1
|
Shin E, Kim YI, Yoo C, Shin Y, Ryoo BY, Lee DY, Ryu JS. Prognostic value of interim [ 68Ga]Ga-DOTA-TOC PET/CT in patients with neuroendocrine tumour who underwent peptide receptor radionuclide therapy. Eur Radiol 2024:10.1007/s00330-024-11116-5. [PMID: 39436411 DOI: 10.1007/s00330-024-11116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES This study evaluated the prognostic value of basal and interim [68Ga]Ga-DOTA-TOC PET/CT in patients with locally advanced or metastatic neuroendocrine tumour (NET) who received peptide receptor radionuclide therapy (PRRT). METHODS Patients with NET who received PRRT with [177Lu]Lu-DOTA-TATE at our institution were retrospectively reviewed. Among them, patients who underwent both basal and interim (after two cycles of PRRT) [68Ga]Ga-DOTA-TOC PET/CT were included. Alongside clinicopathologic parameters, PET parameters of maximum standardised uptake value (SUVmax), tumour-to-liver ratio (TLR), whole tumour volume (WTV) and total receptor expression (TRE: WTV multiplied by mean standardised uptake value) were obtained from basal and interim [68Ga]Ga-DOTA-TOC PET/CT, and their proportional changes (∆) were assessed for associations with progression-free survival (PFS) using Kaplan-Meier analysis, log-rank tests, and a Cox proportional-hazards regression model. RESULTS Twenty-four patients were finally included (10 men and 14 women, median age of 56.5 years, age range 32-74 years). Among them, 16 patients (66.7%) experienced disease progression. In univariate analysis, high ∆WTV (≥ -10%, hazard ratio [HR] = 3.053 [1.003-9.289], p = 0.049) and high ∆TRE (≥ -21%, HR = 3.567 [1.144-11.122], p = 0.028) were significantly associated with shorter PFS. In multivariate analyses adjusted for WHO grade, high ∆WTV (HR = 3.345 [1.055-10.601], p = 0.043) and high ∆TRE (HR = 3.894 [1.194-12.695], p = 0.024) were significant predictors of shorter PFS. CONCLUSION The study demonstrates that basal and interim [68Ga]Ga-DOTA-TOC PET/CT scans, through proportional changes in WTV and TRE, effectively predict PFS in neuroendocrine tumour patients receiving PRRT. KEY POINTS Question Peptide receptor radionuclide therapy is utilised for patients with somatostatin receptor-positive well-differentiated neuroendocrine tumours; however, prognostic predictors are not well established. Findings Progression-free survival was significantly associated with the proportional change in whole tumour volume and total receptor expression between basal and interim [68Ga]Ga-DOTA-TOC PET/CT. Clinical relevance Interim [68Ga]Ga-DOTA-TOC PET/CT can serve as a valuable imaging method to predict prognosis of peptide receptor radionuclide therapy.
Collapse
Affiliation(s)
- Eonwoo Shin
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea.
| | - Changhoon Yoo
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea.
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yeokyeong Shin
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Metser U, Nunez JE, Chan D, Kulanthaivelu R, Murad V, Santiago AT, Singh S. Dual Somatostatin Receptor/ 18F-FDG PET/CT Imaging in Patients with Well-Differentiated, Grade 2 and 3 Gastroenteropancreatic Neuroendocrine Tumors. J Nucl Med 2024; 65:1591-1596. [PMID: 39266292 DOI: 10.2967/jnumed.124.267982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024] Open
Abstract
Our purpose was to prospectively assess the distribution of NETPET scores in well-differentiated (WD) grade 2 and 3 gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) and to determine the impact of the NETPET score on clinical management. Methods: This single-arm, institutional ethics review board-approved prospective study included 40 patients with histologically proven WD GEP NETs. 68Ga-DOTATATE PET and 18F-FDG PET were performed within 21 d of each other. NETPET scores were evaluated qualitatively by 2 reviewers, with up to 10 marker lesions selected for each patient. The quantitative parameters that were evaluated included marker lesion SUVmax for each tracer; 18F-FDG/68Ga-DOTATATE SUVmax ratios; functional tumor volume (FTV) and metabolic tumor volume (MTV) on 68Ga-DOTATATE and 18F-FDG PET, respectively; and FTV/MTV ratios. The treatment plan before and after 18F-FDG PET was recorded. Results: There were 22 men and 18 women (mean age, 60.8 y) with grade 2 (n = 24) or grade 3 (n = 16) tumors and a mean Ki-67 index of 16.1%. NETPET scores of P0, P1, P2A, P2B, P3B, P4B, and P5 were documented in 2 (5%), 5 (12.5%), 5 (12.5%) 20 (50%), 2 (5%), 4 (10%), and 2 (5%) patients, respectively. No association was found between the SUVmax of target lesions on 68Ga-DOTATATE and the SUVmax of target lesions on 18F-FDG PET (P = 0.505). 18F-FDG/68Ga-DOTATATE SUVmax ratios were significantly lower for patients with low (P1-P2) primary NETPET scores than for those with high (P3-P5) primary NETPET scores (mean ± SD, 0.20 ± 0.13 and 1.68 ± 1.44, respectively; P < 0.001). MTV on 18F-FDG PET was significantly lower for low primary NETPET scores than for high ones (mean ± SD, 464 ± 601 cm3 and 66 ± 114 cm3, respectively; P = 0.005). A change in the type of management was observed in 42.5% of patients after 18F-FDG PET, with the most common being a change from systemic therapy to peptide receptor radionuclide therapy and from debulking surgery to systemic therapy. Conclusion: There was a heterogeneous distribution of NETPET scores in patients with WD grade 2 and 3 GEP NETs, with more than 1 in 5 patients having a high NETPET score and a frequent change in management after 18F-FDG PET. Quantitative parameters including 18F-FDG/68Ga-DOTATATE SUVmax ratios in target lesions and FTV/MTV ratios can discriminate between patients with high and low NETPET scores.
Collapse
Affiliation(s)
- Ur Metser
- University Medical Imaging Toronto; University Health Network, Sinai Health Systems, Women's College Hospital; and University of Toronto, Toronto, Ontario, Canada;
| | - Jose E Nunez
- Division of Medical Oncology, University of Toronto; and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David Chan
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia; and Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia; and
| | - Roshini Kulanthaivelu
- University Medical Imaging Toronto; University Health Network, Sinai Health Systems, Women's College Hospital; and University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Murad
- University Medical Imaging Toronto; University Health Network, Sinai Health Systems, Women's College Hospital; and University of Toronto, Toronto, Ontario, Canada
| | - Anna T Santiago
- Department of Biostatistics, University Health Network, Toronto, Ontario, Canada
| | - Simron Singh
- Division of Medical Oncology, University of Toronto; and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Santoro-Fernandes V, Schott B, Deatsch A, Keigley Q, Francken T, Iyer R, Fountzilas C, Perlman S, Jeraj R. Models using comprehensive, lesion-level, longitudinal [ 68Ga]Ga-DOTA-TATE PET-derived features lead to superior outcome prediction in neuroendocrine tumor patients treated with [ 177Lu]Lu-DOTA-TATE. Eur J Nucl Med Mol Imaging 2024; 51:3428-3439. [PMID: 38795121 DOI: 10.1007/s00259-024-06767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
PURPOSE Somatostatin receptor (SSTR) imaging features are predictive of treatment outcome for neuroendocrine tumor (NET) patients receiving peptide receptor radionuclide therapy (PRRT). However, comprehensive (all metastatic lesions), longitudinal (temporal variation), and lesion-level measured features have never been explored. Such features allow for capturing the heterogeneity in disease response to treatment. Furthermore, models combining these features are lacking. In this work we evaluated the predictive power of comprehensive, longitudinal, lesion-level 68GA-SSTR-PET features combined with a multivariate linear regression (MLR) model. METHODS This retrospective study enrolled NET patients treated with [177Lu]Lu-DOTA-TATE and imaged with [68Ga]Ga-DOTA-TATE at baseline and post-therapy. All lesions were segmented, anatomically labeled, and longitudinally matched. Lesion-level uptake and variation in uptake were measured. Patient-level features were engineered and selected for modeling of progression-free survival (PFS). The model was validated via concordance index, patient classification (ROC analysis), and survival analysis (Kaplan-Meier and Cox proportional hazards). The MLR was benchmarked against single feature predictions. RESULTS Thirty-six NET patients were enrolled and stratified into poor and good responders (PFS ≥ 25 months). Four patient-level features were selected, the MLR concordance index was 0.826, and the AUC was 0.88 (0.85 specificity, 0.81 sensitivity). Survival analysis led to significant patient stratification (p<.001) and hazard ratio (3⨯10-5). Lastly, in a benchmark study, the MLR modeling approach outperformed all the single feature predictors. CONCLUSION Comprehensive, lesion-level, longitudinal 68GA-SSTR-PET analysis, combined with MLR modeling, leads to excellent predictions of PRRT outcome in NET patients, outperforming non-comprehensive, patient-level, and single time-point feature predictions. MESSAGE Neuroendocrine tumor, peptide receptor radionuclide therapy, Somatostatin Receptor Imaging, Outcome Prediction, Treatment Response Assessment.
Collapse
Affiliation(s)
- Victor Santoro-Fernandes
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Brayden Schott
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ali Deatsch
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Quinton Keigley
- Section of Nuclear Medicine and Molecular Imaging, Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Thomas Francken
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Renuka Iyer
- Division of GI Medicine, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christos Fountzilas
- Division of GI Medicine, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott Perlman
- Section of Nuclear Medicine and Molecular Imaging, Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Centre, University of Wisconsin, Madison, WI, USA
| | - Robert Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Centre, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Gålne A, Sundlöv A, Enqvist O, Sjögreen Gleisner K, Larsson E, Trägårdh E. Retrospective evaluation of the predictive value of tumour burden at baseline [ 68 Ga]Ga-DOTA-TOC or -TATE PET/CT and tumour dosimetry in GEP-NET patients treated with PRRT. EJNMMI REPORTS 2024; 8:24. [PMID: 39112915 PMCID: PMC11306659 DOI: 10.1186/s41824-024-00210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE There is a lack of validated imaging biomarkers for prediction of response to peptide receptor radionuclide therapy (PRRT). The primary objective was to evaluate if tumour burden at baseline PET/CT could predict treatment outcomes to PRRT with [177Lu]Lu-DOTA-TATE. Secondary objectives were to evaluate if there was a correlation between tumour burden and mean tumour absorbed dose (AD) during first cycle, and if mean tumour AD or the relative change of tumour burden at first follow-up PET/CT could predict progression free survival (PFS) or overall survival (OS). METHODS Patients with gastroenteropancreatic neuroendocrine tumour (GEP-NET) treated with [177Lu]Lu-DOTA-TATE PRRT were retrospectively included. Tumour burden was quantified from [68 Ga]Ga-DOTA-TOC/TATE PET/CT-images at baseline and first follow-up and expressed as; whole-body somatostatin receptor expressing tumour volume (SRETVwb), total lesion somatostatin receptor expression (TLSREwb), largest tumour lesion diameter and highest SUVmax. The relative change of tumour burden was evaluated in three categories. Mean tumour AD was estimated from the first cycle of PRRT. PFS was defined as time from start of PRRT to radiological or clinical progression. OS was evaluated as time to death. Kaplan Meier survival curves and log-rank test were used to compare PFS and OS between different groups. RESULTS Thirty-one patients had a baseline PET/CT < 6 months before treatment and 25 had a follow-up examination. Median tumour burden was 132 ml (IQR 61-302) at baseline and 71 ml (IQR 36-278) at follow-up. Twenty-two patients had disease progression (median time to progression 17.2 months) and 9 patients had no disease progression (median follow-up 28.7 months). SRETVwb dichotomized by the median at baseline was not associated with longer PFS (p = 0.861) or OS (p = 0.937). Neither TLSREwb, largest tumour lesion or SUVmax showed significant predictive value. There was a moderately strong correlation, however, between SUVmax and mean tumour AD r = 0.705, p < 0.001, but no significant correlation between SRETVwb nor TLSREwb and mean tumour AD. An increase of SRETVwb, TLSREwb or largest tumour lesion at first follow-up PET/CT was significantly correlated with shorter PFS/OS. CONCLUSION Tumour burden at baseline showed no predictive value of PFS/OS after PRRT in this small retrospective study. An increase of tumour burden was predictive of worse outcome.
