomography (PET/CT) system, with a long axial field of view, represents the state-of-the-art PET imaging technique. Recently, the total-body PET/CT system has been commercially available. The total-body PET/CT system enables high-resolution whole-body imaging, even under extreme conditions such as ultra-low dose, extremely fast imaging speed, delayed imaging more than 10 h after tracer injection, and total-body dynamic scan. The total-body PET/CT system provides a real-time picture of the tracers of all organs across the body, which not only helps to explain normal human physiological process, but also facilitates the comprehensive assessment of systemic diseases. In addition, the total-body PET/CT system may play critical roles in other medical fields, including cancer imaging, drug development and immunology. MAIN BODY Therefore, it is of significance to summarize the existing studies of the total-body PET/CT systems and point out its future direction. This review collected research literatures from the PubMed database since the advent of commercially available total-body PET/CT systems to the present, and was divided into the following sections: Firstly, a brief introduction to the total-body PET/CT system was presented, followed by a summary of the literature on the performance evaluation of the total-body PET/CT. Then, the research and clinical applications of the total-body PET/CT were discussed. Fourthly, deep learning studies based on total-body PET imaging was reviewed. At last, the shortcomings of existing research and future directions for the total-body PET/CT were discussed. CONCLUSION Due to its technical advantages, the total-body PET/CT system is bound to play a greater role in clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
5
|
Horný M, Chang D, Christensen EW, Rula EY, Duszak R. Decomposition of medical imaging spending growth between 2010 and 2021 in the US employer-insured population. HEALTH AFFAIRS SCHOLAR 2024; 2:qxae030. [PMID: 38756926 PMCID: PMC10986240 DOI: 10.1093/haschl/qxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Medical imaging, identified as a potential driver of unsustainable US health care spending growth, was subject to policies to reduce prices and use in low-value settings. Meanwhile, the Affordable Care Act increased access to preventive services-many involving imaging-for employer-sponsored insurance (ESI) beneficiaries. We used a large insurance claims database to examine imaging spending trends in the ESI population between 2010 and 2021-a period of considerable policy and benefits changes. Nominal spending on imaging increased 35.9% between 2010 and 2021, but as a share of total health care spending fell from 10.5% to 8.9%. The 22.5% growth of nominal imaging prices was below inflation, 24.3%, as measured by the Consumer Price Index. Other key contributors to imaging spending growth were increased use (7.4 percentage points [pp]), shifts toward advanced modalities (4.0 pp), and demographic changes (3.5 pp). Shifts in care settings and provider network participation resulted in 2.5-pp and 0.3-pp imaging spending decreases, respectively. In sum, imaging spending decreased as a share of all health care spending and relative to inflation, as intended by concurrent cost-containment policies.
Collapse
Affiliation(s)
- Michal Horný
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA 30322, United States
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Daniel Chang
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Eric W Christensen
- Harvey L. Neiman Health Policy Institute, Reston, VA 20191, United States
- Health Services Management, University of Minnesota, St. Paul, MN 55108, United States
| | - Elizabeth Y Rula
- Harvey L. Neiman Health Policy Institute, Reston, VA 20191, United States
| | - Richard Duszak
- Department of Radiology, School of Medicine, University of Mississippi, Jackson, MS 39216, United States
| |
Collapse
|
6
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
7
|
Huls SJ, Burkett B, Ehman E, Lowe VJ, Subramaniam RM, Kendi AT. Clinical practice in prostate PET imaging. Ther Adv Med Oncol 2023; 15:17588359231213618. [PMID: 38028142 PMCID: PMC10666681 DOI: 10.1177/17588359231213618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Positron emission tomography (PET) imaging in prostate cancer has advanced significantly in the past decade with prostate cancer targeted radiopharmaceuticals now playing a growing role in diagnosis, staging, and treatment. This narrative review focuses on the most commonly used PET radiopharmaceuticals in the USA: prostate-specific membrane antigen (PSMA), fluciclovine, and choline. 18F-fluorodeoxyglucose (FDG) is used in many other malignancies, but rarely in prostate cancer. Previous literature is discussed regarding each radiopharmaceutical's utility in the settings of screening/diagnosis, initial staging, biochemical recurrence, advanced disease, and evaluation prior to targeted radiopharmaceutical therapy and radiation therapy. PET imaging has demonstrated utility over traditional imaging in various scenarios; however, there are few head-to-head studies comparing PET radiopharmaceuticals. PSMA radiopharmaceuticals are the newest tracers developed and have unique properties and uses, especially at low prostate-specific antigen (PSA) levels. However, each PET radiopharmaceutical has different properties which can affect image interpretation. Choline and fluciclovine have minimal urinary activity, whereas PSMA agents can have high urinary activity which may affect locoregional disease evaluation. Of the three radiopharmaceuticals, only PSMA is approved for both diagnostic and therapeutic indications with 177Lu-PSMA. A variety of diagnostic PET radiotracers for prostate cancer allows for increased flexibility, especially in the setting of supply chain and medication shortages. For the time being, keeping a diverse group of PET radiopharmaceuticals for prostate cancer is justifiable.
Collapse
Affiliation(s)
- Sean J. Huls
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester MN 55905, USA
| | - Brian Burkett
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Eric Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rathan M. Subramaniam
- Department of Medicine, University of Otago Medical School, Dunedin, New Zealand
- Department of Radiology, Duke University, Durham, NC, USA
| | - A. Tuba Kendi
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Tom MC, DiFilippo FP, Jones SE, Suh JH, Obuchowski NA, Smile TD, Murphy ES, Yu JS, Barnett GH, Angelov L, Mohammadi AM, Huang SS, Wu G, Johnson S, Peereboom DM, Stevens GHJ, Ahluwalia MS, Chao ST. 18F-fluciclovine PET/CT to distinguish radiation necrosis from tumor progression for brain metastases treated with radiosurgery: results of a prospective pilot study. J Neurooncol 2023; 163:647-655. [PMID: 37341842 DOI: 10.1007/s11060-023-04377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Distinguishing radiation necrosis from tumor progression among patients with brain metastases previously treated with stereotactic radiosurgery represents a common diagnostic challenge. We performed a prospective pilot study to determine whether PET/CT with 18F-fluciclovine, a widely available amino acid PET radiotracer, repurposed intracranially, can accurately diagnose equivocal lesions. METHODS Adults with brain metastases previously treated with radiosurgery presenting with a follow-up tumor-protocol MRI brain equivocal for radiation necrosis versus tumor progression underwent an 18F-fluciclovine PET/CT of the brain within 30 days. The reference standard for final diagnosis consisted of clinical follow-up until multidisciplinary consensus or tissue confirmation. RESULTS Of 16 patients imaged from 7/2019 to 11/2020, 15 subjects were evaluable with 20 lesions (radiation necrosis, n = 16; tumor progression, n = 4). Higher SUVmax statistically significantly predicted tumor progression (AUC = 0.875; p = 0.011). Lesion SUVmean (AUC = 0.875; p = 0.018), SUVpeak (AUC = 0.813; p = 0.007), and SUVpeak-to-normal-brain (AUC = 0.859; p = 0.002) also predicted tumor progression, whereas SUVmax-to-normal-brain (p = 0.1) and SUVmean-to-normal-brain (p = 0.5) did not. Qualitative visual scores were significant predictors for readers 1 (AUC = 0.750; p < 0.001) and 3 (AUC = 0.781; p = 0.045), but not for reader 2 (p = 0.3). Visual interpretations were significant predictors for reader 1 (AUC = 0.898; p = 0.012) but not for reader 2 (p = 0.3) or 3 (p = 0.2). CONCLUSIONS In this prospective pilot study of patients with brain metastases previously treated with radiosurgery presenting with a contemporary MRI brain with a lesion equivocal for radiation necrosis versus tumor progression, 18F-fluciclovine PET/CT repurposed intracranially demonstrated encouraging diagnostic accuracy, supporting the pursuit of larger clinical trials which will be necessary to establish diagnostic criteria and performance.
