1
|
Hribernik N, Strasek K, Studen A, Zevnik K, Skalic K, Jeraj R, Rebersek M. Early-time-point 18F-FDG-PET/CT and other prognostic biomarkers of survival in metastatic melanoma patients receiving immunotherapy. Radiol Oncol 2025; 59:43-53. [PMID: 40014787 PMCID: PMC11867565 DOI: 10.2478/raon-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND A considerable proportion of metastatic melanoma (mM) patients do not respond to immune checkpoint inhibitors (ICIs). There is a great need to develop noninvasive biomarkers to detect patients, who do not respond to ICIs early during the course of treatment. The aim of this study was to evaluate the role of early [18F]2fluoro-2-deoxy-D-glucose PET/CT (18F-FDG PET/CT) at week four (W4) and other possible prognostic biomarkers of survival in mM patients receiving ICIs. PATIENTS AND METHODS . In this prospective noninterventional clinical study, mM patients receiving ICIs regularly underwent 18F-FDG PET/CT: at baseline, at W4 after ICI initiation, at week sixteen and every 16 weeks thereafter. The tumor response to ICIs at W4 was assessed via modified European Organisation for Research and Treatment of Cancer (EORTC) criteria. Patients with progressive metabolic disease (PMD) were classified into the no clinical benefit group (no-CB), and those with other response types were classified into the clinical benefit group (CB). The primary end point was survival analysis on the basis of the W4 18F-FDG PET/CT response. The secondary endpoints were survival analysis on the basis of LDH, the number of metastatic localizations, and immune-related adverse events (irAEs). Kaplan-Meier analysis and univariate Cox regression analysis were used to assess the impact on survival. RESULTS Overall, 71 patients were included. The median follow-up was 37.1 months (952% CI = 30.1-38.0). Three (4%) patients had only baseline scans due to rapid disease progression and death prior to W4 18F-FDG-PET/CT. Fifty-one (72%) patients were classified into the CB group, and 17 (24%) were classified into the no-CB group. There was a statistically significant difference in median overall survival (OS) between the CB group (median OS not reached [NR]; 95% CI = 17.8 months - NR) and the no-CB group (median OS 6.2 months; 95% CI = 4.6 months - NR; p = 0.003). Univariate Cox analysis showed HR of 0.4 (95% CI = 0.18 - 0.72; p = 0.004). median OS was also significantly longer in the group with normal serum LDH levels and the group with irAEs and cutaneous irAEs. CONCLUSIONS Evaluation of mM patients with early 18F-FDG-PET/CT at W4, who were treated with ICIs, could serve as prognostic imaging biomarkers. Other recognized prognostic biomarkers were the serum LDH level and occurrence of cutaneous irAEs.
Collapse
Affiliation(s)
- Nezka Hribernik
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Strasek
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Experimental Particle Physics Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Katarina Zevnik
- Department of Nuclear Medicine, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Katja Skalic
- Department of Nuclear Medicine, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Robert Jeraj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Experimental Particle Physics Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Martina Rebersek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Zhou X, Wu Q, Zhai W, Zhang Y, Wu Y, Cao M, Wang C, Guan Y, Liu J, Xie F, Wei W. CD70-Targeted Immuno-PET/CT Imaging of Clear Cell Renal Cell Carcinoma: A Translational Study. J Nucl Med 2024; 65:1891-1898. [PMID: 39510586 DOI: 10.2967/jnumed.124.268509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The diagnosis and surveillance of clear cell renal cell carcinoma (ccRCC) remains a clinical challenge. The high and specific expression of the cluster of differentiation 70 (CD70) in ccRCC makes it a potential diagnostic and therapeutic target. Methods: We detected and analyzed CD70 expression in various renal cell carcinomas (RCCs) and normal kidneys using immunohistochemical staining. Two novel CD70-specific single-domain antibodies, RCCB3 and RCCB6, were produced and labeled with 68Ga to develop radiotracers. We performed immuno-PET/CT imaging with [68Ga]Ga-NOTA-RCCB3 and [68Ga]Ga-NOTA-RCCB6 in subcutaneous ccRCC patient-derived xenograft models. We recruited 8 RCC patients in a pilot clinical trial (ClinicalTrials.gov identifier: NCT06148220) to evaluate the diagnostic utility of [68Ga]Ga-NOTA-RCCB3 and [68Ga]Ga-NOTA-RCCB6 immuno-PET/CT. Results: Expression of CD70 is associated with sex, tumor differentiation, tumor thrombus, necrosis, distant metastasis, and overall survival of RCC patients. RCCB3 and RCCB6 had high affinities for recombinant human CD70. Immuno-PET/CT imaging with [68Ga]Ga-NOTA-RCCB3 and [68Ga]Ga-NOTA-RCCB6 rapidly visualized subcutaneous ccRCC with clarity. Tumor uptake of [68Ga]Ga-NOTA-RCCB6 was significantly reduced after the blockade of CD70. [68Ga]Ga-NOTA-RCCB6 PET/CT in ccRCC patients outperformed traditional 18F-FDG PET/CT in specifically identifying CD70-positive ccRCC metastases. Conclusion: CD70-targeted immuno-PET/CT imaging with [68Ga]Ga-NOTA-RCCB6 or [68Ga]Ga-NOTA-RCCB3 is a precise and superior method for evaluating tumor burden and suspected metastases in ccRCC patients. This advancement in imaging technology has the potential to improve the clinical decision-making process for this patient cohort significantly.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China; and
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;
| |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Hribernik N, Strasek K, Huff DT, Studen A, Zevnik K, Skalic K, Jeraj R, Rebersek M. Role of quantitative imaging biomarkers in an early FDG-PET/CT for detection of immune-related adverse events in melanoma patients: a prospective study. Radiol Oncol 2024; 58:335-347. [PMID: 39287171 PMCID: PMC11406908 DOI: 10.2478/raon-2024-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND To evaluate the role of the novel quantitative imaging biomarker (QIB) SUVX% of 18F-FDG uptake extracted from early 18F-FDG-PET/CT scan at 4 weeks for the detection of immune-related adverse events (rAE) in a cohort of patients with metastatic melanoma (mM) patients receiving immune-checkpoint inhibitors (ICI). PATIENTS AND METHODS In this prospective non-interventional, one-centre clinical study, patients with mM, receiving ICI treatment, were regularly followed by 18F-FDG PET/CT. Patients were scanned at baseline, early point at week four (W4), week sixteen (W16) and week thirty-two (W32) after ICI initiation. A convolutional neural network (CNN) was used to segment three organs: lung, bowel, thyroid. QIB of irAE - SUVX% - was analyzed within the target organs and correlated with the clinical irAE status. Area under the receiver-operating characteristic curve (AUROC) was used to quantify irAE detection performance. RESULTS A total of 242 18F-FDG PET/CT images of 71 mM patients were prospectively collected and analysed. The early W4 scan showed improved detection only for the thyroid gland compared to W32 scan (p=0.047). The AUROC for detection of irAE in the three target organs was highest when SUVX% was extracted from W16 scan and was 0.76 for lung, 0.53 for bowel and 0.81 for thyroid. SUVX% extracted from W4 scan did not improve detection of irAE compared to W16 scan (lung: p = 0.54, bowel: p = 0.75, thyroid: p = 0.3, DeLong test), as well as compared to W32 scan in lungs (p = 0.32) and bowel (p = 0.3). CONCLUSIONS Early time point 18F-FDG PET/CT at W4 did not lead to statistically significant earlier detection of irAE. However, organ 18F-FDG uptake as quantified by SUVX% proved to be a consistent QIB of irAE. To better assess the role of 18F-FDG PET/CT in irAE detection, the time evolution of 18F-FDG PET/CT quantifiable inflammation would be of essence, only achievable in multi centric studies.