Collapse
Affiliation(s)
- Anni Gålne
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden.
| | - Anna Sundlöv
- Department of Clinical Sciences, Oncology and Pathology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Olof Enqvist
- Eigenvision AB, Malmö, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Elin Trägårdh
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
- WCMM Wallenberg Centre for Molecular Medicine, Lund, Sweden
| |
Collapse
|
5
|
Filizoglu N, Ozguven S, Akin Telli T, Ones T, Dede F, Turoglu HT, Erdil TY. Defining the optimal segmentation method for measuring somatostatin receptor expressing tumor volume on 68 Ga-DOTATATE positron emission tomography/computed tomography to predict prognosis in patients with gastroenteropancreatic neuroendocrine tumors. Nucl Med Commun 2024; 45:736-744. [PMID: 38745508 DOI: 10.1097/mnm.0000000000001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE We aimed to compare different segmentation methods used to calculate prognostically valuable volumetric parameters, somatostatin receptor expressing tumor volume (SRETV), and total lesion somatostatin receptor expression (TLSRE), measured by 68 Ga-DOTATATE PET/CT and to find the optimal segmentation method to predict prognosis. PATIENTS AND METHODS Images of 34 patients diagnosed with gastroenteropancreatic neuroendocrine tumor (GEPNET) who underwent 68 Ga-DOTATATE PET/CT imaging were reanalyzed. Four different threshold-based methods (fixed relative threshold method, normal liver background threshold method, fixed absolute standardized uptake value (SUV) threshold method, and adaptive threshold method) were used to calculate SRETV and TLSRE values. SRETV of all lesions of a patient was summarized as whole body SRETV (WB-SRETV) and TLSRE of all lesions of a patient was computed as whole body TLSRE (WB-TLSRE). RESULTS WB-SRETVs calculated with all segmentation methods were statistically significantly associated with progression-free survival except WB-SRETV at which was calculated using adaptive threshold method. The fixed relative threshold methods calculated by using 45% (WB-SRETV 45% ) and 60% (WB-SRETV 60% ) of the SUV value as threshold respectively, were found to have statistically significant highest prognostic value (C-index = 0.704, CI = 0.622-0.786, P = 0.007). Among WB-TLSRE parameters, WB-TLSRE 35% , WB-TLSRE 40% , and WB-TLSRE 50% had the highest prognostic value (C-index = 0.689, CI = 0.604-0.774, P = 0.008). CONCLUSION The fixed relative threshold method was found to be the most effective and easily applicable method to measure SRETV on pretreatment 68 Ga-DOTATATE PET/CT to predict prognosis in GEPNET patients. WB-SRETV 45% (cutoff value of 11.8 cm 3 ) and WB-SRETV 60% (cutoff value of 6.3 cm 3 ) were found to be the strongest predictors of prognosis in GEPNET patients.
Collapse
Affiliation(s)
- Nuh Filizoglu
- Department of Nuclear Medicine, University of Health Sciences, Kartal Dr. Lutfi Kirdar City Hospital,
| | - Salih Ozguven
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital and
| | - Tugba Akin Telli
- Department of Oncology, Memorial Sisli Hospital, Istanbul, Turkey
| | - Tunc Ones
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital and
| | - Fuat Dede
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital and
| | - Halil T Turoglu
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital and
| | - Tanju Y Erdil
- Department of Nuclear Medicine, Marmara University Pendik Training and Research Hospital and
| |
Collapse
|
6
|
Asmundo L, Ambrosini V, Mojtahed A, Fanti S, Ferrone C, Hesami M, Sertic M, Najmi Z, Furtado FS, Dhami RS, Anderson MA, Samir A, Sharma A, Campana D, Ursprung S, Nikolau K, Domachevsky L, Blake MA, Norris EC, Clark JW, Catalano OA. Imaging of Neuroendocrine Neoplasms; Principles of Treatment Strategies. What Referring Clinicians Want to Know. J Comput Assist Tomogr 2024; 48:628-639. [PMID: 38626751 DOI: 10.1097/rct.0000000000001619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) are a diverse group of tumors that express neuroendocrine markers and primarily affect the lungs and digestive system. The incidence of NENs has increased over time due to advancements in imaging and diagnostic techniques. Effective management of NENs requires a multidisciplinary approach, considering factors such as tumor location, grade, stage, symptoms, and imaging findings. Treatment strategies vary depending on the specific subtype of NEN. In this review, we will focus on treatment strategies and therapies including the information relevant to clinicians in order to undertake optimal management and treatment decisions, the implications of different therapies on imaging, and how to ascertain their possible complications and treatment effects.
Collapse
Affiliation(s)
| | | | - Amirkasra Mojtahed
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Cristina Ferrone
- Department of Surgery, Cedar-Sinai Health System, Los Angeles, CA
| | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Madeleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ranjodh S Dhami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mark A Anderson
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anthony Samir
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amita Sharma
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Davide Campana
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stephan Ursprung
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Konstantin Nikolau
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Michael A Blake
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Evan C Norris
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jeffrey W Clark
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Akhavanallaf A, Joshi S, Mohan A, Worden FP, Krauss JC, Zaidi H, Frey K, Suresh K, Dewaraja YK, Wong KK. Enhancing precision: A predictive model for 177Lu-DOTATATE treatment response in neuroendocrine tumors using quantitative 68Ga-DOTATATE PET and clinicopathological biomarkers. Theranostics 2024; 14:3708-3718. [PMID: 38948061 PMCID: PMC11209719 DOI: 10.7150/thno.98053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose: This study aims to elucidate the role of quantitative SSTR-PET metrics and clinicopathological biomarkers in the progression-free survival (PFS) and overall survival (OS) of neuroendocrine tumors (NETs) treated with peptide receptor radionuclide therapy (PRRT). Methods: A retrospective analysis including 91 NET patients (M47/F44; age 66 years, range 34-90 years) who completed four cycles of standard 177Lu-DOTATATE was conducted. SSTR-avid tumors were segmented from pretherapy SSTR-PET images using a semiautomatic workflow with the tumors labeled based on the anatomical regions. Multiple image-based features including total and organ-specific tumor volume and SSTR density along with clinicopathological biomarkers including Ki-67, chromogranin A (CgA) and alkaline phosphatase (ALP) were analyzed with respect to the PRRT response. Results: The median OS was 39.4 months (95% CI: 33.1-NA months), while the median PFS was 23.9 months (95% CI: 19.3-32.4 months). Total SSTR-avid tumor volume (HR = 3.6; P = 0.07) and bone tumor volume (HR = 1.5; P = 0.003) were associated with shorter OS. Also, total tumor volume (HR = 4.3; P = 0.01), liver tumor volume (HR = 1.8; P = 0.05) and bone tumor volume (HR = 1.4; P = 0.01) were associated with shorter PFS. Furthermore, the presence of large lesion volume with low SSTR uptake was correlated with worse OS (HR = 1.4; P = 0.03) and PFS (HR = 1.5; P = 0.003). Among the biomarkers, elevated baseline CgA and ALP showed a negative association with both OS (CgA: HR = 4.9; P = 0.003, ALP: HR = 52.6; P = 0.004) and PFS (CgA: HR = 4.2; P = 0.002, ALP: HR = 9.4; P = 0.06). Similarly, number of prior systemic treatments was associated with shorter OS (HR = 1.4; P = 0.003) and PFS (HR = 1.2; P = 0.05). Additionally, tumors originating from the midgut primary site demonstrated longer PFS, compared to the pancreas (HR = 1.6; P = 0.16), and those categorized as unknown primary (HR = 3.0; P = 0.002). Conclusion: Image-based features such as SSTR-avid tumor volume, bone tumor involvement, and the presence of large tumors with low SSTR expression demonstrated significant predictive value for PFS, suggesting potential clinical utility in NETs management. Moreover, elevated CgA and ALP, along with an increased number of prior systemic treatments, emerged as significant factors associated with worse PRRT outcomes.
Collapse
Affiliation(s)
| | - Sonal Joshi
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Arathi Mohan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Francis P Worden
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - John C Krauss
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Kirk Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Krithika Suresh
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Ka Kit Wong
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Di Franco M, Zanoni L, Fortunati E, Fanti S, Ambrosini V. Radionuclide Theranostics in Neuroendocrine Neoplasms: An Update. Curr Oncol Rep 2024; 26:538-550. [PMID: 38581469 PMCID: PMC11063107 DOI: 10.1007/s11912-024-01526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE OF REVIEW This paper aims to address the latest findings in neuroendocrine tumor (NET) theranostics, focusing on new evidence and future directions of combined diagnosis with positron emission tomography (PET) and treatment with peptide receptor radionuclide therapy (PRRT). RECENT FINDINGS Following NETTER-1 trial, PRRT with [177Lu]Lu-DOTATATE was approved by FDA and EMA and is routinely employed in advanced G1 and G2 SST (somatostatin receptor)-expressing NET. Different approaches have been proposed so far to improve the PRRT therapeutic index, encompassing re-treatment protocols, combinations with other therapies and novel indications. Molecular imaging holds a potential added value in characterizing disease biology and heterogeneity using different radiopharmaceuticals (e.g., SST and FDG) and may provide predictive and prognostic parameters. Response assessment criteria are still an unmet need and new theranostic pairs showed preliminary encouraging results. PRRT for NET has become a paradigm of modern theranostics. PRRT holds a favorable toxicity profile, and it is associated with a prolonged time to progression, reduction of symptoms, and improved patients' quality of life. In light of further optimization, different new strategies have been investigated, along with the development of new radiopharmaceuticals.
Collapse
Affiliation(s)
- Martina Di Franco
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emilia Fortunati
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Ueki Y, Otsuka H, Otani T, Kasai R, Otomi Y, Ikemitsu D, Azane S, Kunikane Y, Bando T, Matsuda N, Okada Y, Takayama T, Harada M. Combined visual and quantitative assessment of somatostatin receptor scintigraphy for staging and restaging of neuroendocrine tumors. Jpn J Radiol 2024; 42:519-535. [PMID: 38345724 DOI: 10.1007/s11604-024-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 04/30/2024]
Abstract
PURPOSE Somatostatin receptor scintigraphy (SRS) using 111In-DTPA-DPhe1-octreotide (pentetreotide) has become an integral part of neuroendocrine neoplasm management. The lack of precise quantification is a disadvantage of SRS. This study aimed to adapt the standardized uptake value (SUV) to SRS, establish the SUV range for physiological uptake in the liver, kidney, and spleen, and elucidate the utility of combined visual and quantitative SRS assessment for staging and restaging of neuroendocrine tumors (NETs). MATERIALS AND METHODS This study included 21 patients with NETs who underwent 111In-pentetreotide SRS. The SUV of physiological and pathological uptake was calculated using bone single-photon emission computed tomography (SPECT) quantitative analysis software (GI-BONE). For visual analysis, the primary and metastatic lesions were scored visually on planar and SPECT images using a five-point scale. We assessed the relationships between the SUVs of the liver, kidney, and spleen in the dual phase, and among quantitative indices, visual score, and pathological lesions classification. RESULTS Sixty-three NEN lesions were evaluated. The mean ± standard deviation maximum SUVs (SUVmax) were liver: 4 h, 2.6 ± 1.0; 24 h, 2.2 ± 1.0; kidney: 4 h, 8.9 ± 1.8; 24 h, 7.0 ± 2.0; and spleen; 4 h, 11.3 ± 4.5; 24 h, 11.5 ± 7.6. Higher SUVmax was significantly associated with higher visual scores on dual-phase SPECT (4 h, p < 0.001; 24 h, p < 0.001) (4 h: scores 3 and 4, p < 0.05; scores 3 and 5: p < 0.01; scores 4 and 5: p < 0.01; 24 h: scores 3 and 4, p = 0.0748; scores 3 and 5: p < 0.01; scores 4 and 5: p < 0.01). CONCLUSION We adapted the SUV to SRS and established the range of SUV for physiological uptake in the liver, kidney, and spleen. Combined visual and quantitative assessment is useful for imaging individual lesions in greater detail, and may serve as a new tumor marker of SRS for staging and restaging of NETs.