Collapse
Affiliation(s)
- Martin C Tom
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen E Jones
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Nancy A Obuchowski
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy D Smile
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin S Murphy
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer S Yu
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lilyana Angelov
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alireza M Mohammadi
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurological Surgery, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steve S Huang
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyun Wu
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Johnson
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - David M Peereboom
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Taussig Cancer Institute, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Glen H J Stevens
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manmeet S Ahluwalia
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
- Taussig Cancer Institute, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center and Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Hill S, Kassam F, Verma S, Sidana A. Traditional and novel imaging modalities for advanced prostate cancer: A critical review. Urol Ann 2023; 15:249-255. [PMID: 37664103 PMCID: PMC10471808 DOI: 10.4103/ua.ua_170_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/26/2021] [Indexed: 09/05/2023] Open
Abstract
Accurate detection of metastatic prostate cancer in the setting of preoperative staging as well as posttreatment recurrence is crucial to provide patients with appropriate and timely treatment of their disease. This has traditionally been accomplished with a combination of computed tomography, magnetic resonance imaging, and bone scan. Recently, more novel imaging techniques have been developed to help improve the detection of advanced and metastatic prostate cancer. This review discusses the efficacy of the traditional imaging modalities as well as the novel imaging techniques in detecting metastatic prostate cancer. Articles discussed were gathered through a formal PubMed search.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Farzaan Kassam
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sadhna Verma
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abhinav Sidana
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Gao X, Tang Y, Chen M, Li J, Yin H, Gan Y, Zu X, Cai Y, Hu S. A prospective comparative study of [ 68Ga]Ga-RM26 and [ 68Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:2177-2187. [PMID: 36811661 DOI: 10.1007/s00259-023-06142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-based PET/CT imaging has limitations in the diagnosis of prostate cancer (PCa). We recruited 207 participants with suspicious PCa to perform PET/CT imaging with radiolabeled gastrin-releasing peptide receptor (GRPR) antagonist, [68Ga]Ga-RM26, and compare with [68Ga]Ga-PSMA-617 and histopathology. METHODS Every participant with suspicious PCa was scanned with both [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT. PET/CT imaging was compared using pathologic specimens as a reference standard. RESULTS Of the 207 participants analyzed, 125 had cancer, and 82 were diagnosed with benign prostatic hyperplasia (BPH). The sensitivity and specificity of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging differed significantly for detecting clinically significant PCa. The area under the ROC curve (AUC) was 0.54 for [68Ga]Ga-RM26 PET/CT and 0.91 for [68Ga]Ga-PSMA-617 PET/CT in detecting PCa. For clinically significant PCa imaging, the AUCs were 0.51 vs. 0.93, respectively. [68Ga]Ga-RM26 PET/CT imaging had higher sensitivity for PCa with Gleason score (GS) = 6 (p = 0.03) than [68Ga]Ga-PSMA-617 PET/CT but poor specificity (20.73%). In the group with PSA < 10 ng/mL, the sensitivity, specificity, and AUC of [68Ga]Ga-RM26 PET/CT were lower than [68Ga]Ga-PSMA-617 PET/CT (60.00% vs. 80.30%, p = 0.12, 23.26% vs. 88.37%, p = 0.000, and 0.524 vs. 0.822, p = 0.000, respectively). [68Ga]Ga-RM26 PET/CT exhibited significantly higher SUVmax in specimens with GS = 6 (p = 0.04) and in the low-risk group (p = 0.01), and its uptake did not increase with PSA level, GS, or clinical stage. CONCLUSION This prospective study provided evidence for the superior accuracy of [68Ga]Ga-PSMA-617 PET/CT over [68Ga]Ga-RM26 PET/CT in detecting more clinically significant PCa. [68Ga]Ga-RM26 PET/CT showed an advantage for imaging low-risk PCa.
Collapse
Affiliation(s)
- Xiaomei Gao
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Minfeng Chen
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Jian Li
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Hongling Yin
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Xiongbin Zu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Shuo Hu
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| |
Collapse
|
11
|
Burnett AL, Nyame YA, Mitchell E. Disparities in prostate cancer. J Natl Med Assoc 2023; 115:S38-S45. [PMID: 37202002 DOI: 10.1016/j.jnma.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/01/2023] [Indexed: 05/20/2023]
Abstract
Despite substantial advances in early detection/prevention and treatments, and improved outcomes in recent decades, prostate cancer continues to disproportionately affect Black men and is the secondleading cause of cancer death in this subgroup. Black men are substantially more likely to develop prostate cancer and are twice as likely to die from the disease compared with White men. In addition, Black men are younger at diagnosis and face a higher risk of aggressive disease relative to White men. Striking racial disparities endure along the continuum of prostate cancer care, including screening, genomic testing, diagnostic procedures, and treatment modalities. The underlying causes of these inequalities are complex and multifactorial and involve biological factors, structural determinants of equity (i.e., public policy, structural and systemic racism, economic policy), social determinants of health (including income, education, and insurance status, neighborhood/physical environment, community/social context, and geography), and health care factors. The objective of this article is to review the sources of racial disparities in prostate cancer and to propose actionable recommendations to help address these inequities and narrow the racial gap.
Collapse
Affiliation(s)
| | - Yaw A Nyame
- Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle, WA, United States; Department of Urology, University of Washington, United States
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, 925 Chestnut Street, Suite 220A, Philadelphia, PA 19107, United States.
| |
Collapse
|
12
|
Gillette CM, Yette GA, Cramer SD, Graham LS. Management of Advanced Prostate Cancer in the Precision Oncology Era. Cancers (Basel) 2023; 15:2552. [PMID: 37174018 PMCID: PMC10177563 DOI: 10.3390/cancers15092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Prostate cancer (PC) is the second leading cause of cancer death in men in the United States. While diversified and improved treatment options for aggressive PC have improved patient outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area of investigative therapeutic interest. This review will cover the seminal clinical data supporting the indication of new precision oncology-based therapeutics and explore their limitations, present utility, and potential in the treatment of PC. Systemic therapies for high-risk and advanced PC have experienced significant development over the past ten years. Biomarker-driven therapies have brought the field closer to the goal of being able to implement precision oncology therapy for every patient. The tumor agnostic approval of pembrolizumab (a PD-1 inhibitor) marked an important advancement in this direction. There are also several PARP inhibitors indicated for patients with DNA damage repair deficiencies. Additionally, theranostic agents for both imaging and treatment have further revolutionized the treatment landscape for PC and represent another advancement in precision medicine. Radiolabeled prostate-specific membrane antigen (PSMA) PET/CT is rapidly becoming a standard of care for diagnosis, and PSMA-targeted radioligand therapies have gained recent FDA approval for metastatic prostate cancer. These advances in precision-based oncology are detailed in this review.
Collapse
Affiliation(s)
- Claire M. Gillette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.M.G.)
| | - Laura S. Graham
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Schollhammer R, Quintyn Ranty ML, de Clermont Gallerande H, Cavelier F, Valverde IE, Vimont D, Hindié E, Morgat C. Theranostics of Primary Prostate Cancer: Beyond PSMA and GRP-R. Cancers (Basel) 2023; 15:cancers15082345. [PMID: 37190273 DOI: 10.3390/cancers15082345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The imaging of Prostate-Specific Membrane Antigen (PSMA) is now widely used at the initial staging of prostate cancers in patients with a high metastatic risk. However, its ability to detect low-grade tumor lesions is not optimal. METHODS First, we prospectively performed neurotensin receptor-1 (NTS1) IHC in a series of patients receiving both [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2 before prostatectomy. In this series, PSMA and GRP-R IHC were also available (n = 16). Next, we aimed at confirming the PSMA/GRP-R/NTS1 expression profile by retrospective autoradiography (n = 46) using a specific radiopharmaceuticals study and also aimed to decipher the expression of less-investigated targets such as NTS2, SST2 and CXCR4. RESULTS In the IHC study, all samples with negative PSMA staining (two patients with ISUP 2 and one with ISUP 3) were strongly positive for NTS1 staining. No samples were negative for all three stains-for PSMA, GRP-R or NTS1. In the autoradiography study, binding of [111In]In-PSMA-617 was high in all ISUP groups. However, some samples did not bind or bound weakly to [111In]In-PSMA-617 (9%). In these cases, binding of [111n]In-JMV 6659 and [111In]In-JMV 7488 towards NTS1 and NTS2 was high. CONCLUSIONS Targeting PSMA and NTS1/NTS2 could allow for the detection of all intraprostatic lesions.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | | | - Henri de Clermont Gallerande
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247, CNRS, Université Montpellier, ENSCM, Pôle Chimie Balard, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
| | - Ibai E Valverde
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21000 Dijon, France
| | - Delphine Vimont
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, 33000 Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, 33000 Bordeaux, France
| |
Collapse
|
14
|
Xu F, Liu F, Chen W. Complementary Role of 18 F-Fluciclovine PET/CT and 18 F-NaF PET/CT in Detecting Prostate Cancer Metastasis. Clin Nucl Med 2023; 48:330-331. [PMID: 36716502 DOI: 10.1097/rlu.0000000000004583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ABSTRACT We present different findings on 18 F-fluciclovine (Axumin) PET/CT and 18 F-NaF PET/CT images in a patient with prostate cancer metastasis. 18 F-Fluciclovine PET/CT scan showed intense uptake in left adrenal gland metastasis, only faint to mild uptake in multiple sclerotic osseous metastasis where 18 F-NaF bone PET/CT demonstrated intense uptake at these sites. Both examinations are needed to accurately evaluate visceral and osseous metastasis from prostate cancer.