Collapse
Affiliation(s)
- Nezka Hribernik
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Strasek
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel T Huff
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrej Studen
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Experimental Particle Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Katarina Zevnik
- Department of Nuclear Medicine, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Katja Skalic
- Department of Nuclear Medicine, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Robert Jeraj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- University of Wisconsin Carbone Cancer Centre, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Experimental Particle Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Martina Rebersek
- Department of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Karlsen W, Akily L, Mierzejewska M, Teodorczyk J, Bandura A, Zaucha R, Cytawa W. Is 18F-FDG-PET/CT an Optimal Imaging Modality for Detecting Immune-Related Adverse Events after Immune-Checkpoint Inhibitor Therapy? Pros and Cons. Cancers (Basel) 2024; 16:1990. [PMID: 38893111 PMCID: PMC11171385 DOI: 10.3390/cancers16111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized contemporary oncology, presenting efficacy in various solid tumors and lymphomas. However, ICIs may potentially overstimulate the immune system, leading to immune-related adverse events (irAEs). IrAEs may affect multiple organs, such as the colon, stomach, small intestine, kidneys, skin, lungs, joints, liver, lymph nodes, bone marrow, brain, heart, and endocrine glands (e.g., pancreas, thyroid, or adrenal glands), exhibiting autoimmune inflammation. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is commonly used in oncology for staging and assessment of therapy responses, but it may also serve as a tool for detecting irAEs. This review aims to present various patterns of metabolic activation associated with irAEs due to ICI treatment, identifiable through 18F-FDG PET/CT. It describes the advantages of early detection of irAEs, but also presents the challenges in differentiating them from tumor progression. It also delves into aspects of molecular response assessment within the context of pseudoprogression and hyperprogression, along with typical imaging findings related to these phenomena. Lastly, it summarizes the role of functional PET imaging in oncological immunotherapy, speculating on its future significance and limitations.
Collapse
Affiliation(s)
- William Karlsen
- Students’ Scientific Circle Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (W.K.); (L.A.)
| | - Lin Akily
- Students’ Scientific Circle Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (W.K.); (L.A.)
| | - Monika Mierzejewska
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| | - Jacek Teodorczyk
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| | - Artur Bandura
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (A.B.); (R.Z.)
| | - Renata Zaucha
- Department of Clinical Oncology and Radiotherapy, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (A.B.); (R.Z.)
| | - Wojciech Cytawa
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland; (M.M.); (J.T.)
| |
Collapse
|
6
|
Khandelwal Y, Singh Parihar A, Sistani G, Ramirez-Fort MK, Zukotynski K, Subramaniam RM. Role of PET/Computed Tomography in Gastric and Colorectal Malignancies. PET Clin 2024; 19:177-186. [PMID: 38199915 DOI: 10.1016/j.cpet.2023.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This article focuses on the role of PET/computed tomography in evaluating and managing gastric cancer and colorectal cancer. The authors start with describing the common aspects of imaging with 2-deoxy-2-18F-d-glucose, followed by tumor-specific discussions of gastric and colorectal malignancies. Finally, the authors provide a brief overview of non-FDG tracers including their potential clinical applications, and describe future directions in imaging these malignancies.
Collapse
Affiliation(s)
- Yogita Khandelwal
- Department of Nuclear Medicine, AIIMS Campus, Ansari Nagar East, New Delhi, Delhi 110016, India
| | - Ashwin Singh Parihar
- Mallinckodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Golmehr Sistani
- Medical Imaging Department, Royal Victoria Regional Health Centre, 201 Georgian Drive, Barrie, ON L4M 6M2, Canada
| | | | - Katherine Zukotynski
- Department of Medical Imaging, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Rathan M Subramaniam
- Faculty of Medicine, Nursing, Midwifery & Health Sciences, 160 Oxford Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
7
|
Chen X, Wang S, Lai Y, Wang G, Wei M, Jin X, Ding J, Zhang Y, Shi Y, Wang F, Zhu H, Yang Z, Wang X. Fibroblast Activation Protein and Glycolysis in Lymphoma Diagnosis: Comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT. J Nucl Med 2023; 64:1399-1405. [PMID: 37385675 DOI: 10.2967/jnumed.123.265530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
Our objective was to compare the diagnostic performance of 68Ga-labeled fibroblast activation protein (FAP) inhibitor (FAPI) and 18F-labeled FDG PET/CT in diagnosing lymphomas and to characterize the influence of FAP and glycolytic markers on tracer uptake by involved lesions. Methods: Participants with different lymphoma subtypes who were prospectively recruited from May 2020 to December 2021 underwent 68Ga-FAPI and 18F-FDG PET/CT. Immunohistochemistry was performed to evaluate FAP, hexokinase 2, and glucose transporter 1 (GLUT1) expression, and the paired-samples t test and Wilcoxon signed-rank test were used to compare parameters. The correlation between the immunochemistry results and tracer uptake was determined by the Spearman rank correlation coefficient. Results: In total, 186 participants (median age, 52 y [interquartile range, 41-64 y]; 95 women) were included. Dual-tracer imaging produced 3 types of imaging profiles. 18F-FDG PET possessed a higher staging accuracy (98.4%) than 68Ga-FAPI PET (86.0%). In 5,980 lymphoma lesions, 18F-FDG PET/CT detected more nodal (4,624 vs. 2,196) and extranodal (1,304 vs. 845) lesions than 68Ga-FAPI PET/CT. Additionally, 52 68Ga-FAPI-positive/18F-FDG-negative lesions and 2,939 68Ga-FAPI-negative/18F-FDG-positive lesions were observed. In many lymphoma subtypes, semiquantitative evaluation revealed no significant differences in SUVmax or target-to-liver ratios between 68Ga-FAPI and 18F-FDG PET/CT (P > 0.05). Interestingly, GLUT1 and hexokinase 2 were overexpressed both in lymphoma cells and in the tumor microenvironment, whereas FAP was expressed only in stromal cells. FAP and GLUT1 expression correlated positively with 68Ga-FAPI SUVmax (r = 0.622, P = 0.001) and 18F-FDG SUVmax (r = 0.835, P < 0.001), respectively. Conclusion: 68Ga-FAPI PET/CT was inferior to 18F-FDG PET/CT in diagnosing lymphomas with low FAP expression. However, the former may supplement the latter and help reveal the molecular profile of lymphomas.