Collapse
Affiliation(s)
- Yuya Ueki
- Tokushima University Graduate School of Health Sciences, Tokushima, Japan
| | - Hideki Otsuka
- Department of Medical Imaging/Nuclear Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Tamaki Otani
- Advance Radiation Research, Education and Management Center, Tokushima University, Tokushima, Japan
| | - Ryosuke Kasai
- Department of Medical Imaging/Nuclear Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoichi Otomi
- Department of Radiology and Radiation Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daiki Ikemitsu
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Shota Azane
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Yamato Kunikane
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Takanori Bando
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Noritake Matsuda
- Department of Radiology, Tokushima University Hospital, Tokushima, Japan
| | - Yasuyuki Okada
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
10
|
Hotta M, Sonni I, Thin P, Nguyen K, Gardner L, Ciuca L, Hayrapetian A, Lewis M, Lubin D, Allen-Auerbach M. Visual and whole-body quantitative analyses of 68 Ga-DOTATATE PET/CT for prognosis of outcome after PRRT with 177Lu-DOTATATE. Ann Nucl Med 2024; 38:296-304. [PMID: 38252228 DOI: 10.1007/s12149-023-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Somatostatin receptors (SSTR) represent an ideal target for nuclear theranostics applications in neuroendocrine tumors (NET). Studies suggest that high uptake on SSTR-PET is associated with response to SSTR peptide receptor radionuclide therapy (PRRT). The purpose of this study was to evaluate the role of baseline whole-body (WB) 68 Ga-DOTATATE PET/CT (SSTR-PET) quantitative parameters, and the presence of NET lesions without uptake on SSTR-PET, as outcome prognosticator in patients with NET treated with PRRT. METHODS Patients with NET who underwent at least 4 177Lu-DOTATATE PRRT cycles between 07/2016 and 03/2021 were included in this retrospective analysis if they fulfilled the following inclusion criteria: SSTR-PET within 6 months of 1st PRRT cycle, follow-up CT and/or MRI performed > 6 months after the 4th cycle of PRRT. The SSTR-PET analysis consisted of a visual and a quantitative analysis done independently by two board-certified physicians. The visual analysis assessed the presence of NET lesions visible on the SSTR-PET co-registered CT. The quantitative analysis consisted in contouring all SSTR-avid lesions on SSTR-PET and extracting WB quantitative parameters: SUVmean (WB-SUVmean), SUVmax of the lesion with highest uptake (H-SUVmax), and tumor volume (WB-TV). WB-SSTR-PET parameters and the presence of SSTR-PET-negative lesions were correlated to radiologic response (assessed by RECIST 1.1 criteria) and progression-free survival (PFS). Fisher's exact test, Mann-Whitney's U test and Kaplan-Meier curves with Cox-regression analysis were used for the statistical analysis. RESULTS Forty patients (F/M: 21/19; 34/40 with gastro-entero-pancreatic (GEP) NET, 6/40 with non-GEP NET) were included in the analysis. The median follow-up period after the 4th PRRT cycle was 25.7 months (range 15.2-59.1). Fourteen/40 (35%) patients showed radiologic response (RECIST PR). PFS event was observed in 17/40 (42.5%) patients. Thirteen/40 (32.5%) patients had SSTR-PET-negative lesions at baseline. Higher WB-SUVmean and H-SUVmax were associated with better response (p = 0.015 and 0.005, respectively). The presence of SSTR-PET-negative lesions and lower WB-SUVmean were associated with shorter PFS (p = 0.026 and 0.008, respectively). CONCLUSION Visual and quantitative analyses of baseline SSTR-PET can yield valuable information to prognosticate outcomes after 177Lu-DOTATATE PRRT.
Collapse
Affiliation(s)
- Masatoshi Hotta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
- Department of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Ida Sonni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Pan Thin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Kathleen Nguyen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Linda Gardner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Liliana Ciuca
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Artineh Hayrapetian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Radiology at, University of South Alabama Hospital, Mobile, South AL, USA
| | - Meredith Lewis
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Radiology at Kaiser Permanente Los Angeles Medical Center, Los Angeles, USA
| | - David Lubin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Radiology, Nuclear Medicine, University Hospital, SUNY Upstate, Syracuse, NY, USA
| | - Martin Allen-Auerbach
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Weber M, Pettersson O, Seifert R, Schaarschmidt BM, Fendler WP, Rischpler C, Lahner H, Herrmann K, Sundin A. Changes in tumor-to-blood ratio as a prognostic marker for progression-free survival and overall survival in neuroendocrine tumor patients undergoing PRRT. Eur J Nucl Med Mol Imaging 2024; 51:841-851. [PMID: 37947848 PMCID: PMC10796732 DOI: 10.1007/s00259-023-06502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Historically, patient selection for peptide receptor radionuclide therapy (PRRT) has been performed by virtue of somatostatin receptor scintigraphy (SRS). In recent years, somatostatin receptor positron emission tomography (SSTR-PET) has gradually replaced SRS because of its improved diagnostic capacity, creating an unmet need for SSTR-PET-based selection criteria for PRRT. Tumor-to-blood ratio (TBR) measurements have shown high correlation with the net influx rate Ki, reflecting the tumor somatostatin receptor expression, to a higher degree than standardized uptake value (SUV) measurements. TBR may therefore predict treatment response to PRRT. In addition, changes in semiquantitative SSTR-PET parameters have been shown to predate morphological changes, making them a suitable metric for response assessment. METHODS The institutional database of the Department of Nuclear Medicine (University Hospital Essen) was searched for NET patients undergoing ≥ 2 PRRT cycles with available baseline and follow-up SSTR-PET. Two blinded independent readers reported the occurrence of new lesions quantified tumor uptake of up to nine lesions per patient using SUV and TBR. The association between baseline TBR and changes in uptake/occurrence of new lesions with progression-free survival (PFS) and overall survival (OS) was tested by use of a Cox regression model and log-rank test. RESULTS Patients with baseline TBR in the 1st quartile had a shorter PFS (14.4 months) than those in the 3rd (23.7 months; p = 0.03) and 4th (24.1 months; p = 0.02) quartile. Similarly, these patients had significantly shorter OS (32.5 months) than those with baseline TBR in the 2nd (41.8 months; p = 0.03), 3rd (69.2 months; p < 0.01), and 4th (42.7 months; p = 0.03) quartile. Baseline to follow-up increases in TBR were independently associated with shorter PFS when accounting for prognostic markers, e.g., RECIST response (hazard ratio = 2.91 [95%CI = 1.54-5.50]; p = 0.01). This was confirmed with regard to OS (hazard ratio = 1.64 [95%CI = 1.03-2.62]; p = 0.04). Changes in SUVmean were not associated with PFS or OS. CONCLUSIONS Baseline TBR as well as changes in TBR were significantly associated with PFS and OS and may improve patient selection and morphological response assessment. Future trials need to assess the role of TBR for therapy monitoring also during PRRT and prospectively explore TBR as a predictive marker for patient selection.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Olof Pettersson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Harald Lahner
- Department of Endocrinology and Metabolism, Division of Laboratory Research, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Anders Sundin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens. Diagnostics (Basel) 2024; 14:181. [PMID: 38248059 PMCID: PMC10814892 DOI: 10.3390/diagnostics14020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Payam Amini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
13
|
Lee H, Kipnis ST, Niman R, O’Brien SR, Eads JR, Katona BW, Pryma DA. Prediction of 177Lu-DOTATATE Therapy Outcomes in Neuroendocrine Tumor Patients Using Semi-Automatic Tumor Delineation on 68Ga-DOTATATE PET/CT. Cancers (Basel) 2023; 16:200. [PMID: 38201627 PMCID: PMC10778298 DOI: 10.3390/cancers16010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Treatment of metastatic neuroendocrine tumors (NET) with 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) results in favorable response only in a subset of patients. We investigated the prognostic value of quantitative pre-treatment semi-automatic 68Ga-DOTATATE PET/CT analysis in NET patients treated with PRRT. METHODS The medical records of 94 NET patients who received at least one cycle of PRRT at a single institution were retrospectively reviewed. On each pre-treatment 68Ga-DOTATATE PET/CT, the total tumor volume (TTV), maximum tumor standardized uptake value for the patient (SUVmax), and average uptake in the lesion with the lowest radiotracer uptake (SUVmin) were determined with a semi-automatic tumor delineation method. Progression-free survival (PFS) and overall survival (OS) among the patients were compared based on optimal cutoff values for the imaging parameters. RESULTS On Kaplan-Meier analysis and univariate Cox regression, significantly shorter PFS was observed in patients with lower SUVmax, lower SUVmin, and higher TTV. On multivariate Cox regression, lower SUVmin and higher TTV remained predictive of shorter PFS. Only higher TTV was found to be predictive of shorter OS on Kaplan-Meier and Cox regression analyses. In a post hoc Kaplan-Meier analysis, patients with at least one high-risk feature (low SUVmin or high TTV) showed shorter PFS and OS, which may be the most convenient parameter to measure in clinical practice. CONCLUSIONS The tumor volume and lowest lesion uptake on 68Ga-DOTATATE PET/CT can predict disease progression following PRRT in NET patients, with the former also predictive of overall survival. NET patients at risk for poor outcomes following PRRT can be identified with semi-automated quantitative analysis of 68Ga-DOTATATE PET/CT.
Collapse
Affiliation(s)
- Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sarit T. Kipnis
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Remy Niman
- MIM Software Inc., Cleveland, OH 44122, USA
| | - Sophia R. O’Brien
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer R. Eads
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bryson W. Katona
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel A. Pryma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Halfdanarson TR, Mallak N, Paulson S, Chandrasekharan C, Natwa M, Kendi AT, Kennecke HF. Monitoring and Surveillance of Patients with Gastroenteropancreatic Neuroendocrine Tumors Undergoing Radioligand Therapy. Cancers (Basel) 2023; 15:4836. [PMID: 37835530 PMCID: PMC10571645 DOI: 10.3390/cancers15194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Radioligand therapy (RLT) with [177Lu]Lu-DOTA-TATE is a standard of care for adult patients with somatostatin-receptor (SSTR)-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Taking advantage of this precision nuclear medicine approach requires diligent monitoring and surveillance, from the use of diagnostic SSTR-targeted radioligand imaging for the selection of patients through treatment and assessments of response. Published evidence-based guidelines assist the multidisciplinary healthcare team by providing acceptable approaches to care; however, the sheer heterogeneity of GEP-NETs can make these frameworks difficult to apply in individual clinical circumstances. There are also contradictions in the literature regarding the utility of novel approaches in monitoring and surveilling patients with GEP-NETs receiving RLT. This article discusses the emerging evidence on imaging, clinical biochemistry, and tumor assessment criteria in the management of patients receiving RLT for GEP-NETs; additionally, it documents our own best practices. This allows us to offer practical guidance on how to effectively implement monitoring and surveillance measures to aid patient-tailored clinical decision-making.
Collapse
Affiliation(s)
| | - Nadine Mallak
- Division of Molecular Imaging and Therapy, Oregon Health and Science University, Portland, OR 97239, USA;
| | | | | | - Mona Natwa
- Langone Health, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|
15
|
Wang R, Guo L, Pan L, Tian R, Shen G. Effects of somatostatin analogs on uptake of radiolabeled somatostatin analogs on imaging: a systematic review and meta-analysis. Quant Imaging Med Surg 2023; 13:6814-6826. [PMID: 37869289 PMCID: PMC10585547 DOI: 10.21037/qims-23-477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Background The imaging of somatostatin receptors (SSTRs) plays a significant role in imaging neuroendocrine tumors (NETs). However, there has been no clear definition on whether it is necessary to withdraw somatostatin analogs (SSAs) before SSTRs imaging. We aimed to assess whether nonradioactive SSAs affect the uptake of radiolabeled SSAs on imaging for NETs patients. Methods The databases of PubMed, Embase, and Web of Science (WoS) were searched until March 12, 2022 to identify eligible studies. Maximum standardized uptake values (SUVmax) in tumor and normal tissues were extracted, pooled, and compared before and after SSAs treatment. The change of tumor-to-background/liver ratio was also described. The quality of each study was assessed using the revised Quality Assessment of Diagnostic Accuracy Studies-2 tool. Results A total of 9 articles involving 285 patients were included and 5 studies using Gallium-68-labeled [1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid]-D-Phe1-Tyr3-Thr8-octreotide (68Ga-DOTATATE) were used for pooled evaluation. We found a significantly decreased SUVmax in the liver (9.56±2.47 vs. 7.62±2.12, P=0.001) and spleen (25.74±7.14 vs. 20.39±6.07, P=0.006) after SSAs treatment whereas no significant differences were observed in the uptake of thyroid, adrenal, and pituitary gland. For either primary tumor sites or metastases, the SUVmax did not change significantly before and after SSAs treatment. The tumor-to-liver/background ratio increased following SSAs therapy. High heterogeneity was observed across the studies, mainly due to inherent diversity of study design, sample size, and scanning technique. Conclusions Based on current evidence, long-acting SSAs therapy before imaging has no effect on the uptake of radiolabeled SSAs at tumor primary sites and metastatic lesions, but results in a significant reduction of uptake in the liver and spleen. These findings may implicate the unnecessary discontinuation of SSAs before radiolabeled SSAs imaging.