Collapse
Affiliation(s)
- Feng Xu
- From the Departments of Radiology
| | | | - Wen Chen
- Pathology, Washington DC VA Medical Center, Washington, DC
| |
Collapse
|
15
|
Schollhammer R, Robert G, Asselineau J, Yacoub M, Vimont D, Balamoutoff N, Bladou F, Bénard A, Hindié E, Gallerande HDC, Morgat C. Comparison of 68Ga-PSMA-617 PET/CT and 68Ga-RM2 PET/CT in Patients with Localized Prostate Cancer Who Are Candidates for Radical Prostatectomy: A Prospective, Single-Arm, Single-Center, Phase II Study. J Nucl Med 2023; 64:379-385. [PMID: 36215569 PMCID: PMC10071805 DOI: 10.2967/jnumed.122.263889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the wide range of therapeutic options for localized prostate cancer (e.g., active surveillance, radiation-beam therapy, focal therapy, and radical prostatectomy), accurate assessment of the aggressiveness and localization of primary prostate cancer lesions is essential for treatment decision making. National Comprehensive Cancer Network guidelines recognize prostate-specific membrane antigen (PSMA) PET/CT for use in initial staging of high-risk primary prostate cancer. The gastrin-releasing peptide receptor (GRP-R) is a neuropeptide receptor overexpressed by low-risk prostate cancer cells. We aimed to perform the first (to our knowledge) prospective head-to-head comparison of PSMA- and GRP-R-targeted imaging at initial staging to understand how PSMA PET and GRP-R PET can be used or combined in clinical practice. Methods: This was a prospective, single-center, diagnostic cross-sectional imaging study using anonymized, masked, and independent interpretations of paired PET/CT studies in 22 patients with 68Ga-PSMA-617 (a radiolabeled PSMA inhibitor) and 68Ga-RM2 (68Ga-DOTA-4-amino-1-carboxymethylpiperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, a radiolabeled GRP-R antagonist). We enrolled patients with newly diagnosed, biopsy-proven prostate cancer. None had received neoadjuvant hormone therapy or chemotherapy, and all underwent extended pelvic lymph node dissection. Histologic findings served as a reference. Results: On a lesion-based analysis (including lesions < 0.1 cm3), 68Ga-PSMA-617 PET/CT detected 74.3% (26/35) of all tumor lesions and 68Ga-RM2 PET/CT detected 78.1% (25/32; 1 patient could not be offered 68Ga-RM2 PET/CT). Paired examinations showed positive uptake of the 2 tracers in 21 of 32 lesions (65.6%), negative uptake in 5 of 32 lesions (15.6%), and discordant uptake in 6 of 32 lesions (18.8%). Uptake of 68Ga-PSMA-617 was higher when the International Society of Urological Pathology (ISUP) score was at least 4 versus at least 1 (P < 0.0001) or 2 (P = 0.0002). There were no significant differences in uptake between ISUP scores for 68Ga-RM2. Median 68Ga-RM2 SUVmax was significantly higher than median 68Ga-PSMA-617 SUVmax in the ISUP-2 subgroup (P = 0.01). Conclusion: 68Ga-PSMA-617 PET/CT is useful to depict higher, more clinically significant ISUP score lesions, and 68Ga-RM2 PET/CT has a higher detection rate for low-ISUP tumors. Combining PSMA PET and GRP-R PET allows for better classification of intraprostatic lesions.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Grégoire Robert
- Department of Urology, Bordeaux University Hospital, Bordeaux, France
| | - Julien Asselineau
- CHU Bordeaux, Public Health Department, Clinical Epidemiology Unit, Bordeaux, France
| | - Mokrane Yacoub
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France; and
| | - Delphine Vimont
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | | | - Franck Bladou
- Department of Urology, Bordeaux University Hospital, Bordeaux, France
| | - Antoine Bénard
- CHU Bordeaux, Public Health Department, Clinical Epidemiology Unit, Bordeaux, France
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
- Institut Universitaire de France, Paris, France
| | - Henri de Clermont Gallerande
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France;
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| |
Collapse
|
16
|
Mask R-CNN assisted 2.5D object detection pipeline of 68Ga-PSMA-11 PET/CT-positive metastatic pelvic lymph node after radical prostatectomy from solely CT imaging. Sci Rep 2023; 13:1696. [PMID: 36717727 PMCID: PMC9886937 DOI: 10.1038/s41598-023-28669-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) is a molecular and functional imaging modality with better restaging accuracy over conventional imaging for detecting prostate cancer in men suspected of lymph node (LN) progression after definitive therapy. However, the availability of PSMA PET/CT is limited in both low-resource settings and for repeating imaging surveillance. In contrast, CT is widely available, cost-effective, and routinely performed as part of patient follow-up or radiotherapy workflow. Compared with the molecular activities, the morphological and texture changes of subclinical LNs in CT are subtle, making manual detection of positive LNs infeasible. Instead, we harness the power of artificial intelligence for automated LN detection on CT. We examined 68Ga-PSMA-11 PET/CT images from 88 patients (including 739 PSMA PET/CT-positive pelvic LNs) who experienced a biochemical recurrence after radical prostatectomy and presented for salvage radiotherapy with prostate-specific antigen < 1 ng/mL. Scans were divided into a training set (nPatient = 52, nNode = 400), a validation set (nPatient = 18, nNode = 143), and a test set (nPatient = 18, nNodes = 196). Using PSMA PET/CT as the ground truth and consensus pelvic LN clinical target volumes as search regions, a 2.5-dimensional (2.5D) Mask R-CNN based object detection framework was trained. The entire framework contained whole slice imaging pretraining, masked-out region fine-tuning, prediction post-processing, and "window bagging". Following an additional preprocessing step-pelvic LN clinical target volume extraction, our pipeline located positive pelvic LNs solely based on CT scans. Our pipeline could achieve a sensitivity of 83.351%, specificity of 58.621% out of 196 positive pelvic LNs from 18 patients in the test set, of which most of the false positives can be post-removable by radiologists. Our tool may aid CT-based detection of pelvic LN metastasis and triage patients most unlikely to benefit from the PSMA PET/CT scan.
Collapse
|
17
|
Lu Y. Imaging Characteristics of Coexisting Metastatic Papillary Thyroid Cancer and Prostate Cancer on 18 F-Fluciclovine and 68 Ga-PSMA-11 PET/CT. Clin Nucl Med 2022; 47:820-821. [PMID: 35353761 DOI: 10.1097/rlu.0000000000004156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT A 76-year-old man with biopsy-proven metastatic papillary thyroid cancer in a mediastinal nodule status post total thyroidectomy is on surveillance. The patient also had prostate cancer and received prostatectomy and androgen deprivation treatment. An 18 F-fluciclovine PET revealed avid lesions in the mediastinal nodule and a sclerotic focus at L5 with concurrent prostate-specific antigen level of 0.4 ng/mL. The L5 lesion was later biopsied and confirmed as metastasis from prostate cancer. A 68 Ga-PSMA-11 PET 2 months later showed avid radiotracer uptake within L5 metastasis but not the mediastinal nodule. The patient received radiation therapy to the L5 lesion and responded well.
Collapse
Affiliation(s)
- Yang Lu
- From the Division of Diagnostic Imaging, Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Khader A, Braschi-Amirfarzan M, McIntosh LJ, Gosangi B, Wortman JR, Wald C, Thomas R. Importance of tumor subtypes in cancer imaging. Eur J Radiol Open 2022; 9:100433. [PMID: 35909389 PMCID: PMC9335388 DOI: 10.1016/j.ejro.2022.100433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer therapy has evolved from being broadly directed towards tumor types, to highly specific treatment protocols that target individual molecular subtypes of tumors. With the ever-increasing data on imaging characteristics of tumor subtypes and advancements in imaging techniques, it is now often possible for radiologists to differentiate tumor subtypes on imaging. Armed with this knowledge, radiologists may be able to provide specific information that can obviate the need for invasive methods to identify tumor subtypes. Different tumor subtypes also differ in their patterns of metastatic spread. Awareness of these differences can direct radiologists to relevant anatomical sites to screen for early metastases that may otherwise be difficult to detect during cursory inspection. Likewise, this knowledge will help radiologists to interpret indeterminate findings in a more specific manner. Tumor subtypes can be identified based on their different imaging characteristics. Awareness of tumor subtype can help radiologists chose the appropriate modality for additional imaging workup. Awareness of differences in metastatic pattern between tumor subtypes can be helpful to identify early metastases.
Collapse
Affiliation(s)
- Ali Khader
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA 01805, the United States of America
| | - Marta Braschi-Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA 01805, the United States of America
| | - Lacey J. McIntosh
- University of Massachusetts Chan Medical School/Memorial Health Care, Division of Oncologic and Molecular Imaging, 55 Lake Avenue North, Worcester, MA 01655, the United States of America
| | - Babina Gosangi
- Department of Radiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, the United States of America
| | - Jeremy R. Wortman
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA 01805, the United States of America
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA 01805, the United States of America
| | - Richard Thomas
- Department of Radiology, Lahey Hospital and Medical Center, Tufts University School of Medicine, 41 Mall Road, Burlington, MA 01805, the United States of America
- Correspondence to: Department of Radiology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, the United States of America.