Collapse
Affiliation(s)
- Xuetao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Shuailiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yumei Lai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guochang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Maomao Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xiao Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| | - Xuejuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), National Medical Products Association, Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Association, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China; and
| |
Collapse
|
8
|
Sachpekidis C, Weru V, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. The prognostic value of [ 18F]FDG PET/CT based response monitoring in metastatic melanoma patients undergoing immunotherapy: comparison of different metabolic criteria. Eur J Nucl Med Mol Imaging 2023; 50:2699-2714. [PMID: 37099131 PMCID: PMC10317882 DOI: 10.1007/s00259-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE To investigate the prognostic value of [18F]FDG PET/CT as part of response monitoring in metastatic melanoma patients treated with immune checkpoint inhibitors (ICIs). METHODS Sixty-seven patients underwent [18F]FDG PET/CT before start of treatment (baseline PET/CT), after two cycles (interim PET/CT) and after four cycles of ICIs administration (late PET/CT). Metabolic response evaluation was based on the conventional EORTC and PERCIST criteria, as well as the newly introduced, immunotherapy-modified PERCIMT, imPERCIST5 and iPERCIST criteria. Metabolic response to immunotherapy was classified according to four response groups (complete metabolic response [CMR], partial metabolic response [PMR], stable metabolic disease [SMD], progressive metabolic disease [PMD]), and further dichotomized by response rate (responders = [CMR] + [PMR] vs. non-responders = [PMD] + [SMD]), and disease control rate (disease control = [CMR] + [PMR] + [SMD] vs. [PMD]). The spleen-to-liver SUV ratios (SLRmean, SLRmax) and bone marrow-to-liver SUV ratios (BLRmean, BLRmax) were also calculated. The results of PET/CT were correlated with patients' overall survival (OS). RESULTS Median patient follow up [95% CI] was 61.5 months [45.3 - 66.7 months]. On interim PET/CT, the application of the novel PERCIMT demonstrated significantly longer survival for metabolic responders, while the rest criteria revealed no significant survival differences between the different response groups. Respectively on late PET/CT, both a trend for longer OS and significantly longer OS were observed in patients responding to ICIs with metabolic response and disease control after application of various criteria, both conventional and immunotherapy-modified. Moreover, patients with lower SLRmean values demonstrated significantly longer OS. CONCLUSION In patients with metastatic melanoma PET/CT-based response assessment after four ICIs cycles is significantly associated with OS after application of different metabolic criteria. The prognostic performance of the modality is also high after the first two ICIs cycles, especially with employment of novel criteria. In addition, investigation of spleen glucose metabolism may provide further prognostic information.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Heidelberg, Germany.
| | - Vivienn Weru
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210 Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Liu H, Sun Y, Li J, Chen Y, Liu J, Fang J, Yang H, Feng L, Peng S, Zhuang R, Guo Z, Zhang X. Development of 18F-Labeled Acridone Analogue for Tumor Imaging via Stimulator of Interferon Genes Targeting. Mol Pharm 2023. [PMID: 37243620 DOI: 10.1021/acs.molpharmaceut.3c00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stimulator of interferon genes (STING) is a pivotal protein in the production of STING-dependent type I interferon, which has the potential to enhance tumor rejection. The visualization of STING in the tumor microenvironment is valuable for STING-related treatments, but few STING imaging probes have been reported to date. In this study, we developed a novel 18F-labeled agent ([18F]F-CRI1) with an acridone core structure for the positron emission tomography (PET) imaging of STING in CT26 tumors. The probe was successfully prepared with a nanomolar STING binding affinity of Kd = 40.62 nM. [18F]F-CRI1 accumulated quickly in the tumor sites and its uptake reached a maximum of 3.02 ± 0.42% ID/g after 1 h i.v. injection. The specificity of [18F]F-CRI1 was confirmed both in in vitro cell uptake and in vivo PET imaging by blocking studies. Our findings suggest that [18F]F-CRI1 may be a potential agent for visualizing STING in the tumor microenvironment.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuan Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingxi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lixia Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shilan Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
11
|
Positron emission tomography molecular imaging to monitor anti-tumor systemic response for immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging 2023; 50:1671-1688. [PMID: 36622406 PMCID: PMC10119238 DOI: 10.1007/s00259-022-06084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors (ICIs) achieve a milestone in cancer treatment. Despite the great success of ICI, ICI therapy still faces a big challenge due to heterogeneity of tumor, and therapeutic response is complicated by possible immune-related adverse events (irAEs). Therefore, it is critical to assess the systemic immune response elicited by ICI therapy to guide subsequent treatment regimens. Positron emission tomography (PET) molecular imaging is an optimal approach in cancer diagnosis, treatment effect evaluation, follow-up, and prognosis prediction. PET imaging can monitor metabolic changes of immunocytes and specifically identify immuno-biomarkers to reflect systemic immune responses. Here, we briefly review the application of PET molecular imaging to date of systemic immune responses following ICI therapy and the associated rationale.
Collapse
|
12
|
Gao Y, Wu C, Chen X, Ma L, Zhang X, Chen J, Liao X, Liu M. PET/CT molecular imaging in the era of immune-checkpoint inhibitors therapy. Front Immunol 2022; 13:1049043. [PMID: 36341331 PMCID: PMC9630646 DOI: 10.3389/fimmu.2022.1049043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 04/24/2024] Open
Abstract
Cancer immunotherapy, especially immune-checkpoint inhibitors (ICIs), has paved a new way for the treatment of many types of malignancies, particularly advanced-stage cancers. Accumulating evidence suggests that as a molecular imaging modality, positron emission tomography/computed tomography (PET/CT) can play a vital role in the management of ICIs therapy by using different molecular probes and metabolic parameters. In this review, we will provide a comprehensive overview of the clinical data to support the importance of 18F-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) imaging in the treatment of ICIs, including the evaluation of the tumor microenvironment, discovery of immune-related adverse events, evaluation of therapeutic efficacy, and prediction of therapeutic prognosis. We also discuss perspectives on the development direction of 18F-FDG PET/CT imaging, with a particular emphasis on possible challenges in the future. In addition, we summarize the researches on novel PET molecular probes that are expected to potentially promote the precise application of ICIs.