Collapse
Affiliation(s)
- Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Guo
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Mokoala KMG, Lawal IO, Maserumule LC, Bida M, Maes A, Ndlovu H, Reed J, Mahapane J, Davis C, Van de Wiele C, Popoola G, Giesel FL, Vorster M, Sathekge MM. Correlation between [ 68Ga]Ga-FAPI-46 PET Imaging and HIF-1α Immunohistochemical Analysis in Cervical Cancer: Proof-of-Concept. Cancers (Basel) 2023; 15:3953. [PMID: 37568769 PMCID: PMC10417683 DOI: 10.3390/cancers15153953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Hypoxia leads to changes in tumor microenvironment (upregulated CAFs) with resultant aggressiveness. A key factor in the physiological response to hypoxia is hypoxia-inducible factor-1alpha (HIF-1α). [68Ga]Ga-FAPI PET imaging has been demonstrated in various cancer types. We hypothesized that [68Ga]Ga-FAPI PET may be used as an indirect tracer for mapping hypoxia by correlating the image findings to pathological analysis of HIF-1α expression. The [68Ga]Ga-FAPI PET/CT scans of women with cancer of the cervix were reviewed and the maximum and mean standardized uptake value (SUVmax and SUVmean) and FAPI tumor volume (FAPI-TV) were documented. Correlation analysis was performed between PET-derived parameters and immunohistochemical staining as well as between PET-derived parameters and the presence of metastasis. Ten women were included. All patients demonstrated tracer uptake in the primary site or region of the primary. All patients had lymph node metastases while only six patients had distant visceral or skeletal metastases. The mean SUVmax, SUVmean, and FAPI-TV was 18.89, 6.88, and 195.66 cm3, respectively. The average FAPI-TV for patients with additional sites of metastases was higher than those without. Immunohistochemistry revealed varying intensities of HIF-1α expression in all tested samples. There was a positive correlation between the presence of skeletal metastases and staining for HIF-1α (r=0.80;p=0.017). The presence of skeletal metastasis was correlated to the HIF-1⍺ staining (percentage distribution). Furthermore, the FAPI-TV was a better predictor of metastatic disease than the SUVmax.
Collapse
Affiliation(s)
- Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Letjie C. Maserumule
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Meshack Bida
- National Health Laboratory Services, Department of Anatomical Pathology, Pretoria 0001, South Africa;
| | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Katholieke University Leuven, 3000 Kortrijk, Belgium
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria 0028, South Africa;
| | - Cindy Davis
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
| | - Gbenga Popoola
- Lincolnshire Partnership NHS Foundation Trust, St George’s, Lincoln, Lincolnshire LN1 1FS, UK;
| | - Frederik L. Giesel
- Department of Nuclear Medicine, Medical Faculty, University Hospital Dusseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Kwazulu Natal, Durban 4001, South Africa;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0028, South Africa; (K.M.G.M.); (I.O.L.); (L.C.M.); (A.M.); (H.N.); (J.R.); (C.D.); (C.V.d.W.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
17
|
Balma M, Laudicella R, Gallio E, Gusella S, Lorenzon L, Peano S, Costa RP, Rampado O, Farsad M, Evangelista L, Deandreis D, Papaleo A, Liberini V. Applications of Artificial Intelligence and Radiomics in Molecular Hybrid Imaging and Theragnostics for Neuro-Endocrine Neoplasms (NENs). Life (Basel) 2023; 13:1647. [PMID: 37629503 PMCID: PMC10455722 DOI: 10.3390/life13081647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Nuclear medicine has acquired a crucial role in the management of patients with neuroendocrine neoplasms (NENs) by improving the accuracy of diagnosis and staging as well as their risk stratification and personalized therapies, including radioligand therapies (RLT). Artificial intelligence (AI) and radiomics can enable physicians to further improve the overall efficiency and accuracy of the use of these tools in both diagnostic and therapeutic settings by improving the prediction of the tumor grade, differential diagnosis from other malignancies, assessment of tumor behavior and aggressiveness, and prediction of treatment response. This systematic review aims to describe the state-of-the-art AI and radiomics applications in the molecular imaging of NENs.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.L.); (R.P.C.)
| | - Elena Gallio
- Medical Physics Unit, A.O.U. Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126 Torino, Italy; (E.G.); (O.R.)
| | - Sara Gusella
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy; (S.G.); (M.F.)
| | - Leda Lorenzon
- Medical Physics Department, Central Bolzano Hospital, 39100 Bolzano, Italy;
| | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Renato P. Costa
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.L.); (R.P.C.)
| | - Osvaldo Rampado
- Medical Physics Unit, A.O.U. Città Della Salute E Della Scienza Di Torino, Corso Bramante 88/90, 10126 Torino, Italy; (E.G.); (O.R.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy; (S.G.); (M.F.)
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy;
| | - Desiree Deandreis
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and Université Paris Saclay, 94805 Villejuif, France;
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy; (S.P.); (A.P.); (V.L.)
| |
Collapse
|
18
|
Weber M, Telli T, Kersting D, Seifert R. Prognostic Implications of PET-Derived Tumor Volume and Uptake in Patients with Neuroendocrine Tumors. Cancers (Basel) 2023; 15:3581. [PMID: 37509242 PMCID: PMC10377105 DOI: 10.3390/cancers15143581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Historically, molecular imaging of somatostatin receptor (SSTR) expression in patients with neuroendocrine tumors (NET) was performed using SSTR scintigraphy (SRS). Sustained advances in medical imaging have led to its gradual replacement with SSTR positron-emission tomography (SSTR-PET). The higher sensitivity in comparison to SRS on the one hand and conventional cross-sectional imaging, on the other hand, enables more accurate staging and allows for image quantification. In addition, in recent years, a growing body of evidence has assessed the prognostic implications of SSTR-PET-derived prognostic biomarkers for NET patients, with the aim of risk stratification, outcome prognostication, and prediction of response to peptide receptor radionuclide therapy. In this narrative review, we give an overview of studies examining the prognostic value of advanced SSTR-PET-derived (semi-)quantitative metrics like tumor volume, uptake, and composite metrics. Complementing this analysis, a discussion of the current trends, clinical implications, and future directions is provided.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
19
|
Kepenek F, Kömek H, Can C, Kaplan İ, Altindağ S, Gündoğan C. The prognostic role of whole-body volumetric 68 GA-DOTATATE PET/computed tomography parameters in patients with gastroenteropancreatic neuroendocrine tumor treated with 177 LU-DOTATATE. Nucl Med Commun 2023; 44:509-517. [PMID: 37038931 DOI: 10.1097/mnm.0000000000001693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the prognostic role of Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and quantitative 68 Ga-DOTATATE PET/computed tomography parameters such as maximum standardized uptake value (SUVmax), mean SUV (SUVmean), DOTATATE tumor volume (DTV), total lesion DOTATATE (TLD) in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) treated with 177 Lu-DOTATATE. MATERIAL AND METHOD Our retrospective study included 21 patients with GEP-NETs treated with 177 Lu-DOTATATE between January 2017 and January 2022. SUVmax, SUVmean, SUVmax/spleenSUVmax (SUVmax/Sx), DTV, TLD, SUVmean/spleenSUVmean (SUVmean/Sm), TLD/Sm values were calculated and recorded for all patients before and after 177 Lu-DOTATATE treatment. RESULTS A total of 319 metastases were detected in the patients included in the study, and a total of 68 target lesions were selected. In univariant Cox regression analysis, TLD/Sm percent change (∆TLD/Sm) was found to be statistically significant on overall survival (OS) ( P = 0.044). The 3-year survival in nonresponders was 50% ( P = 0.034) based on ∆SUVmax/Sx values, 50% ( P = 0.002) based on RECIST values, 50% based on ∆TDTV + new lesion values ( P = 0.033), and according to ∆TTLD + new lesion values, it was 66% ( P = 0.030). CONCLUSION In our study, we showed that SUVmax/Sx, RECIST, ∆TDTV + new lesion, and ∆TTLD + new lesion parameters can predict OS in the evaluation of response to treatment.
Collapse
Affiliation(s)
- Ferat Kepenek
- Department of of Nuclear Medicine, University of Health Sciences, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir
| | - Halil Kömek
- Department of of Nuclear Medicine, University of Health Sciences, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir
| | - Canan Can
- Department of of Nuclear Medicine, University of Health Sciences, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir
| | - İhsan Kaplan
- Department of of Nuclear Medicine, University of Health Sciences, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir
| | - Serdar Altindağ
- Department of Nuclear Medicine, İstanbul Gelisim University Vocational College of Health Services Hisar Intercontinental Hospital, İstanbul, Turkey
| | - Cihan Gündoğan
- Department of of Nuclear Medicine, University of Health Sciences, Diyarbakir Gazi Yasargil Training and Research Hospital, Diyarbakir
| |
Collapse
|
20
|
Neuroendocrine Tumor Therapy Response Assessment. PET Clin 2023; 18:267-286. [PMID: 36858748 DOI: 10.1016/j.cpet.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Peptide receptor radionuclide therapy has become an integral part of management of neuroendocrine neoplasms. Gallium-68- and lutetium-177-labeled somatostatin receptor analogues have replaced yttrium-90- and 111-indium-based tracers. Several newer targeted therapies are also being used in clinical and research settings. It is imperative to accurately evaluate the response to these agents. The characteristics of NENs and the response patterns of the targeted therapies make response assessment in this group challenging. This article provides an overview of the strengths and weaknesses of the various biomarkers available for response assessment.
Collapse
|
21
|
Bodei L, Raj N, Do RK, Mauguen A, Krebs S, Reidy-Lagunes D, Schöder H. Interim Analysis of a Prospective Validation of 2 Blood-Based Genomic Assessments (PPQ and NETest) to Determine the Clinical Efficacy of 177Lu-DOTATATE in Neuroendocrine Tumors. J Nucl Med 2023; 64:567-573. [PMID: 36396457 PMCID: PMC10071782 DOI: 10.2967/jnumed.122.264363] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Reliable biomarkers for neuroendocrine tumor (NET) management during peptide receptor radionuclide therapy (PRRT) are lacking. We validated the role of 2 circulating biomarkers: the PRRT prediction quotient (PPQ) as a predictive marker for response and the NETest as a monitoring biomarker. Furthermore, we evaluated whether tissue-based genetic alterations are effective in predicting progression-free survival (PFS). Methods: Data were prospectively collected on patients at the Memorial Sloan Kettering Cancer Center with 177Lu-DOTATATE-treated somatostatin receptor (SSTR)-positive gastroenteropancreatic and lung NETs (n = 67; median age, 66 y; 52% female; 42% pancreatic, 39% small-bowel; 78% grade 1 or 2). All cases were metastatic (89% liver) and had received 1-8 prior treatments (median, 3), including somatostatin analogs (91%), surgery (55%), or chemotherapy (49%). Treatment response included PFS. According to RECIST, version 1.1, responders had stable disease or a partial response (disease-control rate) and nonresponders had progression. Blood was collected before each cycle and at follow-up. Samples were deidentified and assayed and underwent masked analyses. The gene expression assays included RNA isolation, real-time quantitative polymerase chain reaction, and multialgorithm analyses. The PPQ (positive predicts a responder; negative predicts a nonresponder) at baseline was determined. The NETest (0-100 score) was performed. Statistics were analyzed using Mann-Whitney U testing (2-tailed) or Kaplan-Meier survival testing (PFS). In patients with archival tumor tissue, next-generation sequencing was performed through an institutional platform (Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets). Results: Forty-one patients (61%) were responders. PPQ accurately predicted 96% (64/67). The hazard ratio for prediction was 24.4 (95% CI, 8.2-72.5). Twelve-month disease control was 97% for PPQ-positive patients versus 26% for PPQ-negative patients (P < 0.0001). Median progression-free survival was not reached in those predicted to respond (PPQ-positive, n = 40) but was 8 mo in those predicted not to respond (PPQ-negative, n = 27). The NETest result in responders was 67 ± 25 at baseline and significantly (P < 0.05) decreased (-37 ± 44%) at follow-up. The NETest result in nonresponders was 44 ± 23 at baseline and significantly (P < 0.05) increased (+76% ± 56%) at progression. Overall, the NETest changes (increases or decreases) were 90% accurate. Thirty patients underwent next-generation sequencing. Tumors were microsatellite-stable, and the median mutational burden was 1.8. Alterations involved mainly the mTOR/PTEN/TSC pathway (30%). No relationship was associated with PRRT response. Conclusion: Our interim analysis confirmed that PPQ is an accurate predictor of 177Lu-DOTATATE responsiveness (radiosensitivity) and that NETest changes accurately correlated with treatment response. Tissue-based molecular genetic information had little value in PRRT prediction. Blood-based gene signatures may improve the management of patients undergoing 177Lu-DOTATATE by providing information on tumor radiosensitivity and disease course, thus allowing individualized strategies.