| |
Collapse
|
19
|
Mizuno K, Beltran H. Future directions for precision oncology in prostate cancer. Prostate 2022; 82 Suppl 1:S86-S96. [PMID: 35657153 PMCID: PMC9942493 DOI: 10.1002/pros.24354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Clinical genomic testing is becoming routine in prostate cancer, as biomarker-driven therapies such as poly-ADP ribose polymerase (PARP) inhibitors and anti-PD1 immunotherapy are now approved for select men with castration-resistant prostate cancer harboring alterations in DNA repair genes. Challenges for precision medicine in prostate cancer include an overall low prevalence of actionable genomic alterations and a still limited understanding of the impact of tumor heterogeneity and co-occurring alterations on treatment response and outcomes across diverse patient populations. Expanded tissue-based technologies such as whole-genome sequencing, transcriptome analysis, epigenetic analysis, and single-cell RNA sequencing have not yet entered the clinical realm and could potentially improve upon our understanding of how molecular features of tumors, intratumoral heterogeneity, and the tumor microenvironment impact therapy response and resistance. Blood-based technologies including cell-free DNA, circulating tumor cells (CTCs), and extracellular vesicles (EVs) are less invasive molecular profiling resources that could also help capture intraindividual tumor heterogeneity and track dynamic changes that occur in the context of specific therapies. Furthermore, molecular imaging is an important biomarker tool within the framework of prostate cancer precision medicine with a capability to detect heterogeneity across metastases and potential therapeutic targets less invasively. Here, we review recent technological advances that may help promote the future implementation and value of precision oncology testing for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Medical Oncology, Dana Farber Cancer Institute
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute
| |
Collapse
|
20
|
Parent EE, Savir-Baruch B, Gayed IW, Almaguel F, Chin B, Pantel AR, Armstrong E, Morley A, Ippisch RC, Flavell RR. JNMT continuing education: 177Lu PSMA therapy. J Nucl Med Technol 2022; 50:205-212. [PMID: 36215646 DOI: 10.2967/jnmt.122.263814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Radiopharmaceutical therapy utilizing 177Lu-PSMA is an effective treatment for prostate cancer which has recently been approved by the United States Food and Drug Administration. This method leverages the success of PSMA targeted PET imaging, enabling the delivery of targeted radiopharmaceutical therapy, This agent has demonstrated a clear benefit in large prospective clinical trials, and promises to become part of the standard armamentarium of treatment for patients with prostate cancer. In this review, the evidence supporting the use of this agent is highlighted, along with important areas now under investigation. Practical information on technology aspects, dose administration, nursing, and the role of the treating physician is highlighted. Overall, 177Lu-PSMA treatment requires close collaboration between referring physicians, nuclear medicine, technologists, radiopharmacy, and nursing, to enable streamlined patient care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amanda Morley
- University of California, San Francisco, United States
| | | | | |
Collapse
|
21
|
Edmonds CE, O'Brien SR, Mankoff DA, Pantel AR. Novel applications of molecular imaging to guide breast cancer therapy. Cancer Imaging 2022; 22:31. [PMID: 35729608 PMCID: PMC9210593 DOI: 10.1186/s40644-022-00468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
The goals of precision oncology are to provide targeted drug therapy based on each individual’s specific tumor biology, and to enable the prediction and early assessment of treatment response to allow treatment modification when necessary. Thus, precision oncology aims to maximize treatment success while minimizing the side effects of inadequate or suboptimal therapies. Molecular imaging, through noninvasive assessment of clinically relevant tumor biomarkers across the entire disease burden, has the potential to revolutionize clinical oncology, including breast oncology. In this article, we review breast cancer positron emission tomography (PET) imaging biomarkers for providing early response assessment and predicting treatment outcomes. For 2-18fluoro-2-deoxy-D-glucose (FDG), a marker of cellular glucose metabolism that is well established for staging multiple types of malignancies including breast cancer, we highlight novel applications for early response assessment. We then review current and future applications of novel PET biomarkers for imaging the steroid receptors, including the estrogen and progesterone receptors, the HER2 receptor, cellular proliferation, and amino acid metabolism.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Sophia R O'Brien
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - David A Mankoff
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University if Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
[18F]Fluciclovine PET/CT Improves the Clinical Management of Early Recurrence Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14061461. [PMID: 35326614 PMCID: PMC8946770 DOI: 10.3390/cancers14061461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In the challenge between increasingly sensitive PET radiopharmaceuticals for the evaluation of prostate cancer patient in biochemical relapse, the choice of the most accurate PET tracer must be guided by literature data, but above all tailored to the patient’s profile. In describing our single-center experience, we aimed to identify biochemical and clinical–histological factors to be considered in patient selection and the semiquantitative parameters that can help the interpretation of malignant from benign lesions, in order to optimize the performance of this imaging method. These data in combination with a significant impact on therapeutic decision making can be useful to further validate the [18F]Fluciclovine PET/CT clinical application. Abstract We investigated the [18F]Fluciclovine PET/CT reliability in the early detection of recurrent prostate cancer (PCa) and its impact on therapeutic decision making. We retrospectively analyzed 58 [18F]Fluciclovine PET/CT scans performed to identify early PCa recurrence. Detection rate (DR) and semiquantitative analysis were evaluated in relation to biochemical and clinical–histological features. Clinical follow-up data were collected and considered as gold standard to evaluate sensitivity, specificity, accuracy, positive and negative predictive value (PPV, NPV). The impact of [18F]Fluciclovine PET/CT on clinical management was also assessed. Overall DR resulted as 66%, while DR was 53%, 28%, and 7% in prostate/bed, lymph nodes, and bone, respectively. DR significantly increased with higher PSA values (p = 0.009) and 0.45 ng/mL was identified as the optimal cut-off value. Moreover, SUVmax and SUVmean resulted significant parameters in interpreting malignant from benign findings. [18F]Fluciclovine PET/CT reached a sensitivity, specificity, PPV, NPV, and accuracy of 87.10%, 80.00%, 87.10%, 80.00%, and 84.31%, respectively. Therapeutic strategy was changed in 51% of patients. Our results support [18F]Fluciclovine PET/CT as a reliable tool for early restaging of PCa patients, especially for local recurrence detection, leading to a significant impact on clinical management. Semiquantitative analysis could improve specificity in interpreting malignant from benign lesions.
Collapse
|
23
|
The Continuum of Metastatic Prostate Cancer: Interpreting PSMA PET Findings in Recurrent Prostate Cancer. Cancers (Basel) 2022; 14:cancers14061361. [PMID: 35326513 PMCID: PMC8946297 DOI: 10.3390/cancers14061361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Conventional imaging has been the standard imaging modality for assessing prostate cancer recurrence and is utilized to determine treatment response to therapy. Molecular imaging with PSMA PET-CT has proven to be more accurate, sensitive, and specific at identifying pelvic or distant metastatic disease, resulting in earlier diagnosis of advanced disease. Since advanced disease may not be seen on conventional imaging, due to its lower sensitivity, but can be identified by molecular imaging, this reveals that metastatic prostate cancer occurs on a continuum from negative PSMA PET-CT and negative conventional imaging to positive PSMA PET-CT and positive conventional imaging. Understanding this continuum, the accuracy of these modalities, and treatment related outcomes based on imaging, will allow the clinician to counsel patients on management. This review will highlight the differences in conventional and molecular imaging in prostate cancer and how PSMA PET-CT can be used for the management of prostate cancer patients in different clinical scenarios, while providing cautionary notes for overtreatment.
Collapse
|
24
|
Yadav D, Hwang H, Qiao W, Upadhyay R, Chapin BF, Tang C, Aparicio A, Lopez-Olivo MA, Kang SK, Macapinlac HA, Bathala TK, Surasi DS. 18F-Fluciclovine versus PSMA PET Imaging in Primary Tumor Detection during Initial Staging of High-Risk Prostate Cancer: A Systematic Review and Meta-Analysis. Radiol Imaging Cancer 2022; 4:e210091. [PMID: 35212559 PMCID: PMC8965534 DOI: 10.1148/rycan.210091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Purpose Fluorine 18 (18F)-fluciclovine and prostate-specific membrane antigen (PSMA) tracers are commonly used for localizing biochemical recurrence of prostate cancer, but their accuracy in primary tumor detection in the initial staging of high-risk prostate cancer has not been established. Materials and Methods A systematic review was performed of the electronic databases for original studies published between 2012 and 2020. Included studies were those in which 18F-fluciclovine or PSMA PET was used for initial staging of patients with high-risk prostate cancer. The diagnostic performance data were collected for primary tumor with histopathologic results as reference standard. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used for quality appraisal. A random-effects model was used to summarize the effect sizes and to evaluate the difference between two groups. Results Overall, 28 studies met the eligibility criteria, and 17 were included in the meta-analysis (18F-fluciclovine = 4, PSMA = 13). Of these 17 studies, 12 (70%) were judged to have high risk of bias in one of the evaluated domains, and nine studies were deemed to have applicability concerns. The pooled sensitivity, specificity, and diagnostic odds ratio for 18F-fluciclovine versus PSMA were 85% (95% CI: 73%, 92%) versus 84% (95% CI: 77%, 89%) (P = .78), 77% (95% CI: 60%, 88%) versus 83% (95% CI: 76%, 89%) (P = .40), and 18.88 (95% CI: 5.01, 71.20) versus 29.37 (95% CI: 13.35, 64.60) (P = .57), respectively, with no significant difference in diagnostic test accuracy. Conclusion 18F-fluciclovine and PSMA PET demonstrated no statistically significant difference in diagnostic accuracy in primary tumor detection during initial staging of high-risk prostate cancer. Keywords: PET, Prostate, Molecular Imaging-Cancer, Staging Supplemental material is available for this article. © RSNA, 2022.
Collapse
Affiliation(s)
- Divya Yadav
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Hyunsoo Hwang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Wei Qiao
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Rituraj Upadhyay
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Brian F. Chapin
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Chad Tang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Ana Aparicio
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Maria A. Lopez-Olivo
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Stella K. Kang
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Homer A. Macapinlac
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Tharakeswara K. Bathala
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| | - Devaki Shilpa Surasi
- From the Departments of Radiation Oncology (D.Y., R.U., C.T.),
Biostatistics (H.H., W.Q.), Urology (B.F.C.), Genitourinary Medical Oncology
(A.A.), Health Services Research (M.A.L.O.), Nuclear Medicine (H.A.M., D.S.S.),
and Abdominal Imaging (T.K.B.), The University of Texas MD Anderson Cancer
Center, 1515 Holcombe Blvd, Unit 483, Houston, TX 77030; and Department of
Radiology, NYU Langone Health, New York, NY (S.K.K.)
| |
Collapse
|
25
|
García Cañamaque L, Field CA, Furtado FS, Plaza DE Las Heras I, Husseini JS, Balza R, Jarraya M, Catalano OA, Mitjavila Casanovas M. Contribution of positron emission tomography/magnetic resonance imaging in musculoskeletal malignancies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:3-14. [PMID: 34881853 DOI: 10.23736/s1824-4785.21.03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Positron emission tomography/computed tomography (PET/CT) is a promising hybrid imaging technique for evaluating musculoskeletal malignancies. Both technologies, independently are useful for evaluating this type of tumors. PET/MR has great potential combining metabolic and functional imaging PET with soft tissue contrast and multiparametric sequences of MR. In this paper we review the existing literature and discuss the different protocols, new available radiotracers to conclude with the scarce evidence available the most useful/probable indications of the PET MR for the for musculoskeletal malignancies.