Collapse
|
13
|
Sachpekidis C, Hassel JC, Dimitrakopoulou-Strauss A. Adverse effects under immune checkpoint inhibitors on [18F]FDG PET/CT imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:245-254. [PMID: 35612369 DOI: 10.23736/s1824-4785.22.03453-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite their undisputed contribution to the management of various tumors and the prolongation of patient survival, immune checkpoint inhibitors (ICIs) exert their effect at the cost of toxicity. In the context of the activation of the host immune system triggered by ICIs, collateral, inflammatory side effects, commonly addressed as immune-related adverse events (irAEs) often occur. Early detection of irAEs can be critical for adequate decisions on patient management that may subsequently improve patient outcome. Moreover, the emergence of irAEs has been linked with the antitumor effect elicited by ICIs, thus, their identification may potentially provide prognostic information. Although the diagnosis of irAEs is mainly clinical, some adverse events may be asymptomatic and only diagnosed by imaging modalities. At the same time, radiological signs of irAEs are not necessarily associated with clinical symptoms, however, clinicians should be alerted to their presence. Among imaging modalities [18F]FDG PET/CT has shown satisfying efficiency in response assessment and monitoring of ICIs' treatment, especially in patients suffering from metastatic melanoma and lung cancer. In this context, [18F]FDG PET/CT may also be a valuable method for surveillance of irAEs during immunotherapy. This article aims to review the most common adverse events observed on [18F]FDG PET/CT under immunotherapy and summarize potential results linking PET signs of irAEs with response assessment to ICIs.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany -
| | - Jessica C Hassel
- Department of Dermatology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), University Hospital of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
14
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
15
|
Tong H, Sun J, Fang J, Zhang M, Liu H, Xia R, Zhou W, Liu K, Chen X. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study. Front Immunol 2022; 13:859323. [PMID: 35572597 PMCID: PMC9105942 DOI: 10.3389/fimmu.2022.859323] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual's TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received18F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group (P = 0.0421). Conclusion Our study indicates that 18F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
Collapse
Affiliation(s)
- Haipeng Tong
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Mi Zhang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Huan Liu
- Advanced Application Team, GE Healthcare, Shanghai, China
| | - Renxiang Xia
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Weicheng Zhou
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
16
|
Salas JR, Clark PM. SIGNALING PATHWAYS THAT DRIVE 18F-FDG ACCUMULATION IN CANCER. J Nucl Med 2022; 63:659-663. [PMID: 35241480 DOI: 10.2967/jnumed.121.262609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
2-18F-fluoro-2-deoxy-D-glucose (18F-FDG) measures glucose consumption and is an integral part of cancer management. Most cancer types upregulate their glucose consumption, yielding elevated 18F-FDG PET accumulation in those cancer cells. The biochemical pathway through which 18F-FDG accumulates in cancer cells is well-established. However, beyond well-known regulators such as c-Myc, PI3K/Akt, and HIF1α, the proteins and signaling pathways that cancer cells modulate to activate the facilitated glucose transporters (GLUTs) and hexokinase enzymes that drive elevated 18F-FDG accumulation are less well-understood. Understanding these signaling pathways could yield additional biological insights from 18F-FDG PET scans and could suggest new uses of 18F-FDG PET in the management of cancer. Work over the past five years, building on studies from years prior, has identified new proteins and signaling pathways that drive glucose consumption in cancer. Here we review these recent studies and discuss current limitations to our understanding of glucose consumption in cancer.
Collapse
Affiliation(s)
| | - Peter M Clark
- University of California, Los Angeles, United States
| |
Collapse
|
17
|
Shah H, Wang Y, Cheng SC, Gunasti L, Chen YH, Lako A, Guenette J, Rodig S, Jo VY, Uppaluri R, Haddad R, Schoenfeld JD, Jacene HA. Use of Fluoro-[18F]-Deoxy-2-D-Glucose Positron Emission Tomography/Computed Tomography to Predict Immunotherapy Treatment Response in Patients With Squamous Cell Oral Cavity Cancers. JAMA Otolaryngol Head Neck Surg 2022; 148:268-276. [PMID: 35050348 PMCID: PMC8778607 DOI: 10.1001/jamaoto.2021.4052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE Neoadjuvant immunotherapy is a novel approach with the potential to improve outcomes for patients with oral cavity squamous cell cancer (OCSCC). Adverse events of varying severity are reported with immunotherapy, and a biomarker to predict response would be clinically useful to avoid toxic effects in those unlikely to benefit. OBJECTIVE To correlate changes on fluoro-[18F]-deoxy-2-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) scans with primary tumor pathologic response and immunologic biomarkers in patients with OCSCC receiving neoadjuvant immunotherapy. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective analysis of serial FDG-PET/CT scans obtained prospectively as part of a phase 2 open-label randomized clinical trial investigating neoadjuvant immunotherapy in patients with untreated OCSCC between 2016 and 2019. Included were a total of 29 patients from a single academic medical center with untreated OCSCC (≥T2, or clinically node positive) randomized 1:1 to receive neoadjuvant therapy with single agent nivolumab or combination nivolumab and ipilimumab followed by surgery and standard of care adjuvant therapy. INTERVENTIONS The interventions in this study were FDG-PET/CT scans before (T0) and after (T1) preoperative immunotherapy. MAIN OUTCOMES AND MEASURES Data collected from FDG-PET/CT scans included maximum standardized uptake value (SUVmax) of primary OCSCC and cervical lymph nodes (LNs) at T0 and T1 and new LN uptake and uptake consistent with radiologic immune-related adverse events (irAEs) at T1. Primary OCSCC pathologic response reported as percentages of viable vs nonviable tumor. The number of CD8+ cells/mm2 was determined in the primary tumor biopsy specimen and at surgery. RESULTS There was no correlation between pathologic response and change in SUVmax in the primary OCSCC between T0 and T1. Out of 27 total participants, 13 had newly FDG-avid ipsilateral LNs at T1, most negative on pathology. A total of 9 had radiologic irAEs, most commonly sarcoid-like LN (7 of 27). No correlations were found between primary OCSCC SUVmax at T0 and CD8+ T-cell number in the primary tumor biopsy, and no correlations were found between primary OCSCC SUVmax at T1 and CD8+ T-cell number in the primary tumor at surgery. CONCLUSIONS AND RELEVANCE There were no correlations between changes in FDG uptake after neoadjuvant immunotherapy and pathologic primary tumor response. Importantly, newly FDG-avid ipsilateral LNs following neoadjuvant immunotherapy were commonly observed but did not represent progressive disease or indicate pathologically disease positive nodes in most cases. These findings argue against altering surgical plans in this setting and suggest that the role of FDG-PET/CT may be limited as an early imaging biomarker for predicting pathologic response to preoperative immunotherapy for OCSCC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02919683.
Collapse
Affiliation(s)
- Hina Shah
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Yating Wang
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Su-Chun Cheng
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Gunasti
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts,Head and Neck Cancer Treatment Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu-Hui Chen
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ana Lako
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts,Bristol Myers Squibb
| | - Jeffrey Guenette
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Vickie Y. Jo
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Ravindra Uppaluri
- Head and Neck Cancer Treatment Center, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert Haddad
- Head and Neck Cancer Treatment Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jonathan D. Schoenfeld
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts,Head and Neck Cancer Treatment Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather A. Jacene
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts,Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard R, Kobe C. Influences on PET Quantification and Interpretation. Diagnostics (Basel) 2022; 12:451. [PMID: 35204542 PMCID: PMC8871060 DOI: 10.3390/diagnostics12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
Various factors have been identified that influence quantitative accuracy and image interpretation in positron emission tomography (PET). Through the continuous introduction of new PET technology-both imaging hardware and reconstruction software-into clinical care, we now find ourselves in a transition period in which traditional and new technologies coexist. The effects on the clinical value of PET imaging and its interpretation in routine clinical practice require careful reevaluation. In this review, we provide a comprehensive summary of important factors influencing quantification and interpretation with a focus on recent developments in PET technology. Finally, we discuss the relationship between quantitative accuracy and subjective image interpretation.