Collapse
Affiliation(s)
- Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Nitya Raj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Reccia I, Pai M, Kumar J, Spalding D, Frilling A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:1861. [PMID: 36980746 PMCID: PMC10047148 DOI: 10.3390/cancers15061861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tumour heterogeneity is a common phenomenon in neuroendocrine neoplasms (NENs) and a significant cause of treatment failure and disease progression. Genetic and epigenetic instability, along with proliferation of cancer stem cells and alterations in the tumour microenvironment, manifest as intra-tumoural variability in tumour biology in primary tumours and metastases. This may change over time, especially under selective pressure during treatment. The gastroenteropancreatic (GEP) tract is the most common site for NENs, and their diagnosis and treatment depends on the specific characteristics of the disease, in particular proliferation activity, expression of somatostatin receptors and grading. Somatostatin receptor expression has a major role in the diagnosis and treatment of GEP-NENs, while Ki-67 is also a valuable prognostic marker. Intra- and inter-tumour heterogeneity in GEP-NENS, however, may lead to inaccurate assessment of the disease and affect the reliability of the available diagnostic, prognostic and predictive tests. In this review, we summarise the current available evidence of the impact of tumour heterogeneity on tumour diagnosis and treatment of GEP-NENs. Understanding and accurately measuring tumour heterogeneity could better inform clinical decision making in NENs.
Collapse
Affiliation(s)
- Isabella Reccia
- General Surgical and Oncology Unit, Policlinico San Pietro, Via Carlo Forlanini, 24036 Ponte San Pietro, Italy
| | - Madhava Pai
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Jayant Kumar
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Duncan Spalding
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Andrea Frilling
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
23
|
Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 2023; 13:498-516. [PMID: 36873165 PMCID: PMC9978859 DOI: 10.1016/j.apsb.2022.07.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
24
|
Borbinha J, Ferreira P, Costa D, Vaz P, Di Maria S. Targeted radionuclide therapy directed to the tumor phenotypes: A dosimetric approach using MC simulations. Appl Radiat Isot 2023; 192:110569. [PMID: 36436229 DOI: 10.1016/j.apradiso.2022.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In Targeted Radionuclide Therapy (TRT), the continuous technological effort in imaging tumor phenotypes (i.e. sub-volumes with different phenotypic characteristics) and in precise radiopharmaceutical tumor-targeting, is allowing for a better dosimetric optimization at the tumor phenotype level. The aim of this study was to evaluate the dosimetric efficiency (considering strategic absorbed dose delivery to the phenotypes) of personalized TRT directed to the tumor phenotypes. METHODS The dosimetric assessment was performed using a four-phenotype realistic tumor model implemented within the ICRP reference voxel phantom and simulations using the state-of-the-art Monte Carlo program PENELOPE. The dose assessment was performed for five radionuclides commonly used in therapy and/or diagnostic procedures: 125I, 99mTc, 177Lu, 161Tb and 67Ga. Two irradiation scenarios were considered: (i) the Whole Tumor Treatment Planning Scenario (WTTPS), i.e. the four phenotypes irradiated with the same radionuclide; (ii) the Phenotype Treatment Planning Scenario (PTPS), i.e. each phenotype irradiated by a single radionuclide. The optimal radionuclide configurations were studied considering the maximization of the absorbed dose delivered to the tumor and the minimization of dose to healthy tissues. RESULTS In WTTPS, 125I outperforms the other radionuclides in terms of the ratio of the maximum absorbed dose delivered to the tumor and the minimum absorbed dose delivered to healthy tissues. In the PTPS, the use of 161Tb in combination with the other radionuclides maximizes the absorbed dose in the tumor tissues while simultaneously minimizing dose to healthy tissue, compared to the WTTPS. In agreement with recent pre-clinical studies, our computational results confirm and indicate the beneficial additive dosimetric effects of Auger and conversion electrons of 161Tb with respect to 177Lu, when considering the same cumulated activity for both. Interestingly, in considering a realistic tumor model, the better dosimetric performances of 161Tb were confirmed also for tumor volumes ranging from 1.98 cm3 to 33.32 cm3. CONCLUSIONS Dose assessment in realistic non-homogeneous tumor models could provide more insights with respect to consider only homogenous water-spheres tumor models and should be taken into account in dosimetry-based TRT planning studies.
Collapse
Affiliation(s)
- Jorge Borbinha
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Paulo Ferreira
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Durval Costa
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| |
Collapse
|
25
|
Torbenson M, Venkatesh SK, Halfdanarson TR, Navin PJ, Kamath P, Erickson LA. Primary neuroendocrine tumors and primary neuroendocrine carcinomas of the liver: a proposal for a multidiscipline definition. Hum Pathol 2023; 132:77-88. [PMID: 35809684 DOI: 10.1016/j.humpath.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Primary hepatic neuroendocrine tumors and primary hepatic neuroendocrine carcinomas are rare and pose challenges for both diagnosis and for determining whether the tumor is primary to the liver versus metastatic disease. The lack of a uniform definition for primary hepatic neuroendocrine neoplasms is also a limitation to understanding and treating these rare tumors. Recently, there have been significant histological advances in the diagnosis and classification of neuroendocrine tumors in general, as well as significant advances in imaging for neuroendocrine neoplasms, all of which are important for their treatment. This article presents a multiple disciplinary definition and proposed guidelines for diagnosing a neuroendocrine tumor/neuroendocrine carcinomas as being primary to the liver.
Collapse
Affiliation(s)
- Michael Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, 55906, USA.
| | | | | | - Patrick J Navin
- Department of Nuclear Medicine, Mayo Clinic Rochester, MN, 55906, USA
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic Rochester, MN, 55906, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, 55906, USA
| |
Collapse
|
26
|
Gallicchio R, Giordano A, Milella M, Storto R, Pellegrino T, Nardelli A, Nappi A, Tarricone L, Storto G. Ga-68-Edotreotide Positron Emission Tomography/Computed Tomography Somatostatin Receptors Tumor Volume Predicts Outcome in Patients With Primary Gastroenteropancreatic Neuroendocrine Tumors. Cancer Control 2023; 30:10732748231152328. [PMID: 36714951 PMCID: PMC9940184 DOI: 10.1177/10732748231152328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND We retrospectively aimed to assess the prognostic significance of somatostatin receptor (SSTR) standardized uptake value (SUVmaxsstr), SSTR representative tumor volume (RTVsstr) and total lesion SSTR expression (TLsstr) obtained by [68Ga]Ga-edotreotide PET/CT ([68Ga]Ga-SSTR PET/CT) in patients with primary gastroenteropancreatic neuroendocrine tumors (GEP-NET) before surgery. MATERIAL AND METHODS We analyzed patients who underwent [68Ga]Ga-SSTR PET/CT 3-6 weeks before surgery from February 2020 to April 2022. The mean SUVmaxsstr value, the RTVsstr (cm3; 42% threshold) and the TLsstr (g) were registered. Thereafter the patients were followed up 10.3 months (range 3-27). The PET/CT results were compared to the event free survival (EFS). RESULTS Forty-two patients (61 ± 13 years) have been enrolled. At multivariate analysis only RTVsstr values were predictive. The Kaplan-Meier survival analysis for RTVsstr showed a significant better EFS in patients presenting lower values as compared to those having greater (P = .003, log-rank test). SUVmaxsstr was not suitable for predicting EFS, TLsstr mildly. CONCLUSION RTVsstr represents a valuable volumetric parameter able to predict the outcome in GEP-NET patients who underwent surgery. The magnitude of the SSTR representative tumor burden holds a predominant value for determining the response to therapy in GEP-NET patients before surgery, rather than the maximal SSTR representation at single voxel.
Collapse
Affiliation(s)
- Rosj Gallicchio
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Alessia Giordano
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Mariarita Milella
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Rebecca Storto
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Teresa Pellegrino
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Anna Nardelli
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Antonio Nappi
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Luigia Tarricone
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy
| | - Giovanni Storto
- Nuclear Medicine, Referral Cancer Center of Basilicata, IRCCS CROB, Rionero in Vulture, Italy,Giovanni Storto, Referral Cancer Center of Basilicata, IRCCS CROB, Via P. Pio 1, Rionero in Vulture 85028, Italy.
| |
Collapse
|
27
|
Gherghe M, Lazar AM, Simion L, Irimescu IN, Sterea MC, Mutuleanu MD, Anghel RM. Standardized Uptake Values on SPECT/CT: A Promising Alternative Tool for Treatment Evaluation and Prognosis of Metastatic Neuroendocrine Tumours. Diagnostics (Basel) 2023; 13:318. [PMID: 36673128 PMCID: PMC9857822 DOI: 10.3390/diagnostics13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
(1) Background: The aim of our study was to assess the feasibility of 99mTcEDDA/HYNIC-TOC SPECT/CT quantitative analysis in evaluating treatment response and disease progression in patients with NETs. (2) Methods: This prospective monocentric study evaluated 35 SPECT/CT examinations performed on 14 patients with neuroendocrine tumours who underwent a baseline and at least one follow-up 99mTcEDDA/HYNIC-TOC scan as part of their clinical management. The examination protocol included a whole-body scan acquired 2 h after the radiotracer’s administration, with the SPECT/CT performed 4 h post-injection. Images were analyzed by two experienced physicians and patients were classified into response categories based on their changes in SUV values. (3) Results: We evaluated 14 baseline studies and 21 follow-up scans, accounting for 123 lesions. A statistically positive correlation has been found between the SUVmax and SUVpeak values in tumoral lesions (p < 0.05). No correlation has been found between the SUV values and the ki67 proliferation index. Finally, 64.29% patients were classified as SD at the end of the study, with only 14.29% of patients exhibiting PD and 21.43% patients with PR. (4) Conclusions: The quantitative analysis of 99mTcEDDA/HYNIC-TOC SPECT/CT data in patients with neuroendocrine tumours could represent an alternative to 68Ga-DOTA-peptides PET/CT for the monitoring and prognosis of NETs.
Collapse
Affiliation(s)
- Mirela Gherghe
- Nuclear Medicine Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Alexandra Maria Lazar
- Nuclear Medicine Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Laurentiu Simion
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- 1st Clinic of General Surgery and Surgical Oncology, Bucharest Oncology Institute, 022328 Bucharest, Romania
| | - Ionela-Nicoleta Irimescu
- Nuclear Medicine Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Maria-Carla Sterea
- Nuclear Medicine Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Mario-Demian Mutuleanu
- Nuclear Medicine Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- Oncology Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
- Radiotherapy Department, Institute of Oncology “Professor Doctor Alexandru Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
28
|
Zheng Y, Huh Y, Vetter K, Nasholm N, Gustafson C, Seo Y. Simultaneous Imaging of Ga-DOTA-TATE and Lu-DOTA-TATE in Murine Models of Neuroblastoma. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:75-82. [PMID: 37635919 PMCID: PMC10448760 DOI: 10.1109/trpms.2022.3201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
68Ga-DOTA-TATE and 177Lu-DOTA-TATE are radiolabeled somatostatin analogs used to detect or treat neuroendocrine tumors. They are administered separately for either diagnostic or therapeutic purposes but little experimental data for their biokinetics are measured simultaneously in the same biological model. By co-administering 68Ga-DOTA-TATE and 177Lu-DOTA-TATE in three laboratory mice bearing two IMR32 tumor xenografts expressing different levels of somatostatin receptors (SSTRs) on their shoulders and imaging both 68Ga and 177Lu simultaneously, we investigated the relationship between the uptake of 68Ga-DOTA-TATE and 177Lu-DOTA-TATE in organs and tumors. In addition, using the percent of injected activity (%IA) values of 68Ga-DOTA-TATE at 0 hr and 4 hr, we investigated the correlation between 68Ga-DOTA-TATE %IA and the time-integrated activity coefficients (TIACs) of 177Lu-DOTA-TATE to estimate the organ-based and tumor-based doses of 177Lu-DOTA-TATE. The results showed that the extrapolated clearance time of 68Ga-DOTA-TATE linearly correlated with the TIACs of 177Lu-DOTA-TATE in the IMR32-SSTR2 tumor, kidneys, brain, heart, liver, stomach and remainder body. The extrapolated %IA value at 0 hr of 68Ga-DOTA-TATE linearly correlated with the TIACs of 177Lu-DOTA-TATE in the IMR32 tumor and lungs. In our murine study, both kidneys and lungs were organs that showed high absorbed doses of 177Lu-DOTA-TATE.