Collapse
Affiliation(s)
- Lina García Cañamaque
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain -
| | - Caroline A Field
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
26
|
Somnay V, Dalal I. Incidental Uptake of 18F-Fluciclovine by Type AB Thymoma. Clin Nucl Med 2022; 47:e116-e117. [PMID: 35006112 DOI: 10.1097/rlu.0000000000004024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Biochemical recurrence of prostate cancer, detected by a rising PSA, may reflect intraprostatic or extraprostatic recurrence. 18F-Fluciclovine (Axumin), a synthetic amino acid substrate in tumor metabolism, has frequently been used for to localize recurrent prostate cancers. We present a 71-year-old man with biochemical recurrence of prostate cancer but no convincing imaging findings on 18F-fluciclovine PET/CT. Of note, however, was an incidental uptake within the anterior mediastinum, which was found on biopsy to be a type AB thymoma. With this, we stress that awareness of false-positive uptake patterns is crucial for accurate diagnosis of recurrent prostate cancer.
Collapse
Affiliation(s)
- Vishal Somnay
- From the Department of Radiology, University of Louisville School of Medicine, Louisville, KY
| | - Ishani Dalal
- Department of Radiology, Henry Ford Hospital, Detroit, MI
| |
Collapse
|
27
|
Husseini JS, Balza R, Evangelista L, Cañamaque LG, Catalano OA. PET/MR for evaluation of musculoskeletal malignancies. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Farkas AB, Green ED, Thaggard AL, Vijayakumar V, Henegan JC, Lirette ST, Nittala MR, Vijayakumar S. Initial Institutional Experience with 18F-Fluciclovine PET-CT in Biochemical Recurrence of Prostate Cancer. South Med J 2021; 114:703-707. [PMID: 34729614 PMCID: PMC8560157 DOI: 10.14423/smj.0000000000001314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The state of Mississippi has a huge burden of cancer, including prostate cancer (PCa). The state ranks at or near the top in mortality from some of the most common cancers, including PCa. To meet this challenge, there is an urgent need to direct clinical research management efforts in the detection of early recurrent disease. This article is an effort in that endeavor. 18F-fluciclovine is an amino acid analog approved by the Food and Drug Administration for use as a radiotracer in positron emission tomography in men with suspected PCa recurrence following prior treatment. The purpose of this study was to investigate the initial institutional experience with 18F-fluciclovine in the evaluation of PCa biochemical recurrence. Objectives 18F-fluciclovine (fluciclovine) is an amino acid analog approved by the Food and Drug Administration for use as a radiotracer in positron emission tomography (PET) in men with biochemical recurrence of suspected prostate cancer. The purpose of this study was to investigate the initial institutional experience with 18F-fluciclovine in the evaluation of prostate cancer with biochemical recurrence. Methods This study was a retrospective review of 135 patients who underwent 18F-fluciclovine PET-computed tomography (PET-CT) at a single institution from August 2018 through January 2020. Prognostic information, including prostate-specific level antigen (PSA) at the time of diagnosis, initial risk, initial Gleason score, and initial stage, was reviewed as well as the PSA level at the time of the scan. The images were reviewed by two radiologists with fellowship training in nuclear medicine and additional training to interpret the fluciclovine studies. A minority of studies were reviewed by a third fellowship-trained radiologist under the guidance of the two nuclear medicine–trained radiologists. In cases with abnormal radiopharmaceutical uptake in lymph nodes, the short-axis dimension of the lymph node or largest lymph node with abnormal uptake was noted. If CT or bone scan was performed within 4 months of the 18F-fluciclovine PET-CT, findings on the alternate imaging were compared with the results of the 18F-fluciclovine PET-CT. Results Our institutional positivity rate was 75.6%, with 64 (67.4%) patients with metastatic disease and 71 (52.6%) patients with local recurrence detected by fluciclovine. As expected, the rate of positive examinations increased with increasing PSA values measured at the time of imaging (P < 0.001). Of the 54 patients with nodal disease, 35 had nonpathologically enlarged lymph nodes measuring <1 cm in maximum short-axis dimension. In more than half of the patients in this study, with conventional imaging, fluciclovine either discovered otherwise undetectable metastatic disease or suggested the presence of local recurrence. Conclusions Our single-institution experience with 18F-fluciclovine PET-CT has the largest number of patients to date in the literature and demonstrates the ability of fluciclovine to help guide clinical management in the detection of early recurrent disease.
Collapse
Affiliation(s)
- Amy B Farkas
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Edward D Green
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Anson L Thaggard
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Vani Vijayakumar
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - John C Henegan
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Seth T Lirette
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Mary R Nittala
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| | - Srinivasan Vijayakumar
- From the Departments of Radiology, Hematology/Oncology, Data Science, and Radiation Oncology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
29
|
Multifocal Meningiomas Mimicking Metastasis on 18F-Fluciclovine PET/CT. Nucl Med Mol Imaging 2021; 55:261-264. [PMID: 34721720 DOI: 10.1007/s13139-021-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
A 65-year-old male patient with a past medical history of prostate adenocarcinoma presented with biochemical recurrence (prostate-specific antigen level of 5.91 mg/L). 18F-FACBC PET/CT was acquired to evaluate the disease recurrence and metastasis. Multifocal areas of tracer uptake localized to the dural surface of frontal convexities and cavernous sinuses were seen. Subsequent MRI confirmed lesions to be consistent with multifocal meningiomas. Focal intracranial 18F-fluciclovine radiotracer uptake especially at the skull base may present with a diagnostic challenge, and it may be difficult to differentiate between bone metastasis and meningiomas.
Collapse
|
30
|
Abstract
ABSTRACT A 73-year-old man with history of grade group 1/Gleason 3 + 3 = 6 prostate adenocarcinoma status post prostatectomy had subsequent biochemical recurrence with serum prostate-specific antigen level of 2.4 ng/mL. He underwent an 18F-fluciclovine PET/CT scan that demonstrated a left prostate bed recurrence and an incidental 18F-fluciclovine-avid smooth-edged solitary lung nodule with internal fat attenuation. Such uptake of 18F-fluciclovine in a lung hamartoma could be mistaken for prostate cancer metastasis. Given the increasing use of advanced imaging for prostate cancer, there is need for the imaging specialist to know about pitfalls and how to interpret them.
Collapse
Affiliation(s)
- Sacha C. Baldeosingh
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science
| | - Steven P. Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stephen C. Greco
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Channing J. Paller
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Reema Goel
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science
| |
Collapse
|
31
|
Ng TS, An BP, Cho SY, Hyun H. US Trainee and Faculty Perspectives on Exposure to Nuclear Medicine/Molecular Imaging During Medical School. Curr Probl Diagn Radiol 2021; 50:585-591. [DOI: 10.1067/j.cpradiol.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
|
32
|
Garza D, Kandathil A, Xi Y, Subramaniam RM. 18F-fluciclovine PET/CT detection of biochemical recurrent prostate cancer in patients with PSA levels <2.00 ng/mL. Nucl Med Commun 2021; 42:907-913. [PMID: 33741863 DOI: 10.1097/mnm.0000000000001412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To establish the detection rate of prostate cancer recurrence following definitive therapy by 18F-fluciclovine PET/computed tomography (CT) in patients with biochemical recurrence (BCR) and prostate-specific antigen (PSA) levels less than 2.00 ng/mL. METHODS In this retrospective study, 78 patients with a PSA level of less than 2.00 ng/mL were selected from the 211 patients who underwent at least one 18F-fluciclovine PET/CT scan at our institution for the detection of biochemical recurrent prostate cancer between April 2017 and December 2018. Inherent differences in the characteristics of patients with and without a positive scan were investigated for possible associations using multivariable analysis. RESULTS One or more positive sites of recurrence were identified in 44 out of 78 patients (56.4%). Patients with a Gleason score between 8 and 10 were more likely to have a positive scan compared to patients with Gleason scores of 6-7 [adjusted odds ratio: 3.53, 95% confidence interval (1.13-10.99), P = 0.03]. No other significant association was found between PSA, T classification, and detection rate. CONCLUSION 18F-fluciclovine PET/CT demonstrated a detection rate of 56.4% among patients with a PSA below 2.0 ng/mL. The results of this study support the use of 18F-fluciclovine PET/CT for the detection of recurrent prostate cancer at lower PSA levels, even at PSA levels less than 0.5 ng/mL.