Collapse
Affiliation(s)
- Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany;
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam (CCA), Amsterdam University Medical Center, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| |
Collapse
|
19
|
Alipour R, Iravani A, Hicks RJ. PET Imaging of Melanoma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
First-Line Pembrolizumab Mono- or Combination Therapy of Non-Small Cell Lung Cancer: Baseline Metabolic Biomarkers Predict Outcomes. Cancers (Basel) 2021; 13:cancers13236096. [PMID: 34885206 PMCID: PMC8656760 DOI: 10.3390/cancers13236096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Positron-emission tomography/computed tomography (PET/CT) is used for staging of non-small cell lung cancer (NSCLC) and can help to estimate prognosis in patients treated with immune checkpoint inhibitor (ICI) therapy. Most available data in that field were derived from cohorts treated in higher therapy lines using ICI monotherapy with different drugs. Currently, however, most advanced NSCLC patients receive first-line ICI treatment, often in combination with cytotoxic chemotherapy. We evaluated prognostic PET/CT biomarkers in 85 patients receiving first-line ICI, 70 (82%) of them as a chemotherapy–ICI combination. We found that patients with a higher metabolically active tumor volume (MTV) had a significantly poorer survival and lower radiological response rate. In patients with high MTV, a concomitantly low bone marrow to liver ratio indicated a better prognosis. Our results demonstrate that PET/CT-derived biomarkers can aid therapeutic decision-making in ICI-treated NSCLC. Abstract Quantitative biomarkers derived from positron-emission tomography/computed tomography (PET/CT) have been suggested as prognostic variables in immune-checkpoint inhibitor (ICI) treated non-small cell lung cancer (NSCLC). As such, data for first-line ICI therapy and especially for chemotherapy–ICI combinations are still scarce, we retrospectively evaluated baseline 18F-FDG-PET/CT of 85 consecutive patients receiving first-line pembrolizumab with chemotherapy (n = 70) or as monotherapy (n = 15). Maximum and mean standardized uptake value, total metabolic tumor volume (MTV), total lesion glycolysis, bone marrow-/and spleen to liver ratio (BLR/SLR) were calculated. Kaplan–Meier analyses and Cox regression models were used to assess progression-free/overall survival (PFS/OS) and their determinant variables. Median follow-up was 12 months (M; 95% confidence interval 10–14). Multivariate selection for PFS/OS revealed MTV as most relevant PET/CT biomarker (p < 0.001). Median PFS/OS were significantly longer in patients with MTV ≤ 70 mL vs. >70 mL (PFS: 10 M (4–16) vs. 4 M (3–5), p = 0.001; OS: not reached vs. 10 M (5–15), p = 0.004). Disease control rate was 81% vs. 53% for MTV ≤/> 70 mL (p = 0.007). BLR ≤ 1.06 vs. >1.06 was associated with better outcomes (PFS: 8 M (4–13) vs. 4 M (3–6), p = 0.034; OS: 19 M (12-/) vs. 6 M (4–12), p = 0.005). In patients with MTV > 70 mL, concomitant BLR ≤ 1.06 indicated a better prognosis. Higher MTV is associated with inferior PFS/OS in first-line ICI-treated NSCLC, with BLR allowing additional risk stratification.
Collapse
|
21
|
Liberini V, Mariniello A, Righi L, Capozza M, Delcuratolo MD, Terreno E, Farsad M, Volante M, Novello S, Deandreis D. NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers (Basel) 2021; 13:4543. [PMID: 34572771 PMCID: PMC8464855 DOI: 10.3390/cancers13184543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death, and it is usually diagnosed in advanced stages (stage III or IV). Recently, the availability of targeted strategies and of immunotherapy with checkpoint inhibitors (ICI) has favorably changed patient prognosis. Treatment outcome is closely related to tumor biology and interaction with the tumor immune microenvironment (TME). While the response in molecular targeted therapies relies on the presence of specific genetic alterations in tumor cells, accurate ICI biomarkers of response are lacking, and clinical outcome likely depends on multiple factors that are both host and tumor-related. This paper is an overview of the ongoing research on predictive factors both from in vitro/ex vivo analysis (ranging from conventional pathology to molecular biology) and in vivo analysis, where molecular imaging is showing an exponential growth and use due to technological advancements and to the new bioinformatics approaches applied to image analyses that allow the recovery of specific features in specific tumor subclones.
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy
| | - Annapaola Mariniello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Luisella Righi
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Marco Donatello Delcuratolo
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy;
| | - Marco Volante
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
22
|
Sachpekidis C, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. Assessment of early metabolic progression in melanoma patients under immunotherapy: an 18F-FDG PET/CT study. EJNMMI Res 2021; 11:89. [PMID: 34495433 PMCID: PMC8426446 DOI: 10.1186/s13550-021-00832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The usage of immune checkpoint inhibitors (ICIs) is the standard practice for the treatment of metastatic melanoma. However, a significant amount of patients show no response to immunotherapy, while issues on its reliable response interpretation exist. Aim of this study was to investigate the phenomenon of early disease progression in 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in melanoma patients treated with ICIs. METHODS Thirty-one patients under ICIs serially monitored with 18F-FDG PET/CT were enrolled. All patients exhibited progressive metabolic disease (PMD) after two ICIs' cycles according to the European Organization for Research and Treatment of Cancer (EORTC) criteria, and were characterized as unconfirmed PMD (uPMD). They were further followed with at least one PET/CT for either confirmation of PMD (cPMD) or demonstration of pseudoprogression remission. Patients were also evaluated with the PET Response Evaluation Criteria for Immunotherapy (PERCIMT). Moreover, in an attempt to investigate immune activation, the spleen to liver ratios (SLRmean, SLRmax) of 18F-FDG uptake were measured. RESULTS Median follow up was 69.7 months [64.6-NA]. According to EORTC, 26/31 patients with uPMD eventually showed cPMD (83.9%) and 5/31 patients showed pseudoprogression (16.1%). Patients with cPMD (n = 26) had a median OS of 10.9 months [8.5-NA], while those with pseudoprogression (n = 5) did not reach a median OS [40.9-NA]. Respectively, after application of PERCIMT, 2/5 patients of the pseudoprogression group were correctly classified as non-PMD, reducing the uPMD cohort to 29 patients; eventually, 26/29 patients demonstrated cPMD (89.7%) and 3/29 pseudoprogression (10.3%). One further patient with pseudoprogression exhibited transient, sarcoid-like, mediastinal/hilar lymphadenopathy, a known immune-related adverse event (irAE). Finally, patients eventually showing cPMD exhibited a significantly higher SLRmean than those showing pseudoprogression after two ICIs' cycles (p = 0.038). CONCLUSION PET/CT, performed already after administration of two ICIs' cycles, can identify the majority of non-responders in melanoma immunotherapy. In order to tackle however, the non-negligible phenomenon of pseudoprogression, another follow-up PET/CT, the usage of novel response criteria and vigilance over emergence of radiological irAEs are recommended. Moreover, the investigation of spleen glucose metabolism may offer further prognostic information in melanoma patients under ICIs.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
23
|
18F-FDG PET/CT versus Diagnostic Contrast-Enhanced CT for Follow-Up of Stage IV Melanoma Patients Treated by Immune Checkpoint Inhibitors: Frequency and Management of Discordances over a 3-Year Period in a University Hospital. Diagnostics (Basel) 2021; 11:diagnostics11071198. [PMID: 34359281 PMCID: PMC8304093 DOI: 10.3390/diagnostics11071198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Aim: To perform a comprehensive analysis of discordances between contrast-enhanced CT (ceCT) and 18F-FDG PET/CT in the evaluation of the extra-cerebral treatment monitoring in patients with stage IV melanoma. Materials and methods: We conducted a retrospective monocentric observational study over a 3-year period in patients referred for 18F-FDG PET/CT and ceCT in the framework of therapy monitoring of immune checkpoint (ICIs) as of January 2017. Imaging reports were analyzed by two physicians in consensus. The anatomical site responsible for discordances, as well as induced changes in treatment were noted. Results: Eighty patients were included and 195 pairs of scans analyzed. Overall, discordances occurred in 65 cases (33%). Eighty percent of the discordances (52/65) were due to 18F-FDG PET/CT scans upstaging the patient. Amongst these discordances, 17/52 (33%) led to change in patient’s management, the most frequent being radiotherapy of a progressing site. ceCT represented 13/65 (20%) of discordances and induced changes in patients’ management in 2/13 cases (15%). The most frequent anatomical site involved was subcutaneous for 18F-FDG PET/CT findings and lung or liver for ceCT. Conclusions: Treatment monitoring with 18F-FDG PET/CT is more efficient than ceCT and has a greater impact in patient’s management.