Collapse
Affiliation(s)
- Yifan Zheng
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| | - Yoonsuk Huh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Kai Vetter
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Nicole Nasholm
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Clay Gustafson
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA, and with Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Chen L, Jumai N, He Q, Liu M, Lin Y, Luo Y, Wang Y, Chen MH, Zeng Z, Zhang X, Zhang N. The role of quantitative tumor burden based on [ 68 Ga]Ga-DOTA-NOC PET/CT in well-differentiated neuroendocrine tumors: beyond prognosis. Eur J Nucl Med Mol Imaging 2023; 50:525-534. [PMID: 36181533 DOI: 10.1007/s00259-022-05971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE We aimed to elucidate the role of quantitative tumor burden based on PET/CT of somatostatin receptors in well-differentiated neuroendocrine tumors (NETs). METHODS This study enrolled patients with [68 Ga]Ga-DOTA-NOC PET/CT-positive advanced NETs who did not receive medical treatment prior to PET/CT. Tumor burden was calculated using methods based on the background threshold and relative fixed threshold values (30%, 40%, and 50%). The prognostic value of the measured tumor burden in reference to overall survival (OS) and progression-free survival (PFS) on treatment with octreotide long-acting repeatable (LAR) was assessed using Cox regression analysis, Harrell's C-index, and survival analysis. A classification and regression tree (CART) was used to determine the optimal threshold for tumor burden. RESULTS A total of 204 patients were included. Somatostatin receptor-expressing tumor volume (SRETV) and liver SRETV derived from a relative fixed threshold of 30% (SRETV30 and liver SRETV30) were statistically significantly associated with OS (C-index: 0.802 [95% confidence interval (CI), 0.658-0.946] and 0.806 [95% CI, 0.664-0.948], respectively). Extrahepatic tumor burden was not correlated with OS (hazard ratio: 0.617, 95% CI: 0.241-1.574, P = 0.312). Among 155 patients with non-functional NETs with a ki-67 index of ≤ 10%, those with a high SRETV30 (P = 0.016) or high liver SRETV30 (P = 0.014) showed statistically significantly worse PFS on treatment with octreotide LAR. Patients receiving a higher dose of octreotide LAR normalized by SRETV30 or liver SRETV30 (a normalized dose or a liver normalized dose) showed prolonged PFS on treatment with octreotide LAR and a prolonged OS. CONCLUSION Quantitative tumor burden based on [68 Ga]Ga-DOTA-NOC PET/CT was correlated with OS and PFS in patients with non-functional NETs with a ki-67 index of ≤ 10% who received octreotide LAR. Calculating normalized and liver normalized doses may help in selecting the starting dose of octreotide LAR.
Collapse
Affiliation(s)
- Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nuerailaguli Jumai
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao He
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Stenvall A, Gustafsson J, Larsson E, Roth D, Sundlöv A, Jönsson L, Hindorf C, Ohlsson T, Sjögreen Gleisner K. Relationships between uptake of [ 68Ga]Ga-DOTA-TATE and absorbed dose in [ 177Lu]Lu-DOTA-TATE therapy. EJNMMI Res 2022; 12:75. [PMID: 36534192 PMCID: PMC9763525 DOI: 10.1186/s13550-022-00947-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Somatostatin receptor 68Ga PET imaging is standard for evaluation of a patient's suitability for 177Lu peptide receptor radionuclide therapy of neuroendocrine tumours (NETs). The 68Ga PET serves to ensure sufficient somatostatin receptor expression, commonly evaluated qualitatively. The aim of this study is to investigate the quantitative relationships between uptake in 68Ga PET and absorbed doses in 177Lu therapy. METHOD Eighteen patients underwent [68Ga]Ga-DOTA-TATE PET imaging within 20 weeks prior to their first cycle of [177Lu]Lu-DOTA-TATE. Absorbed doses for therapy were estimated for tumours, kidney, spleen, and normal liver parenchyma using a hybrid SPECT/CT-planar method. Gallium-68 activity concentrations were retrieved from PET images and also used to calculate SUVs and normalized SUVs, using blood and tissue for normalization. The 68Ga activity concentrations per injected activity, SUVs, and normalized SUVs were compared with 177Lu activity concentrations 1 d post-injection and 177Lu absorbed doses. For tumours, for which there was a variable number per patient, both inter- and intra-patient correlations were analysed. Furthermore, the prediction of 177Lu tumour absorbed doses based on a combination of tumour-specific 68Ga activity concentrations and group-based estimates of the effective half-lives for grade 1 and 2 NETs was explored. RESULTS For normal organs, only spleen showed a significant correlation between the 68Ga activity concentration and 177Lu absorbed dose (r = 0.6). For tumours, significant, but moderate, correlations were obtained, with respect to both inter-patient (r = 0.7) and intra-patient (r = 0.45) analyses. The correlations to absorbed doses did not improve when using 68Ga SUVs or normalized SUVs. The relationship between activity uptakes for 68Ga PET and 177Lu SPECT was stronger, with correlation coefficients r = 0.8 for both inter- and intra-patient analyses. The 177Lu absorbed dose to tumour could be predicted from the 68Ga activity concentrations with a 95% coverage interval of - 65% to 248%. CONCLUSIONS On a group level, a high uptake of [68Ga]Ga-DOTA-TATE is associated with high absorbed doses at 177Lu-DOTA-TATE therapy, but the relationship has a limited potential with respect to individual absorbed dose planning. Using SUV or SUV normalized to reference tissues do not improve correlations compared with using activity concentration per injected activity.
Collapse
Affiliation(s)
- Anna Stenvall
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Lund, Lund University, Lund, Sweden ,grid.411843.b0000 0004 0623 9987Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Johan Gustafsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Lund, Lund University, Lund, Sweden
| | - Erik Larsson
- grid.411843.b0000 0004 0623 9987Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Daniel Roth
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Lund, Lund University, Lund, Sweden
| | - Anna Sundlöv
- grid.4514.40000 0001 0930 2361Division of Oncology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Lena Jönsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Lund, Lund University, Lund, Sweden ,grid.411843.b0000 0004 0623 9987Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Cecilia Hindorf
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Lund, Lund University, Lund, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Ohlsson
- grid.411843.b0000 0004 0623 9987Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
31
|
Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:cancers14246114. [PMID: 36551599 PMCID: PMC9776394 DOI: 10.3390/cancers14246114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs), although curable when localized, frequently metastasize and require management with systemic therapies, including somatostatin analogues, peptide receptor radiotherapy, small-molecule targeted therapies, and chemotherapy. Although effective for disease control, these therapies eventually fail as a result of primary or secondary resistance. For small-molecule targeted therapies, the feedback activation of the targeted signaling pathways and activation of alternative pathways are prominent mechanisms, whereas the acquisition of additional genetic alterations only rarely occurs. For somatostatin receptor (SSTR)-targeted therapy, the heterogeneity of tumor SSTR expression and dedifferentiation with a downregulated expression of SSTR likely predominate. Hypoxia in the tumor microenvironment and stromal constituents contribute to resistance to all modalities. Current studies on mechanisms underlying therapeutic resistance and options for management in human GEP-NETs are scant; however, preclinical and early-phase human studies have suggested that combination therapy targeting multiple pathways or novel tyrosine kinase inhibitors with broader kinase inhibition may be promising.
Collapse
|
32
|
Rajamohan N, Khasawneh H, Singh A, Suman G, Johnson GB, Majumder S, Halfdanarson TR, Goenka AH. PET/CT and PET/MRI in neuroendocrine neoplasms. Abdom Radiol (NY) 2022; 47:4058-4072. [PMID: 35426497 DOI: 10.1007/s00261-022-03516-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023]
Abstract
Advanced molecular imaging has come to play an integral role in the management of gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs). Somatostatin receptor (SSTR) PET has now emerged as the reference standard for the evaluation of NENs and is particularly critical in the context of peptide receptor radionuclide therapy (PRRT) eligibility. SSTR PET/MRI with liver-specific contrast agent has a strong potential for one-stop-shop multiparametric evaluation of GEP-NENs. 18F-FDG is a complementary radiotracer to SSTR, especially in the context of high-grade neuroendocrine neoplasms. Knowledge gaps in quantitative evaluation of molecular imaging studies and their role in assessment of response to PRRT and combination therapies are active research areas. Novel radiotracers have the potential to overcome existing limitations in the molecular imaging of GEP-NENs. The purpose of this article is to provide an overview of the current trends, pitfalls, and recent advancements of molecular imaging for GEP-NENs.
Collapse
Affiliation(s)
- Naveen Rajamohan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Hala Khasawneh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Aparna Singh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Garima Suman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA
| | - Shounak Majumder
- Department of Gastroenterology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, 200 First Street SW, Charlton 1, Rochester, MN, 55905, USA.
| |
Collapse
|
33
|
Hofland J, Brabander T, Verburg FA, Feelders RA, de Herder WW. Peptide Receptor Radionuclide Therapy. J Clin Endocrinol Metab 2022; 107:3199-3208. [PMID: 36198028 PMCID: PMC9693835 DOI: 10.1210/clinem/dgac574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/19/2022]
Abstract
The concept of using a targeting molecule labeled with a diagnostic radionuclide for using positron emission tomography or single photon emission computed tomography imaging with the potential to demonstrate that tumoricidal radiation can be delivered to tumoral sites by administration of the same or a similar targeting molecule labeled with a therapeutic radionuclide termed "theranostics." Peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs (SSAs) is a well-established second/third-line theranostic treatment for somatostatin receptor-positive well-differentiated (neuro-)endocrine neoplasms (NENs). PRRT with 177Lu-DOTATATE was approved by the regulatory authorities in 2017 and 2018 for selected patients with low-grade well-differentiated gastroenteropancreatic (GEP) NENs. It improves progression-free survival as well as quality of life of GEP NEN patients. Favorable symptomatic and biochemical responses using PRRT with 177Lu-DOTATATE have also been reported in patients with functioning metastatic GEP NENs like metastatic insulinomas, Verner Morrison syndromes (VIPomas), glucagonomas, and gastrinomas and patients with carcinoid syndrome. This therapy might also become a valuable therapeutic option for inoperable low-grade bronchopulmonary NENs, inoperable or progressive pheochromocytomas and paragangliomas, and medullary thyroid carcinomas. First-line PRRT with 177Lu-DOTATATE and combinations of this therapy with cytotoxic drugs are currently under investigation. New radiolabeled somatostatin receptor ligands include SSAs coupled with alpha radiation emitting radionuclides and somatostatin receptor antagonists coupled with radionuclides.
Collapse
Affiliation(s)
- Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology & Nuclear Medicine, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands
| | - Wouter W de Herder
- Correspondence: Wouter W. de Herder, MD, PhD, Department of Internal Medicine, Section of Endocrinology, ENETS Center of Excellence, Erasmus MC and Erasmus Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Pauwels E, Dekervel J, Verslype C, Clement PM, Dooms C, Baete K, Goffin K, Jentjens S, Van Laere K, Van Cutsem E, Deroose CM. [ 68Ga]Ga-DOTATATE-avid tumor volume, uptake and inflammation-based index correlate with survival in neuroendocrine tumor patients treated with [ 177Lu]Lu-DOTATATE PRRT. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:152-162. [PMID: 36419585 PMCID: PMC9677135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To meet the increasing demand for PRRT in the treatment of patients with inoperable/disseminated well-differentiated neuroendocrine tumors (NETs) and to guide optimization strategies, adequate and accessible predictive tools that allow to stratify patients who will benefit from treatment from those who will not are becoming indispensable. Previously, we have investigated the role of baseline [68Ga]Ga-DOTATOC PET tumor uptake and volumetric parameters and a blood-derived inflammatory biomarker, the inflammation-based index (IBI), for outcome prediction in NET patients treated with [90Y]Y-DOTATOC. In this retrospective study in 83 NET patients treated with [177Lu]Lu-DOTATATE in a routine clinical setting, we aimed to evaluate the generalizability of our previous findings to [177Lu]Lu-DOTATATE treatment combined with a pre-therapeutic [68Ga]Ga-DOTATATE PET. A semi-automatic customized SUV threshold-based approach was used for tumor delineation. The previously identified SUVmean cut-off of 13.7 for better survival could not be applied to this patient cohort. Instead, a more optimal cut-off could be identified: an SUVmean lower or equal than 11.2 was associated with worse overall survival (OS) (hazard ratio (HR) 2.28; P = 0.008). Also in line with our previous study, a [68Ga]Ga-DOTATATE-avid tumor volume (TV) higher than 672 mL and an elevated baseline IBI were correlated with worse OS (HR 3.13 (P = 0.0001) and HR 2.00 (P = 0.034), respectively). Multivariate analysis confirmed independent associations between OS and baseline IBI (P = 0.032), SUVmean (P = 0.027) and [68Ga]Ga-DOTATATE-avid TV (P = 0.001). Taking baseline IBI, [68Ga]Ga-DOTATATE-avid TV and [68Ga]Ga-DOTATATE uptake into account may help guide PRRT treatment decisions.