Collapse
Affiliation(s)
- Daniel Garza
- UT Southwestern: The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
33
|
J Koo P, Petrylak D. Novel imaging strategies for prostate cancer. Future Oncol 2021; 17:3545-3548. [PMID: 34251277 DOI: 10.2217/fon-2021-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Phillip J Koo
- Division of Diagnostic Imaging, Banner MD Anderson Cancer Center, Phoenix, AZ 85006, USA
| | | |
Collapse
|
34
|
Baiomy A, Schellingerhout D, Chapin BF, Weinberg JS, Raza SM, Macapinlac H, Ravizzini G. Rate of incidental central nervous system meningioma detected in patients undergoing 18F-fluciclovine PET/CT imaging for evaluation of prostate cancer. Nucl Med Commun 2021; 42:755-762. [PMID: 33741867 DOI: 10.1097/mnm.0000000000001389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the rate of incidental detection of central nervous system (CNS) meningioma in patients undergoing 18F-fluciclovine PET/computed tomography (CT) imaging for the evaluation of prostate cancer. METHODS The reports of 850 18F-fluciclovine PET/CT scans in 566 patients with pathologically proven prostate cancer performed from April 2017 to July 2019, were retrospectively reviewed for the presence of CNS meningioma. RESULTS A total of 14 patients (2.8%) (age range: 54-82 years old) had abnormal focal intracranial 18F-fluciclovine uptake, all extra-axial in location (SUVmax range: 3.2-19.3). Two cases out of 14 (0.35%) were diagnosed as metastatic lesions. Twelve out of the 14 patients, had 18F-fluciclovine PET/CT imaging findings suspicious for CNS meningioma, 2 of them received another diagnosis on further imaging, and only 10 cases (2%) had the diagnosis of meningioma according to follow-up MRI and 18F-fluciclovine PET/CT. CONCLUSION Focal 18F-fluciclovine avid intracranial lesions incidentally detected in patients undergoing PET/CT imaging for prostate cancer are most often CNS meningiomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Homer Macapinlac
- Department of Nuclear Medicine The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gregory Ravizzini
- Department of Nuclear Medicine The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Regmi SK, Sathianathen N, Stout TE, Konety BR. MRI/PET Imaging in elevated PSA and localized prostate cancer: a narrative review. Transl Androl Urol 2021; 10:3117-3129. [PMID: 34430415 PMCID: PMC8350235 DOI: 10.21037/tau-21-374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To review the recent milestones in MRI and PET based imaging and evaluate their evolving role in the setting of elevated PSA as well as localized prostate cancer. BACKGROUND The importance of multiparametric MRI (mpMRI) and PET based imaging for the diagnosis and staging of prostate cancer cannot be understated. Accurate staging has become another significant milestone with the use of PET scans, particularly with prostate specific radiotracers like 68-Gallium Prostate Specific Membrane Antigen (68Ga-PSMA). Integrated PET/MRI systems are commercially available and can be modulated to evaluate the unique needs of localized as well as recurrent prostate cancer. METHODS A literature search was performed using PubMed and Google Scholar using the MeSH compliant and other keywords that included prostate cancer, PSA, mpMRI, PET CT, PET/MRI. CONCLUSIONS mpMRI has now established itself as the gold-standard of local prostate imaging and has been incorporated into international guidelines as part of the diagnostic work-up of prostate cancer. PSMA PET/CT has shown superiority over conventional imaging even in staging of localized prostate cancer based on recent randomized control data. Imaging parameters from PET/MRI have been shown to be associated with malignancy, Gleason score and tumour volume. As mpMRI and PSMA PET/CT become more ubiquitous and established; we can anticipate more high-quality data, cost optimization and increasing availability of PET/MRI to be ready for primetime in localized prostate cancer.
Collapse
Affiliation(s)
- Subodh K. Regmi
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas E. Stout
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
36
|
Wang R, Shen G, Huang M, Tian R. The Diagnostic Role of 18F-Choline, 18F-Fluciclovine and 18F-PSMA PET/CT in the Detection of Prostate Cancer With Biochemical Recurrence: A Meta-Analysis. Front Oncol 2021; 11:684629. [PMID: 34222008 PMCID: PMC8249319 DOI: 10.3389/fonc.2021.684629] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Diagnosing the biochemical recurrence (BCR) of prostate cancer (PCa) is a clinical challenge, and early detection of BCR can help patients receive optimal treatment. We conducted a meta-analysis to define the diagnostic accuracy of PET/CT using 18F-labeled choline, fluciclovine, and prostate-specific membrane antigen (PSMA) in patients with BCR. Methods Multiple databases were searched until March 30, 2021. We included studies investigating the diagnostic accuracy of 18F-choline, 18F-fluciclovine, and 18F-PSMA PET/CT in patients with BCR. The pooled sensitivity, specificity, and detection rate of 18F-labeled tracers were calculated with a random-effects model. Results A total of 46 studies met the included criteria; 17, 16, and 13 studies focused on 18F-choline, fluciclovine, and PSMA, respectively. The pooled sensitivities of 18F-choline and 18F-fluciclovine were 0.93 (95% CI, 0.85–0.98) and 0.80 (95% CI, 0.65–0.897), and the specificities were 0.91 (95% CI, 0.73–0.97) and 0.66 (95% CI, 0.50–0.79), respectively. The pooled detection rates of 18F-labeled choline, fluciclovine and PSMA were 66, 74, and 83%, respectively. Moreover, the detection rates of 18F-labeled choline, fluciclovine, and PSMA were 35, 23, and 58% for a PSA level less than 0.5 ng/ml; 41, 46, and 75% for a PSA level of 0.5–0.99 ng/ml; 62, 57, and 86% for a PSA level of 1.0–1.99 ng/ml; 80, 92, and 94% for a PSA level more than 2.0 ng/ml. Conclusion These three 18F-labeled tracers are promising for detecting BCR in prostate cancer patients, with 18F-choline showing superior diagnostic accuracy. In addition, the much higher detection rates of 18F-PSMA showed its superiority over other tracers, particularly in low PSA levels. Systematic Review Registration PROSPERO, identifier CRD42020212531.
Collapse
Affiliation(s)
- Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Zhang J, Sun J, Bakht S, Hassan W. Recent Development and Future Prospects of Molecular Targeted Therapy in Prostate Cancer. Curr Mol Pharmacol 2021; 15:159-169. [PMID: 34102978 DOI: 10.2174/1874467214666210608141102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PC) is a rapidly increasing ailment worldwide. The previous decade has observed a rapid advancement in PC therapies that was evident from the number of FDA approvals during this phase. Androgen deprivation therapies (ADT) have traditionally remained a mainstay for the management of PCs, but the past decade has experienced the emergence of newer classes of drugs that can be used with or without the administration of ADT. FDA approved poly (ADP-ribose) polymerase inhibitors (PARPi), such as olaparib and rucaparib, after successful clinical trials against gene-mutated metastatic castration-resistant prostate cancer. Furthermore, drugs like apalutamide, darolutamide, and enzalutamide with an androgen-targeted mechanism of action have manifested superior results in non-metastatic castration-resistant prostate cancer (nmCRPC), metastatic castration-sensitive prostate cancer (mCSPC), and metastatic castration-resistant prostate cancer (mCRPC), respectively, with or without previously administered docetaxel. Relugolix, an oral gonadotropin-releasing hormone antagonist, and a combination of abiraterone acetate plus prednisone were also approved by FDA after a successful trial in advanced PC and mCRPC, respectively. This review aims to analyze the FDA-approved agents in PC during the last decade and provide a summary of their clinical trials. It also presents an overview of the ongoing progress of prospective molecules still under trial.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, First center Hospital of Baoding city, Hebei, 071000, China
| | - Jirui Sun
- Department of Pathology, First center Hospital of Baoding city, Hebei, 071000, China
| | - Sahar Bakht
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| |
Collapse
|
38
|
Abiodun-Ojo OA, Akintayo AA, Harik LR, Bilen M, Halkar RK. Poorly Differentiated Neuroendocrine Tumor With 18F-Fluciclovine Uptake in a Patient With Metastatic Castrate-Resistant Prostate Cancer. Clin Nucl Med 2021; 46:e282-e285. [PMID: 33208627 DOI: 10.1097/rlu.0000000000003408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT 18F-Fluciclovine is an amino acid-based radiopharmaceutical used primarily for PET imaging of patients with biochemical recurrence of prostate cancer. We report a case of a 66-year-old man with recently diagnosed metastatic castrate-resistant prostate cancer and a left supraclavicular lymph node with incidental radiotracer uptake on 18F-fluciclovine PET/CT. Left neck core needle biopsy confirmed high-grade, poorly differentiated carcinoma with neuroendocrine features positive for synaptophysin and chromogranin, and negative for prostate markers.
Collapse
Affiliation(s)
| | | | - Lara R Harik
- Pathology and Laboratory Medicine, Emory University School of Medicine
| | - Mehmet Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute at Emory University, Atlanta, GA
| | | |
Collapse
|
39
|
Husseini JS, Amorim BJ, Torrado-Carvajal A, Prabhu V, Groshar D, Umutlu L, Herrmann K, Cañamaque LG, Garzón JRG, Palmer WE, Heidari P, Shih TTF, Sosna J, Matushita C, Cerci J, Queiroz M, Muglia VF, Nogueira-Barbosa MH, Borra RJH, Kwee TC, Glaudemans AWJM, Evangelista L, Salvatore M, Cuocolo A, Soricelli A, Herold C, Laghi A, Mayerhoefer M, Mahmood U, Catana C, Daldrup-Link HE, Rosen B, Catalano OA. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases. Eur J Nucl Med Mol Imaging 2021; 48:1522-1537. [PMID: 33619599 PMCID: PMC8240455 DOI: 10.1007/s00259-021-05198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use. METHODS We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered. RESULTS Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies. CONCLUSION PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.