Collapse
|
24
|
Abstract
Chimeric antigen receptor-engineer (CAR) T-cell therapy is a promising novel immunotherapy that has the potential to revolutionize cancer treatment. With four CAR T-cell therapies receiving FDA approval within the last 5 years, the role of CAR T-cells is anticipated to continue to evolve and expand. However, various aspects of CAR T-cell therapies remain poorly understood, and the therapies are associated with severe side effects [including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS)] that require prompt diagnosis and intervention. In this review, we discuss the role of imaging in diagnosing and monitoring toxicities from CAR T-cell therapies and explore the application of various imaging techniques, including use of PET/CT with novel radiotracers, to predict and assess treatment response and adverse effects. It is important for radiologists to recognize the imaging findings associated with each syndrome, as well as the typical and atypical treatment response patterns associated with CAR T-cell therapy. Given the expected increase in use of CAR T-cells in the near future, radiologists should familiarize themselves with the imaging findings encountered in these novel therapies, to provide comprehensive and up-to-date guidance for clinical management.
Collapse
|
25
|
Maresca KP, Chen J, Mathur D, Giddabasappa A, Root A, Narula J, King L, Schaer D, Golas J, Kobylarz K, Rosfjord E, Keliher E, Chen L, Ram S, Pickering EH, Hardwick JS, Rejto PA, Hussein A, Ilovich O, Staton K, Wilson I, McCarthy TJ. Preclinical Evaluation of 89Zr-Df-IAB22M2C PET as an Imaging Biomarker for the Development of the GUCY2C-CD3 Bispecific PF-07062119 as a T Cell Engaging Therapy. Mol Imaging Biol 2021; 23:941-951. [PMID: 34143379 PMCID: PMC8578158 DOI: 10.1007/s11307-021-01621-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Purpose A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used 89Zr-Df-IAB22M2C (89Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography. We investigated the ability of 89Zr-Df-IAB22M2C to track anti-tumor activity induced by PF-07062119 in a human CRC adoptive transfer mouse model (with injected activated/expanded human T cells), as well as the correlation of tumor radiotracer uptake with CD8+ immunohistochemical staining. Procedures NOD SCID gamma mice bearing human CRC LS1034 tumors were treated with four different doses of PF-07062119, or a non-targeted CD3 BsAb control, and imaged with 89Zr-Df-IAB22M2C PET at days 4 and 9. Following PET/CT imaging, mice were euthanized and dissected for ex vivo distribution analysis of 89Zr-Df-IAB22M2C in tissues on days 4 and 9, with additional data collected on day 6 (supplementary). Data were analyzed and reported as standard uptake value and %ID/g for in vivo imaging and ex vivo tissue distribution. In addition, tumor tissues were evaluated by immunohistochemistry for CD8+ T cells. Results The results demonstrated substantial mean uptake of 89Zr-Df-IAB22M2C (%ID/g) in PF-07062119-treated tumors, with significant increases in comparison to non-targeted BsAb-treated controls, as well as PF-07062119 dose-dependent responses over time of treatment. A moderate correlation was observed between tumor tissue radioactivity uptake and CD8+ cell density, demonstrating the value of the imaging agent for non-invasive assessment of intra-tumoral CD8+ T cells and the mechanism of action for PF-07062119. Conclusion Immune-imaging technologies for quantitative cellular measures would be a valuable biomarker in immunotherapeutic clinical development. We demonstrated a qualification of 89Zr-IAB22M2C PET to evaluate PD responses (mice) to a novel immunotherapeutic. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01621-0.
Collapse
Affiliation(s)
- Kevin P Maresca
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.