Collapse
Affiliation(s)
- Elin Pauwels
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals LeuvenLeuven, Belgium
| | - Chris Verslype
- Digestive Oncology, University Hospitals LeuvenLeuven, Belgium
| | - Paul M Clement
- General Medical Oncology, University Hospitals LeuvenLeuven, Belgium
| | - Christophe Dooms
- Respiratory Oncology, University Hospitals LeuvenLeuven, Belgium
| | - Kristof Baete
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| | - Sander Jentjens
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals LeuvenLeuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals LeuvenLeuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU LeuvenLeuven, Belgium
| |
Collapse
|
35
|
McClellan K, Chen EY, Kardosh A, Lopez CD, Del Rivero J, Mallak N, Rocha FG, Koethe Y, Pommier R, Mittra E, Pegna GJ. Therapy Resistant Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2022; 14:4769. [PMID: 36230691 PMCID: PMC9563314 DOI: 10.3390/cancers14194769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a heterogenous group of malignancies originating from neuroendocrine cells of the gastrointestinal tract, the incidence of which has been increasing for several decades. While there has been significant progress in the development of therapeutic options for patients with advanced or metastatic disease, these remain limited both in quantity and durability of benefit. This review examines the latest research elucidating the mechanisms of both up-front resistance and the eventual development of resistance to the primary systemic therapeutic options including somatostatin analogues, peptide receptor radionuclide therapy with lutetium Lu 177 dotatate, everolimus, sunitinib, and temozolomide-based chemotherapy. Further, potential strategies for overcoming these mechanisms of resistance are reviewed in addition to a comprehensive review of ongoing and planned clinical trials addressing this important challenge.
Collapse
Affiliation(s)
- Kristen McClellan
- School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emerson Y. Chen
- Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adel Kardosh
- Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D. Lopez
- Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nadine Mallak
- Division of Molecular Imaging and Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Flavio G. Rocha
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yilun Koethe
- Dotter Department of Interventional Radiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rodney Pommier
- Division of Surgical Oncology, Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erik Mittra
- Division of Molecular Imaging and Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Guillaume J. Pegna
- Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
36
|
Lee ONY, Tan KV, Tripathi V, Yuan H, Chan WWL, Chiu KWH. The Role of 68 Ga-DOTA-SSA PET/CT in the Management and Prediction of Peptide Receptor Radionuclide Therapy Response for Patients With Neuroendocrine Tumors : A Systematic Review and Meta-analysis. Clin Nucl Med 2022; 47:781-793. [PMID: 35485851 DOI: 10.1097/rlu.0000000000004235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to identify and evaluate the role of 68 Ga-DOTA-somatostatin analog (SSA) PET/CT in guiding treatment for patients with neuroendocrine tumors (NETs) based on published literature, with specific focus on the ability of PET/CT to impact clinical management and predict peptide receptor radionuclide therapy (PRRT) response. PATIENTS AND METHODS A systematic literature search of articles up to December 2021 was performed using PubMed and Scopus. Eligible studies included ≥10 patients with confirmed or suspected NETs who had undergone pretreatment staging 68 Ga-DOTA-SSA PET/CT. A meta-analysis using the random-effects model was conducted to determine the overall change in management after PET/CT, whereas PET/CT-derived parameters that correlated with PRRT outcome were summarized from studies that assessed its predictive capabilities. RESULTS A total of 39 studies were included in this systemic review, of which 2266 patients from 24 studies were included for meta-analysis. We showed that PET/CT resulted in a change in clinical management in 36% (95% confidence interval, 31%-41%; range, 3%-66%) of patients. Fifteen studies consisting of 618 patients examined the prognostic ability of 68 Ga-DOTA-SSA PET/CT for PRRT. Of those, 8 studies identified a higher pretreatment SUV to favor PRRT, and 4 identified PET-based radiomic features for somatostatin receptor heterogeneity to be predictive of PRRT response. CONCLUSIONS Along with its diagnostic abilities, 68 Ga-DOTA-SSA PET/CT can impact treatment decision-making and may predict PRRT response in patients with NETs. More robust studies should be conducted to better elucidate the prognostic role of somatostatin receptor PET/CT in optimizing treatment for clinical outcome.
Collapse
Affiliation(s)
- Osher Ngo Yung Lee
- From the Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kel Vin Tan
- Department of Oncology, The University of Oxford, Oxford, United Kingdom
| | - Vrijesh Tripathi
- Department of Mathematics and Statistics, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Hui Yuan
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Keith Wan Hang Chiu
- Department of Diagnostic and Interventional Radiology, Kwong Wah Hospital, Hong Kong
| |
Collapse
|
37
|
Parghane RV, Basu S. PET-CTBased Quantitative Parameters for Assessment of Treatment Response and Disease Activity in Cancer and Noncancerous Disorders. PET Clin 2022; 17:465-478. [PMID: 35717102 DOI: 10.1016/j.cpet.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The various semiquantitative and quantitative PET-CT parameters provide measurement of disease activity and assessment of treatment response in the PET-CT studies. These include standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), and total metabolic tumor volume (TMTV). Thresholding and adaptive thresholding methods are commonly used algorithms for the evaluation of global disease activity. Readily available commercial software frequently in-built with the current generation PET-CT scanners for providing easy, less time consuming, highly reproducible, and more accurate measurement of global disease activity on PET-CT imaging in evaluation of malignant as well as benign disorders.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Parel, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
38
|
Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022; 22:25. [PMID: 35659779 PMCID: PMC9164531 DOI: 10.1186/s40644-022-00465-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET but 18F-Fluorodeoxyglucose (18F-FDG) PET to provide insights into the intra- or inter-tumoural heterogeneity of the metastatic disease. Molecular imaging phenotyping may go beyond patient selection and provide useful information during and post-treatment for monitoring of temporal heterogeneity of the disease and dynamically risk-stratify patients. In addition, advances in the understanding of genomic-phenotypic classifications of pheochromocytomas and paragangliomas led to an archetypical example in precision medicine by utilizing molecular imaging phenotyping to guide radioligand therapy. Novel non-SSTR based peptide receptors have also been explored diagnostically and therapeutically to overcome the tumour heterogeneity. In this paper, we review the current molecular imaging modalities that are being utilized for the characterization of the NENs with special emphasis on their role in patient selection for radioligand therapy.
Collapse
|
39
|
Yhim H, Eshet Y, Metser U, Lajkosz K, Cooper M, Prica A, Kukreti V, Bhella S, Lang N, Xu W, Rodin D, Hodgson D, Tsang R, Crump M, Kuruvilla J, Kridel R. Risk stratification for relapsed/refractory classical Hodgkin lymphoma integrating pretransplant Deauville score and residual metabolic tumor volume. Am J Hematol 2022; 97:583-591. [PMID: 35170780 DOI: 10.1002/ajh.26500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Pretransplant Deauville score (DS) is an imaging biomarker used for risk stratification in relapsed/refractory classical Hodgkin lymphoma (cHL). However, the prognostic value of residual metabolic tumor volume (rMTV) in patients with DS 4-5 has been less well characterized. We retrospectively assessed 106 patients with relapsed/refractory cHL who underwent autologous stem cell transplantation. Pretransplant DS was determined as 1-3 (59%) and 4-5 (41%), with a markedly inferior event-free survival (EFS) in patients with DS 4-5 (hazard ratio [HR], 3.14; p = .002). High rMTV41% (rMTVhigh , ≥4.4 cm3 ) predicted significantly poorer EFS in patients with DS 4-5 (HR, 3.70; p = .014). In a multivariable analysis, we identified two independent factors predicting treatment failure: pretransplant DS combined with rMTV41% and disease status (primary refractory vs. relapsed). These two factors allow to stratify patients into three groups with divergent 2-year EFS: 89% for low-risk (51%; relapsed disease and either pretransplant DS 1-3 or DS 4-5/rMTVlow ; HR 1), 65% for intermediate-risk (28%; refractory disease and either DS 1-3 or DS 4-5/rMTVlow ; HR 3.26), and 45% for high-risk (21%; DS 4-5/rMTVhigh irrespective of disease status; HR 7.61) groups. Pretransplant DS/rMTV41% combination and disease status predict the risk of post-transplant treatment failure and will guide risk-stratified approaches in relapsed/refractory cHL.
Collapse
Affiliation(s)
- Ho‐Young Yhim
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
- Department of Internal Medicine Jeonbuk National University Medical School and Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Republic of Korea
| | - Yael Eshet
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto Toronto Ontario Canada
| | - Ur Metser
- Joint Department of Medical Imaging, Princess Margaret Cancer Centre University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto Toronto Ontario Canada
| | - Katherine Lajkosz
- Department of Biostatistics, Princess Margaret Cancer Centre, Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| | - Matthew Cooper
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
- Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Anca Prica
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - Vishal Kukreti
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - Sita Bhella
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - Noémie Lang
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
| | - Danielle Rodin
- Radiation Medicine Program Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
- Department of Radiation Oncology University of Toronto Toronto Ontario Canada
| | - David Hodgson
- Radiation Medicine Program Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
- Department of Radiation Oncology University of Toronto Toronto Ontario Canada
| | - Richard Tsang
- Radiation Medicine Program Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
- Department of Radiation Oncology University of Toronto Toronto Ontario Canada
| | - Michael Crump
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - John Kuruvilla
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| | - Robert Kridel
- Division of Medical Oncology and Hematology Princess Margaret Cancer Centre – University Health Network Toronto Ontario Canada
| |
Collapse
|
40
|
Puliani G, Chiefari A, Mormando M, Bianchini M, Lauretta R, Appetecchia M. New Insights in PRRT: Lessons From 2021. Front Endocrinol (Lausanne) 2022; 13:861434. [PMID: 35450421 PMCID: PMC9016202 DOI: 10.3389/fendo.2022.861434] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using radiolabeled somatostatin analogs has been used for over two decades for the treatment of well-differentiated neuroendocrine tumors (NETs), and the publication of the NETTER-1 trials has further strengthened its clinical use. However, many aspects of this treatment are still under discussion. The purpose of this review is to collect and discuss the new available evidence, published in 2021, on the use of 177Lu-Oxodotreotide (DOTATATE) or 90Y-Edotreotide (DOTATOC) in adult patients with NETs focusing on the following hot topics: 1) PRRT use in new clinical settings, broaden its indications; 2) the short- and long-term safety; and 3) the identification of prognostic and predictive factors. The review suggests a possible future increase of PRRT applications, using it in other NETs, as a neoadjuvant treatment, or for rechallenge. Regarding safety, available studies, even those with long follow-up, supported the low rates of adverse events, even though 1.8% of treated patients developed a second malignancy. Finally, there is a lack of prognostic and predictive factors for PRRT, with the exception of the crucial role of nuclear imaging for both patient selection and treatment response estimation.