Collapse
Affiliation(s)
- Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, School of Medical Sciences,, State University of Campinas, Campinas, Brazil
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Vinay Prabhu
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lina García Cañamaque
- Department of Nuclear Medicine, Hospital Universitario Madrid Sanchinarro, Madrid, Spain
| | | | - William E Palmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tiffany Ting-Fang Shih
- Department of Radiology and Medical Imaging, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Jacob Sosna
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Cristina Matushita
- Department of Nuclear Medicine, Hospital São Lucas of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Cerci
- Department of Nuclear Medicine, Quanta Diagnóstico Nuclear, Curitiba, Brazil
| | - Marcelo Queiroz
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Valdair Francisco Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, Hospital Clinicas, University of São Paulo, Ribeirão Prêto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School. University of São Paulo (USP), Ribeirão Prêto, Brazil
| | - Ronald J H Borra
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Evangelista
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Marco Salvatore
- Department of Radiology and Nuclear Medicine, Università Suor Orsola Benincasa di Napoli, Naples, Italy
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
| | - Alberto Cuocolo
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Andrea Soricelli
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andrea Laghi
- Department of Radiology, University of Rome "La Sapienza", Rome, Italy
| | - Marius Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
40
|
Chu CE, Alshalalfa M, Sjöström M, Zhao SG, Liu Y, Chou J, Herlemann A, Mahal B, Kishan AU, Spratt DE, Cooperberg M, Small E, Wong A, Porten S, Hope TA, Ross AE, Davicioni E, Nguyen P, Karnes RJ, Carroll PR, Schaeffer E, Feng FY. Prostate-specific Membrane Antigen and Fluciclovine Transporter Genes are Associated with Variable Clinical Features and Molecular Subtypes of Primary Prostate Cancer. Eur Urol 2021; 79:717-721. [PMID: 33840559 DOI: 10.1016/j.eururo.2021.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
18F-Fluciclovine-based positron emission tomography (PET) imaging is recommended in the USA for biochemical recurrence (BCR) after prostate cancer treatment. However, prostate-specific membrane antigen (PSMA)-based PET imaging is more common worldwide, supported by international guidelines, and is now approved by the Food and Drug Administration in the USA for initial staging of primary prostate cancer. Little is known about the molecular profiles of lesions detected by PSMA-targeted PET/computed tomography (CT) versus 18F-fluciclovine PET/CT. We examined the expression of PSMA (FOLH1) and the fluciclovine transporter genes LAT1-4 and ASCT1/2 in a combined cohort of more than 18 000 radical prostatectomy specimens and their associations with clinical outcomes. Expression of PSMA and all but one fluciclovine transporter gene was higher in prostate cancer than in benign tissue. PSMA expression was associated with Gleason score (GS) ≥8 and lymph node involvement (LNI), and had a positive linear correlation with Decipher risk score. By contrast, expression of the fluciclovine transporters LAT2, LAT3, and ASCT2 was negatively associated with GS ≥ 8, LNI, and high Decipher score. The top decile of PSMA expression was associated with poorest metastasis-free survival (MFS), while the bottom deciles of LAT3 and ASCT2 expression were associated with poorest MFS. PATIENT SUMMARY: We measured the expression of genes that encode the targets for two different radiotracers in PET (positron emission tomography) scans of the prostate. We found that PSMA gene expression (PSMA-based tracer) is associated with worse clinical outcomes, while expression of ASCT2, LAT2, and LAT3 genes (fluciclovine tracer) is associated with better outcomes.
Collapse
Affiliation(s)
- Carissa E Chu
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California-San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California-San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Liu
- Decipher Biosciences, La Jolla, CA, USA
| | - Jonathan Chou
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA; Division of Hematology/Oncology, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Annika Herlemann
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Brandon Mahal
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Cooperberg
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, University of California-San Francisco, San Francisco, CA, USA
| | - Eric Small
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA; Decipher Biosciences, La Jolla, CA, USA
| | - Anthony Wong
- Department of Radiation Oncology, University of California-San Francisco, San Francisco, CA, USA
| | - Sima Porten
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Thomas A Hope
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Ashley E Ross
- Department of Urology, Northwestern University, Chicago, IL, USA
| | | | - Paul Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Peter R Carroll
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University, Chicago, IL, USA.
| | - Felix Y Feng
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, University of California-San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
41
|
Raghavan K, Flavell RR, Westphalen AC, Behr SC. Gastrointestinal Stromal Tumor Incidentally Detected on 18F-Fluciclovine PET/CT. Clin Nucl Med 2021; 46:345-347. [PMID: 33234933 DOI: 10.1097/rlu.0000000000003426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We present a case of metastatic gastrointestinal stromal tumor incidentally detected on 18F-fluciclovine PET/CT. A 68-year-old man with history of intermediate-risk prostate cancer (Gleason score 4 + 3 = 7; pT2cN0M0) previously treated with retropubic radical prostatectomy, adjuvant whole pelvis radiation, and androgen deprivation therapy (leuprolide) presented with slowly rising serum prostate-specific antigen over 3 years, concerning for recurrent prostate cancer. To identify potential sites of recurrent disease, an 18F-fluciclovine PET/CT was obtained. Multiple tracer-avid mesenteric masses and enlarged lymph nodes were found throughout the abdomen and pelvis, later biopsy-proven to reflect metastatic gastrointestinal stromal tumor.
Collapse
Affiliation(s)
| | | | - Antonio C Westphalen
- Division of Abdominal Imaging, Department of Radiology, University of Washington, Seattle, WA
| | | |
Collapse
|
42
|
Baiomy A, Martiniova L, Efstathiou E, Schuster DM, Ravizzini G. Prostate Cancer Liver Metastases Presenting as Relatively Photopenic Lesions on 18F-Fluciclovine PET/CT. Clin Nucl Med 2021; 46:e240-e241. [PMID: 33208612 DOI: 10.1097/rlu.0000000000003377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT A 66-year-old man with prostate adenocarcinoma status post radical retropubic prostatectomy and bilateral pelvic lymph node dissection, followed by salvage external beam radiation therapy to the prostate bed 1 year after surgery. Over the course of 17 years, the patient underwent multiple lines of systemic treatment for recurrent disease. He was referred for restaging 18F-fluciclovine PET/CT due to rising serum prostate-specific antigen levels. Contrast-enhanced 18F-fluciclovine PET/CT images demonstrated multiple new liver metastases, which were relatively photopenic in comparison with the physiologic radiotracer activity in the surrounding normal liver parenchyma.
Collapse
Affiliation(s)
| | | | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
43
|
Dreyfuss AD, Ahn GS, Barsky AR, Gillman JA, Vapiwala N, Pantel AR. 18F-Fluciclovine PET/CT in Therapeutic Decision Making for Prostate Cancer: A Large Single-Center Practice-Based Analysis. Clin Nucl Med 2021; 46:187-194. [PMID: 33315672 DOI: 10.1097/rlu.0000000000003444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
METHODS We carried out a retrospective cohort study of patients with BR after primary treatment of PC who received imaging with 18F-fluciclovine PET/CT at our institution between January 2010 and January 2019. PET/CT results were compared with biopsy, conventional imaging results, and/or response to PC therapy. 18F-Fluciclovine PET/CT performance statistics and effects on treatment planning were calculated. RESULTS A total of 328 patients with a median age of 71 years (range, 47-90 years) and median serum prostate-specific antigen level of 1.6 ng/mL (0.02-186.7 ng/mL) were included. Three hundred thirty-six 18F-fluciclovine PET/CT scans were analyzed and classified as positive (65%), negative (25%), or equivocal (10%) based on radiology reports. Sensitivity was 93% (95% confidence interval, 86%-96%) and specificity was 63% (95% confidence interval, 45%-77%). Of patients with known management recommendations post-PET/CT, scan results changed or influenced pre-PET/CT management plans in 73%, and 58% of recommendations involved treatment modality decisions. Overall, 82% of patients' actual management was concordant with post-PET/CT recommendations. Of evaluable patients, 116 (35%) had some form of post-PET radiotherapy included in their care plans, with 95% receiving radiotherapy at a PET-avid target. CONCLUSIONS In the largest single-institutional cohort to date, 18F-fluciclovine PET/CT showed value in the workup of PC in the setting of BR, with noteworthy influence over clinical management decisions. Further studies are needed to evaluate whether PET/CT-based changes in management are associated with improved outcomes.
Collapse
Affiliation(s)
- Alexandra D Dreyfuss
- From the Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Grace S Ahn
- University of California San Diego School of Medicine, University of California San Diego, La Jolla, CA
| | - Andrew R Barsky
- From the Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Jennifer A Gillman
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Neha Vapiwala
- From the Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Austin R Pantel
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
44
|
Filippi L, Chiaravalloti A, Basile P, Schillaci O, Bagni O. Molecular and metabolic imaging of castration-resistant prostate cancer: state of art and future prospects. Curr Mol Med 2021; 22:25-36. [PMID: 33573553 DOI: 10.2174/1566524021666210211112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) represents the most common tumor in male and one of the most relevant causes of death in Western countries. Androgen deprivation therapy (ADT) constitutes a widely used approach in advanced PCa. When PCa progresses in spite of ADT and castrate levels of testosterone, the severe clinical condition termed as metastatic castration-resistant prostate cancer (mCRPC) takes place. The only approach to mCRPC has been represented by chemotherapy with taxanes for many years. Nevertheless, recently introduced treatments such as 2nd generation antiandrogens (i.e. enzalutamide and abiraterone), cell immunotherapy with sipuleucel-T or targeted alpha therapy with 223Ra-dichloride, have dramatically changed mCRPC prognosis. These novel therapies call for an unmet need for imaging biomarkers suitable for patients' pre-treatment stratification and response assessment. In this scenario, nuclear medicine can provide several metabolic and molecular probes for investigating pathological processes at a cellular and sub-cellular level. The aim of this paper is to review the most relevant findings of the literature published to date on this topic, giving particular emphasis to the pros and cons of each tracer and also covering future prospects for defining personalized therapeutic approaches.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Department, "Santa Maria Goretti" Hospital, via Canova, 04100, Latina. Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome. Italy
| | - Pietro Basile
- Nuclear Medicine Department, "Santa Maria Goretti" Hospital, via Canova, 04100, Latina. Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome. Italy
| | - Oreste Bagni
- Nuclear Medicine Department, "Santa Maria Goretti" Hospital, via Canova, 04100, Latina. Italy
| |
Collapse
|
45
|
Role of 18F-Fluciclovine and Prostate-Specific Membrane Antigen PET/CT in Guiding Management of Oligometastatic Prostate Cancer: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2021; 216:851-859. [PMID: 33206564 DOI: 10.2214/ajr.20.24711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Twenty-five years ago, oligometastatic disease was proposed as an intermediary clinical state of cancer with unique implications for therapies that may impact cancer evolution and patient outcome. Identification of limited metastases that are potentially amenable to targeted therapies fundamentally depends on the sensitivity of diagnostic tools, including new-generation imaging methods. For men with biochemical recurrence after definitive therapy of the primary prostate cancer, PET/CT using either the FDA-approved radiolabeled amino acid analogue 18F-fluciclovine or investigational radiolabeled agents targeting prostate-specific membrane antigen (PSMA) enables identification of early metastases at lower serum PSA levels than was previously feasible using conventional imaging. Evidence supports PSMA PET/CT as the most sensitive imaging modality available for identifying disease sites in oligometastatic prostate cancer. PSMA PET/CT will likely become the modality of choice after regulatory approval and will drive the development of trials of emerging metastasis-directed therapies such as stereotactic ablative body radiation and radioguided surgery. Indeed, numerous ongoing or planned clinical trials are studying advances in management of oligometastatic prostate cancer based on this heightened diagnostic capacity. In this rapidly evolving clinical environment, radiologists and nuclear medicine physicians will play major roles in facilitating clinical decision making and management of patients with oligometastatic prostate cancer.