| | - Jianqing Chen
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Divya Mathur
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Regneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Adam Root
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Generate Biomedicines, Inc, Cambridge, MA, USA
| | - Jatin Narula
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Lindsay King
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - David Schaer
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Jonathan Golas
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Regneron Pharmaceuticals, Tarrytown, NY, USA
| | - Keith Kobylarz
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Edward Rosfjord
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA.,Black Diamond Therapeutics, New York, NY, USA
| | - Edmund Keliher
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Laigao Chen
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Sripad Ram
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Eve H Pickering
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - James S Hardwick
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | - Paul A Rejto
- Worldwide Research, Development & Medicine, Pfizer Inc, New York, USA
| | | | - Ohad Ilovich
- Invicro, A Konica Minolta Company, New Haven, USA
| | - Kevin Staton
- Evergreen Theragnostics, Jersey City, NJ, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
26
|
Sachpekidis C, Kopp-Schneider A, Pan L, Papamichail D, Haberkorn U, Hassel JC, Dimitrakopoulou-Strauss A. Interim [ 18F]FDG PET/CT can predict response to anti-PD-1 treatment in metastatic melanoma. Eur J Nucl Med Mol Imaging 2021; 48:1932-1943. [PMID: 33336264 PMCID: PMC8113306 DOI: 10.1007/s00259-020-05137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In an attempt to identify biomarkers that can reliably predict long-term outcomes to immunotherapy in metastatic melanoma, we investigated the prognostic role of [18F]FDG PET/CT, performed at baseline and early during the course of anti-PD-1 treatment. METHODS Twenty-five patients with stage IV melanoma, scheduled for treatment with PD-1 inhibitors, were enrolled in the study (pembrolizumab, n = 8 patients; nivolumab, n = 4 patients; nivolumab/ipilimumab, 13 patients). [18F]FDG PET/CT was performed before the start of treatment (baseline PET/CT) and after the initial two cycles of PD-1 blockade administration (interim PET/CT). Seventeen patients underwent also a third PET/CT scan after administration of four cycles of treatment. Evaluation of patients' response by means of PET/CT was performed after application of the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria and the PET Response Evaluation Criteria for IMmunoTherapy (PERCIMT). Response to treatment was classified into 4 categories: complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease (SMD), and progressive metabolic disease (PMD). Patients were further grouped into two groups: those demonstrating metabolic benefit (MB), including patients with SMD, PMR, and CMR, and those demonstrating no MB (no-MB), including patients with PMD. Moreover, patterns of [18F]FDG uptake suggestive of radiologic immune-related adverse events (irAEs) were documented. Progression-free survival (PFS) was measured from the date of interim PET/CT until disease progression or death from any cause. RESULTS Median follow-up from interim PET/CT was 24.2 months (19.3-41.7 months). According to the EORTC criteria, 14 patients showed MB (1 CMR, 6 PMR, and 7 SMD), while 11 patients showed no-MB (PMD). Respectively, the application of the PERCIMT criteria revealed that 19 patients had MB (1 CMR, 6 PMR, and 12 SMD), and 6 of them had no-MB (PMD). With regard to PFS, no significant difference was observed between patients with MB and no-MB on interim PET/CT according to the EORTC criteria (p = 0.088). In contrary, according to the PERCIMT criteria, patients demonstrating MB had a significantly longer PFS than those showing no-MB (p = 0.045). The emergence of radiologic irAEs (n = 11 patients) was not associated with a significant survival benefit. Regarding the sub-cohort undergoing also a third PET/CT, 14/17 patients (82%) showed concordant responses and 3/17 (18%) had a mismatch of response assessment between interim and late PET/CT. CONCLUSION PET/CT-based response of metastatic melanoma to PD-1 blockade after application of the recently proposed PERCIMT criteria is significantly correlated with PFS. This highlights the potential ability of [18F]FDG PET/CT for early stratification of response to anti-PD-1 agents, a finding with possible significant clinical and financial implications. Further studies including larger numbers of patients are necessary to validate these results.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Dimitrios Papamichail
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Uwe Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
- Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
27
|
Kudura K, Dimitriou F, Mihic-Probst D, Muehlematter UJ, Kutzker T, Basler L, Förster R, Dummer R, Mangana J, Husmann L, Burger IA, Kreissl MC. Malignancy Rate of Indeterminate Findings on FDG-PET/CT in Cutaneous Melanoma Patients. Diagnostics (Basel) 2021; 11:diagnostics11050883. [PMID: 34063555 PMCID: PMC8156636 DOI: 10.3390/diagnostics11050883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The use of 18F-2-Fluor-2-desoxy-D-glucose Positron Emission Tomography/Computed Tomography FDG-PET/CT in clinical routine for staging, treatment response monitoring and post treatment surveillance in metastatic melanoma patients has noticeably increased due to significant improvement of the overall survival rate in melanoma patients. However, determining the dignity of the findings with increased metabolic activity on FDG-PET/CT can be sometimes challenging and may need further investigation. PURPOSE We aimed to investigate the malignancy rate of indeterminate findings on FDG-PET/CT in metastatic cutaneous melanoma patients. METHODS This single-center retrospective study included cutaneous melanoma patients who underwent FDG-PET/CT in clinical routine between 2015 and 2017 with findings reported as indeterminate and therefore requiring further evaluation. The dignity of the included findings was determined by subsequent imaging and, if required, additional histopathology. The impact of the outcome on the clinical management was also reported. RESULTS A total of 842 FDG-PET/CT reports of 244 metastatic cutaneous melanoma patients were reviewed. Sixty indeterminate findings were included. Almost half of all indeterminate findings were lymph nodes, lung nodules and cerebral lesions. In total, 43.3% of all included findings proved to be malignant. 81% of all malignant lesions were metastases of cutaneous melanoma, while 19% of all malignant lesions could be attributed to other primary malignancies, such as lung, breast, thyroid and colorectal cancers. Malignant findings influenced clinical management in 60% of the cases. CONCLUSION Indeterminate findings on FDG-PET/CT in metastatic cutaneous melanoma patients should be further investigated. Almost one out of every two indeterminate findings on FDG-PET/CT is malignant. The majority of the findings are melanoma manifestations, however, in a significant percentage, other primary tumors are found. Upon verification, patient management is changed in most cases.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, 8006 Zurich, Switzerland; (U.J.M.); (L.H.); (I.A.B.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Correspondence:
| | - Florentia Dimitriou
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Daniela Mihic-Probst
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Urs J. Muehlematter
- Department of Nuclear Medicine, University Hospital Zurich, 8006 Zurich, Switzerland; (U.J.M.); (L.H.); (I.A.B.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University Berlin, 10117 Berlin, Germany;
| | - Lucas Basler
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Robert Förster
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Institute of Radiation Oncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Reinhard Dummer
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Joanna Mangana
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lars Husmann
- Department of Nuclear Medicine, University Hospital Zurich, 8006 Zurich, Switzerland; (U.J.M.); (L.H.); (I.A.B.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, 8006 Zurich, Switzerland; (U.J.M.); (L.H.); (I.A.B.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland; (F.D.); (D.M.-P.); (L.B.); (R.F.); (R.D.); (J.M.)
| | - Michael Christoph Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| |
Collapse
|
28
|
Noninvasive evaluation of tumor immune microenvironment in patients with clear cell renal cell carcinoma using metabolic parameter from preoperative 2-[ 18F]FDG PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:4054-4066. [PMID: 33978830 DOI: 10.1007/s00259-021-05399-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Nowadays, it is necessary to explore effective biomarkers associated with tumor immune microenvironment (TIME) noninvasively. Here, we investigated whether the metabolic parameter from preoperative 2-[18F]FDG PET/CT could provide information related to TIME in patients with clear cell renal cell carcinoma (ccRCC). METHODS Ninety patients with newly diagnosed ccRCC who underwent 2-[18F]FDG PET/CT prior to surgery were retrospectively reviewed. The immunological features included tumor-infiltrating lymphocytes (TILs) density, programmed death-ligand 1 (PD-L1) expression, and tumor immune microenvironment types (TIMTs). TIMTs were classified as TIMT I (positive PD-L1 and high TILs), TIMT II (negative PD-L1 and low TILs), TIMT III (positive PD-L1 and low TILs), and TIMT IV (negative PD-L1 and high TILs). The relationship between maximum standardized uptake value (SUVmax) in the primary lesion from 2-[18F]FDG PET/CT and immunological features was analyzed. Cox proportional hazards analyses were performed to identify the prognostic factors for disease-free survival (DFS) after nephrectomy. RESULTS Tumors with high TILs infiltration showed remarkable correlation with elevated SUVmax and aggressive clinicopathological characteristics, such as high World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade. PD-L1 expression on tumor cells was positively associated with WHO/ISUP grade and negatively correlated with body mass index (BMI). However, no correlation was observed between SUVmax and PD-L1 expression, regardless of its spatial tissue distribution. SUVmax of TIMT I and IV was higher than that of TIMT II, but there was remarkable difference merely between TIMT II and IV. In multivariate analysis, SUVmax (P = 0.022, HR 3.120, 95% CI 1.175-8.284) and WHO/ISUP grade (P = 0.046, HR 2.613, 95% CI 1.017-6.710) were the significant prognostic factors for DFS. Six cases (16.2%) with normal SUVmax showed disease progression, while 25 cases (71.4%) with elevated SUVmax experienced disease progression. Conversely, the immunological features held no prognostic value. CONCLUSIONS Our findings demonstrated that 2-[18F]FDG PET/CT could provide metabolic information of TIME for ccRCC patients and develop image-guided therapeutic strategies accordingly. Patients with elevated preoperative SUVmax should be seriously considered, and perioperative immunotherapy might be beneficial for them.