Collapse
|
46
|
Romagnolo C, Cottignoli C, Palucci A, Biscontini G, Fringuelli FM, Burroni L. Pictorial essay: incidental findings on 18F-Fluciclovine PET/CT scan. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00412-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Introduction
Fluorine-18 (18F) Fluciclovine (anti-1-amino-3-18F-fluorocyclobutane- 1-carboxylic acid [FACBC]) is a synthetic amino acid labeled with 18F, currently used as PET radiopharmaceutical to investigating prostate cancer, namely in the recurrent setting.
Fluciclovine is transported to cell membranes by amino acid transporters, such as LAT1 and ASCT2. The upregulation of LAT-1 and ASCT2 activities is typical of prostate cancer but is also present in other pathological conditions such as non-prostatic neoplasms (e.g., lung cancer) and in benign inflammatory process (e.g., benign prostatic hyperplasia, chronic prostatitis, high-grade prostatic hyperplasia intraepithelial).
Methods
In this short essay we present a retrospective FACBC PET/CT analysis consisting of a selection of the five most relevant cases of patients referred in our centre to FACBC PET/CT for prostate cancer, with concomitant FACBC uptake in sites atyipical for prostate cancer.
Results
These five selected cases demonstrate FACBC uptake at the level of the pancreatic head, adrenal incidentalomas, pulmonary nodules, mediastinal lymph nodes and neoformative tissue of the rectal wall.
Discussion
Clinical cases selected in this pictorial essay have demonstrated that Fluciclovine is not an exclusive and specific radiotracer for prostate cancer and, therefore, can induce misdiagnosis. In fact, incidental benign and malignant uptake might occur and should be further evaluated with clinical correlation or other imaging.
Collapse
|
47
|
Alberts IL, Seide SE, Mingels C, Bohn KP, Shi K, Zacho HD, Rominger A, Afshar-Oromieh A. Comparing the diagnostic performance of radiotracers in recurrent prostate cancer: a systematic review and network meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48:2978-2989. [PMID: 33550425 PMCID: PMC8263438 DOI: 10.1007/s00259-021-05210-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 01/07/2023]
Abstract
Purpose Many radiotracers are currently available for the detection of recurrent prostate cancer (rPC), yet many have not been compared head-to-head in comparative imaging studies. There is therefore an unmet need for evidence synthesis to guide evidence-based decisions in the selection of radiotracers. The objective of this study was therefore to assess the detection rate of various radiotracers for the rPC. Methods The PUBMED, EMBASE, and the EU and NIH trials databases were searched without date or language restriction for comparative imaging tracers for 13 radiotracers of principal interest. Key search terms included 18F-PSMA-1007, 18F-DCPFyl, 68Ga-PSMA-11, 18F-PSMA-11, 68Ga-PSMA-I&T, 68Ga-THP-PSMA, 64Cu-PSMA-617, 18F-JK-PSMA-7, 18F-Fluciclovine, 18F-FABC, 18F-Choline, 11C-Choline, and 68Ga-RM2. Studies reporting comparative imaging data in humans in rPC were selected. Single armed studies and matched pair analyses were excluded. Twelve studies with eight radiotracers were eligible for inclusion. Two independent reviewers screened all studies (using the PRISMA-NMA statement) for inclusion criteria, extracted data, and assessed risk of bias (using the QUADAS-2 tool). A network meta-analysis was performed using Markov-Chain Monte Carlo Bayesian analysis to obtain estimated detection rate odds ratios for each tracer combination. Results A majority of studies were judged to be at risk of publication bias. With the exception of 18F-PSMA-1007, little difference in terms of detection rate was revealed between the three most commonly used PSMA-radiotracers (68Ga-PSMA-11, 18F-PSMA-1007, 18F-DCFPyl), which in turn showed clear superiority to choline and fluciclovine using the derived network. Conclusion Differences in patient-level detection rates were observed between PSMA- and choline-radiotracers. However, there is currently insufficient evidence to favour one of the four routinely used PSMA-radioligands (PSMA-11, PSMA-1007, PSMA-I&T, and DCFPyl) over another owing to the limited evidence base and risk of publication bias revealed by our systematic review. A further limitation was lack of reporting on diagnostic accuracy, which might favour radiotracers with low specificity in an analysis restricted only to detection rate. The NMA derived can be used to inform the design of future clinical trials and highlight areas where current evidence is weak. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05210-9.
Collapse
Affiliation(s)
- Ian Leigh Alberts
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland.
| | - Svenja Elizabeth Seide
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Clemens Mingels
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Karl Peter Bohn
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, DK-9000, Aalborg, Denmark
| | - Axel Rominger
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, CH-3010, Bern, Switzerland
| |
Collapse
|
48
|
Parent EE, Patel D, Nye JA, Li Z, Olson JJ, Schuster DM, Goodman MM. [ 18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res 2020; 10:148. [PMID: 33284388 PMCID: PMC7721921 DOI: 10.1186/s13550-020-00739-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is often the primary treatment modality for patients with intracranial metastatic disease. Despite advances in magnetic resonance imaging, including use of perfusion and diffusion sequences and molecular imaging, distinguishing radiation necrosis from progressive tumor remains a diagnostic and clinical challenge. We investigated the sensitivity and specificity of 18F-fluciclovine PET to accurately distinguish radiation necrosis from recurrent intracranial metastatic disease in patients who had previously undergone SRS. METHODS Fluciclovine PET imaging was performed in 8 patients with a total of 15 lesions that had previously undergone SRS and had subsequent MRI and clinical features suspicious for recurrent disease. The SUVmax of each lesion and the contralateral normal brain parenchyma were summated and evaluated at four different time points (5 min, 10 min, 30 min, and 55 min). Lesions were characterized as either recurrent disease (11 of 15 lesions) or radiation necrosis (4 of 15 lesions) and confirmed with histopathological correlation (7 lesions) or through serial MRI studies (8 lesions). RESULTS Time activity curve analysis found statistically greater radiotracer accumulation for all lesions, including radiation necrosis, when compared to contralateral normal brain. While the mean and median SUVmax for recurrent disease were statistically greater than those of radiation necrosis at all time points, the difference was more significant at the earlier time points (p = 0.004 at 5 min-0.025 at 55 min). Using a SUVmax threshold of ≥ 1.3, fluciclovine PET demonstrated a 100% accuracy in distinguishing recurrent disease from radiation necrosis up to 30 min after injection and an accuracy of 87% (sensitivity = 0.91, specificity = 0.75) at the last time point of 55 min. However, tumor-to-background ratios (TBRmax) were not significantly different between recurrent disease and radiation necrosis at any time point due to variable levels of fluciclovine uptake in the background brain parenchyma. CONCLUSIONS Fluciclovine PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.
Collapse
Affiliation(s)
| | - Dhruv Patel
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Zhuo Li
- Department of Statistics, Mayo Clinic, Jacksonville, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA.
| |
Collapse
|
49
|
Incidental Detection of Lung Adenocarcinoma Presenting as an Anterior Mediastinal Mass on 18F-Fluciclovine PET/CT in a Patient With Primary Prostate Cancer. Clin Nucl Med 2020; 45:e525-e527. [PMID: 32701811 DOI: 10.1097/rlu.0000000000003207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
F-fluciclovine is a PET radiotracer approved for detection of recurrent prostate cancer, with utility in other malignancies being investigated. We present the case of a 71-year-old man with high-risk primary prostate cancer (Gleason score 9, prostate-specific antigen 34 ng/mL) and newly diagnosed lung adenocarcinoma. As part of a clinical trial (NCT03081884), preoperative F-fluciclovine PET/CT showed localized abnormal uptake in the prostate gland with extracapsular extension. Additionally, an incidental anterior mediastinal mass measuring 2.2 × 1.8 cm demonstrated abnormal radiotracer uptake. Biopsy of the mediastinal mass confirmed invasive lung adenocarcinoma with solid and acinar patterns and high programmed death 1 ligand expression.
Collapse
|
50
|
223Ra-Dichloride Response Evaluation Using 18F-Fluciclovine PET/CT and Bone Scintigraphy in a Patient With Castration-Resistant Metastatic Prostate Cancer. Clin Nucl Med 2020; 45:e486-e488. [PMID: 32657864 DOI: 10.1097/rlu.0000000000003168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 66-year-old man was diagnosed with metastatic prostate cancer to the bones. The patient started Ra-dichloride (Xofigo) therapy in April 2019. Tc-MDP bone scan and F-fluciclovine (Axumin) PET/CT showed discordant but overall complementary findings that indicated disease progression after 5 doses of Xofigo therapy. The patient's prostate-specific antigen increased from 33.81 ng/mL at baseline before Xofigo therapy and up to 394.3 ng/mL after the fifth dose of Xofigo treatment. Because of disease progression, Xofigo therapy was discontinued.
Collapse
|