Collapse
|
29
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
31
|
Quantitative Dynamic 18F-FDG PET/CT in Survival Prediction of Metastatic Melanoma under PD-1 Inhibitors. Cancers (Basel) 2021; 13:cancers13051019. [PMID: 33804417 PMCID: PMC7957728 DOI: 10.3390/cancers13051019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The reliable and early during-the-course-of-treatment assessment of tumor response to the novel immunotherapeutic agents is a matter of debate, posing relevant challenges to conventional imaging modalities. In this prospective study, including 25 metastatic melanoma patients, we explored the prognostic significance of quantitative, dynamic 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed early during programmed cell death protein 1 (PD-1) blockade. At a median follow-up of 24.2 months, several semiquantitative and quantitative PET/CT parameters derived from tumor lesions and reference tissues had an impact on progression-free survival (PFS). In particular, 18F-FDG standardized uptake value (SUVmean, SUVmax) and fractal dimension (FD) of melanoma lesions adversely affected PFS, while FD of the thyroid, as well as SUVmax and k3 of the bone marrow, positively affected PFS. These findings underline the potential predictive role of quantitative, dynamic, interim PET/CT—performed in combination with conventional, static, whole-body PET/CT—in metastatic melanoma patients under PD-1 blockade. Abstract The advent of novel immune checkpoint inhibitors has led to unprecedented survival rates in advanced melanoma. At the same time, it has raised relevant challenges in the interpretation of treatment response by conventional imaging approaches. In the present prospective study, we explored the predictive role of quantitative, dynamic 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) performed early during immunotherapy in metastatic melanoma patients receiving treatment with programmed cell death protein 1 (PD-1) inhibitors. Twenty-five patients under PD-1 blockade underwent dynamic and static 18F-FDG PET/CT before the start of treatment (baseline PET/CT) and after the initial two cycles of therapy (interim PET/CT). The impact of semiquantitatively (standardized uptake value, SUV) and quantitatively (based on compartment modeling and fractal analysis) derived PET/CT parameters, both from melanoma lesions and different reference tissues, on progression-free survival (PFS) was analyzed. At a median follow-up of 24.2 months, survival analysis revealed that the interim PET/CT parameters SUVmean, SUVmax and fractal dimension (FD) of the hottest melanoma lesions adversely affected PFS, while the parameters FD of the thyroid, as well as SUVmax and k3 of the bone marrow positively affected PFS. The herein presented findings highlight the potential predictive role of quantitative, dynamic, interim PET/CT in metastatic melanoma under PD-1 blockade. Therefore, dynamic PET/CT could be performed in selected oncological cases in combination with static, whole-body PET/CT in order to enhance the diagnostic certainty offered by conventional imaging and yield additional information regarding specific molecular and pathophysiological mechanisms involved in tumor biology and response to treatment.
Collapse
|
32
|
Wahl RL, Hicks RJ. PET Diagnosis and Response Monitoring in Oncology. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive Imaging of Cancer Immunotherapy. Nanotheranostics 2021; 5:90-112. [PMID: 33391977 PMCID: PMC7738948 DOI: 10.7150/ntno.50860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.
Collapse
Affiliation(s)
- Omar Abousaway
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Taha Rakhshandehroo
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Annick D. Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mohammad Rashidian
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
34
|
Lang D, Wahl G, Poier N, Graf S, Kiesl D, Lamprecht B, Gabriel M. Impact of PET/CT for Assessing Response to Immunotherapy-A Clinical Perspective. J Clin Med 2020; 9:jcm9113483. [PMID: 33126715 PMCID: PMC7694130 DOI: 10.3390/jcm9113483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICI) has revolutionized the therapeutic landscape of various malignancies like non-small-cell lung cancer or melanoma. Pre-therapy response prediction and assessment during ICI treatment is challenging due to the lack of reliable biomarkers and the possibility of atypical radiological response patterns. Positron emission tomography/computed tomography (PET/CT) enables the visualization and quantification of metabolic lesion activity additional to conventional CT imaging. Various biomarkers derived from PET/CT have been reported as predictors for response to ICI and may aid to overcome the challenges clinicians currently face in the management of ICI-treated patients. In this narrative review, experts in nuclear medicine, thoracic oncology, dermatooncology, hemato- and internal oncology, urological and head/neck tumors performed literature reviews in their respective field and a joint discussion on the use of PET/CT in the context of ICI treatment. The aims were to give a clinical overview on present standards and evidence, to identify current challenges and fields of research and to enable an outlook to future developments and their possible implications. Multiple promising studies concerning ICI response assessment or prediction using biomarkers derived from PET/CT alone or as composite biomarkers have been identified for various malignancies and disease stages. Of interest, additional major incentives in the field may evolve from novel tracers specifically targeting immune-checkpoint molecules which could allow not only response assessment and prognosis, but also visualization of histological tumor cell properties like programmed death-ligand (PD-L1) expression in vivo. Despite the broad range of existing literature on PET/CT-derived biomarkers in ICI therapy, implications for daily clinical practice remain elusive. High-quality prospective data are urgently warranted to determine whether patients benefit from the application of PET/CT in terms of prognosis. At the moment, the lack of such evidence as well as the absence of standardized imaging methods and biomarkers still precludes PET/CT imaging to be included in the relevant clinical practice guidelines.
Collapse
Affiliation(s)
- David Lang
- Department of Pulmonology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (D.L.); (B.L.)
| | - Gerald Wahl
- Department of Dermatology and Venerology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Nikolaus Poier
- Department of Otorhinolaryngology, Head and Neck Surgery, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Sebastian Graf
- Department of Urology and Andrology, Johannes Kepler University Hospital Linz Krankenhausstrasse 9, 4020 Linz, Austria;
| | - David Kiesl
- University Clinic of Hematology and Internal Oncology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Bernd Lamprecht
- Department of Pulmonology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (D.L.); (B.L.)
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria
- Correspondence: ; Tel.: +43-5-7680-83-6166; Fax: +43-5-7680-83-6165
| |
Collapse
|