Collapse
Affiliation(s)
- Giulia Puliani
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfonsina Chiefari
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marilda Mormando
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Bianchini
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Rosa Lauretta
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
41
|
Fu J, Qiu F, Stolniceanu CR, Yu F, Zang S, Xiang Y, Huang Y, Matovic M, Stefanescu C, Tang Q, Wang F. Combined use of 177 Lu-DOTATATE peptide receptor radionuclide therapy and fluzoparib for treatment of well-differentiated neuroendocrine tumors: A preclinical study. J Neuroendocrinol 2022; 34:e13109. [PMID: 35304807 DOI: 10.1111/jne.13109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/16/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Peptide receptor radionuclide therapy (177 Lu-DOTATATE) causes DNA strand breaks and has been validated for well-differentiated neuroendocrine tumor treatment. Poly-(ADP-ribose)-polymerase inhibitors have also been used for malignant tumors with deficient DNA repair. We aimed to determine whether the poly-(ADP-ribose)-polymerase inhibitor fluzoparib could enhance the anti-tumor effects of 177 Lu-DOTATATE in neuroendocrine tumor cells and xenografts. The neuroendocrine characteristics of NCI-H727 bronchial carcinoid cells were evaluated by immunofluorescence staining. The synergistic effects of fluzoparib and 177 Lu-DOTATATE were evaluated by cell proliferation and flow cytometry assays. Tumor response and the side effects of combination therapy were also assessed in xenograft mice treated with 77 Lu-DOTATATE and fluzoparib alone or in combination. Somatostatin receptors were specifically expressed in NCI-H727 cells and tumor xenografts. 177 Lu-DOTATATE (22.20 MBq mL-1 ) and fluzoparib (50 µm) inhibited cell proliferation by 16.6% and 35.6%, respectively, compared to 73.2% in cells treated with their combination. Tumor cell proliferation was significantly suppressed by 177 Lu-DOTATATE (22.20 MBq mL-1 , 4.4-fold) and fluzoparib (50 µm, 2.1-fold). 177 Lu-DOTATATE caused cell cycle arrest mainly at G1 phase, whereas fluzoparib caused arrest at G2/M phase, and combined treatment with both agents caused cell cycle arrest at G1 phase, similar to 177 Lu-DOTATATE alone. The volume of tumor xenografts was reduced by 18.6% in mice receiving combined treatment, compared to 4.9% and 11.4% in mice treated with 177 Lu-DOTATATE or fluzoparib alone. Fluzoparib can potentiate the anti-tumor effect of 177 Lu-DOTATATE in NCI-H727 cells in a synergistic manner by arresting the cell cycle at G1 phase. Further preclinical and clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fan Qiu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cati Raluca Stolniceanu
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Nuclear Medicine Clinic, St. Spiridon Hospital, Iasi, Romania
| | - Fei Yu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shiming Zang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yili Xiang
- Department of Nuclear Medicine, Taizhou First People Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yue Huang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Milovan Matovic
- Clinical Center Kragujevac, Center for Nuclear Medicine, Kragujevac, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Cipriana Stefanescu
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Nuclear Medicine Clinic, St. Spiridon Hospital, Iasi, Romania
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Mesquita CT, Palazzo IC, Rezende MF. Ga-DOTA PET/CT: the first-line functional imaging modality in the management of patients with neuroendocrine tumors. Radiol Bras 2022; 55:VII-VIII. [PMID: 35414730 PMCID: PMC8993178 DOI: 10.1590/0100-3984.2022.55.2e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Cláudio Tinoco Mesquita
- Universidade Federal Fluminense (UFF), Brazil; Hospital Pró-Cardíaco, Brazil; Hospital Vitória e Hospital Samaritano da Barra, Brazil
| | | | | |
Collapse
|
43
|
Lee L, Ramos-Alvarez I, Jensen RT. Predictive Factors for Resistant Disease with Medical/Radiologic/Liver-Directed Anti-Tumor Treatments in Patients with Advanced Pancreatic Neuroendocrine Neoplasms: Recent Advances and Controversies. Cancers (Basel) 2022; 14:cancers14051250. [PMID: 35267558 PMCID: PMC8909561 DOI: 10.3390/cancers14051250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumor resistance, both primary and acquired, is leading to increased complexity in the nonsurgical treatment of patients with advanced panNENs, which would be greatly helped by reliable prognostic/predictive factors. The importance in identifying resistance is being contributed to by the increased array of possible treatments available for treating resistant advanced disease; the variable clinical course as well as response to any given treatment approach of patients within one staging or grading system, the advances in imaging which are providing increasing promising results/parameters that correlate with grading/outcome/resistance, the increased understanding of the molecular pathogenesis providing promising prognostic markers, all of which can contribute to selecting the best treatment to overcome resistance disease. Several factors have been identified that have prognostic/predictive value for identifying development resistant disease and affecting overall survival (OS)/PFS with various nonsurgical treatments of patients with advanced panNENs. Prognostic factors identified for patients with advanced panNENs for both OS/PFSs include various clinically-related factors (clinical, laboratory/biological markers, imaging, treatment-related factors), pathological factors (histological, classification, grading) and molecular factors. Particularly important prognostic factors for the different treatment modalities studies are the recent grading systems. Most prognostic factors for each treatment modality for OS/PFS are not specific for a given treatment option. These advances have generated several controversies and new unanswered questions, particularly those related to their possible role in predicting the possible sequence of different anti-tumor treatments in patients with different presentations. Each of these areas is reviewed in this paper. Abstract Purpose: Recent advances in the diagnosis, management and nonsurgical treatment of patients with advanced pancreatic neuroendocrine neoplasms (panNENs) have led to an emerging need for sensitive and useful prognostic factors for predicting responses/survival. Areas covered: The predictive value of a number of reported prognostic factors including clinically-related factors (clinical/laboratory/imaging/treatment-related factors), pathological factors (histological/classification/grading), and molecular factors, on therapeutic outcomes of anti-tumor medical therapies with molecular targeting agents (everolimus/sunitinib/somatostatin analogues), chemotherapy, radiological therapy with peptide receptor radionuclide therapy, or liver-directed therapies (embolization/chemoembolization/radio-embolization (SIRTs)) are reviewed. Recent findings in each of these areas, as well as remaining controversies and uncertainties, are discussed in detail, particularly from the viewpoint of treatment sequencing. Conclusions: The recent increase in the number of available therapeutic agents for the nonsurgical treatment of patients with advanced panNENs have raised the importance of prognostic factors predictive for therapeutic outcomes of each treatment option. The establishment of sensitive and useful prognostic markers will have a significant impact on optimal treatment selection, as well as in tailoring the therapeutic sequence, and for maximizing the survival benefit of each individual patient. In the paper, the progress in this area, as well as the controversies/uncertainties, are reviewed.
Collapse
Affiliation(s)
- Lingaku Lee
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1804, USA; (L.L.); (I.R.-A.)
- National Kyushu Cancer Center, Department of Hepato-Biliary-Pancreatology, Fukuoka 811-1395, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1804, USA; (L.L.); (I.R.-A.)
| | - Robert T. Jensen
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD 20892-1804, USA; (L.L.); (I.R.-A.)
- Correspondence: ; Tel.: +1-301-496-4201
| |
Collapse
|
44
|
Durmo R, Filice A, Fioroni F, Cervati V, Finocchiaro D, Coruzzi C, Besutti G, Fanello S, Frasoldati A, Versari A. Predictive and Prognostic Role of Pre-Therapy and Interim 68Ga-DOTATOC PET/CT Parameters in Metastatic Advanced Neuroendocrine Tumor Patients Treated with PRRT. Cancers (Basel) 2022; 14:cancers14030592. [PMID: 35158862 PMCID: PMC8833820 DOI: 10.3390/cancers14030592] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although a significant improvement has been achieved in the management of metastatic neuroendocrine tumor (NET), disease progression is observed in 20–30% of patients treated with peptide receptor radionuclide therapy (PRRT). Therefore, the early identification of patients who are at high risk of treatment failure is important to avoid futile therapy toxicities. The aim of this study was to identify biomarkers derived from baseline and interim 68Ga-DOTATOC PET/CT in patients undergoing PRRT. In 46 metastatic NET patients with available baseline and interim PET, only baseline total tumor volume (bTV) was able to discriminate responders to PRRT (partial response or stable disease) vs. non-responders. Patients with high bTV had also the worst overall survival. bTV, an imaging biomarker, integrated in the initial workup of NET patients could improve risk stratification and contribute to a tailored therapy approach. Abstract Peptide receptor radionuclide therapy (PRRT) is an effective therapeutic option in patients with metastatic neuroendocrine tumor (NET). However, PRRT fails in about 15–30% of cases. Identification of biomarkers predicting the response to PRRT is essential for treatment tailoring. We aimed to evaluate the predictive and prognostic role of semiquantitative and volumetric parameters obtained from the 68Ga-DOTATOC PET/CT before therapy (bPET) and after two cycles of PRRT (iPET). A total of 46 patients were included in this retrospective analysis. The primary tumor was 78% gastroenteropancreatic (GEP), 13% broncho-pulmonary and 9% of unknown origin. 35 patients (76.1%) with stable disease or partial response after PRRT were classified as responders and 11 (23.9%) as non-responders. Logistic regression analysis identified that baseline total volume (bTV) was associated with therapy outcome (OR 1.17; 95%CI 1.02–1.32; p = 0.02). No significant association with PRRT response was observed for other variables. High bTV was confirmed as the only variable independently associated with OS (HR 12.76, 95%CI 1.53–107, p = 0.01). In conclusion, high bTV is a negative predictor for PRRT response and is associated with worse OS rates. Early iPET during PRRT apparently does not provide information useful to change the management of NET patients.
Collapse
Affiliation(s)
- Rexhep Durmo
- Nuclear Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (C.C.); (A.V.)
- PhD Program in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0522296284
| | - Angelina Filice
- Nuclear Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (C.C.); (A.V.)
| | - Federica Fioroni
- Medical Physics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.F.); (D.F.)
| | - Veronica Cervati
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Domenico Finocchiaro
- Medical Physics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (F.F.); (D.F.)
| | - Chiara Coruzzi
- Nuclear Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (C.C.); (A.V.)
| | - Giulia Besutti
- Radiology Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Silvia Fanello
- Medical Oncology Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Andrea Frasoldati
- Department of Endocrinology and Metabolism, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda USL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy; (A.F.); (C.C.); (A.V.)
| |
Collapse
|
45
|
Metser U, Eshet Y, Ortega C, Veit-Haibach P, Liu A, K S Wong R. The association between lesion tracer uptake on 68Ga-DOTATATE PET with morphological response to 177Lu-DOTATATE therapy in patients with progressive metastatic neuroendocrine tumors. Nucl Med Commun 2022; 43:73-77. [PMID: 34887370 DOI: 10.1097/mnm.0000000000001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To determine in a group of patients with progressive metastatic neuroendocrine tumors (PM-NETs) treated with 177Lu-DOTATATE whether a correlation exists between somatostatin receptor (SSTR)-2 expression in various tumors on baseline 68Ga-DOTATATE PET and their response to therapy. A secondary aim was to determine whether an association exists between tumor product of diameter (POD) and PET-derived Krenning score. MATERIALS METHODS Patients treated PM-NETs who had SSTR-2 overexpression (SSTR-RADS 5) on screening 68Ga-DOTATATE PET and CT at baseline and 3 months after therapy completion were included. Marker lesions on baseline CT were reassessed on CT after therapy using adapted Southwest Oncology Group solid tumor evaluation criteria. For each lesion, bidimensional diameter on CT and SSTR expression on PET (SSTR-RADS uptake score & PET-derived Krenning score) were recorded. Logistic regression models fitted through generalized estimating equations were used to assess for an association between SSTR expression and response to therapy, or lesion's POD. RESULTS Forty-one patients with SSTR-RADS 5 PM-NETs treated with 177Lu-DOTATATE were included. There were 135 marker lesions (mean 3.2 lesions/patient) with Krenning score of 4 (n = 74), 3 (n = 44) or 2 (n = 17). There was no association found between SSTR-2 expression, as determined by SSTR-RADS uptake score or PET-derived Krenning score, and POD or response to therapy. CONCLUSION In patients with SSTR-RADS 5 PM-NETs treated with 177Lu-DOTATATE, there was similar response to therapy for all lesions with PET-generated Krenning score ≥2. No correlation was found between lesion's POD and level of tracer uptake.
Collapse
Affiliation(s)
- Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Yael Eshet
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto
| | - Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre
| | - Rebecca K S Wong
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network & University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Opalińska M, Morawiec-Sławek K, Kania-Kuc A, Al Maraih I, Sowa-Staszczak A, Hubalewska-Dydejczyk A. Potential value of pre- and post-therapy [68Ga]Ga-DOTA-TATE PET/CT in the prognosis of response to PRRT in disseminated neuroendocrine tumors. Front Endocrinol (Lausanne) 2022; 13:929391. [PMID: 36046793 PMCID: PMC9420847 DOI: 10.3389/fendo.2022.929391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy (PRRT) is one of the most effective therapeutic options for the treatment of metastatic, well-differentiated neuroendocrine tumors (NETs). It improves progressive disease-free survival and enables the control of hormone secretion in functioning tumors.Currently, there are no clearly established predictors of response to PRRT. The main factors hindering such a prediction are the heterogeneity of somatostatin receptor expression within and between lesions, lack of standardized parameters for functional imaging, and the use of different PRRT protocols.The main goal of our study was to quantify SUVmax changes in [68Ga]Ga-DOTA-TATE PET/CT scans as a potential predictor of long-term response to PRRT. MATERIAL AND METHODS Out of 20 patients treated with PRRT using [177Lu]Lu and/or [177Lu]Lu/[90Y]Y-DOTA-TATE in 2017-2019 due to dissemination of neuroendocrine neoplasm, 12 patients underwent [68Ga]Ga-DOTA-TATE PET/CT on average 3.1 months before and 4.5 months after PRRT and were eligible for the analysis.In total, 76 NET lesions were evaluated. We measured SUVmax for every lesion in both PET/CT scans (before and after PRRT). Those values were corrected by liver SUVmax and liver SUVmean measured in volumetric analysis and specified as SUVlmax and SUVlmean. As a next step, changes in SUVlmax and SUVlmean were assessed based on both PET/CT scans. Finally, results were correlated with the clinical outcome assessed as progressive disease, disease stabilization, or partial response. RESULTS The mean follow-up period was 19.9 months. Progressive disease, partial response, and disease stabilization were found in five, two, and five patients, respectively. Among patients with a partial response, the decrease in mean SUVlmax was 66.3% when compared to baseline. In patients with stable disease, the decrease in SUVlmax was 30.3% when compared to baseline. In patients with progressive disease, the mean increase in SUVlmax was 9.1% when compared to baseline. The changes in SUVlmean were -69,8%, -30.8%, and -3.7%, respectively. CONCLUSIONS A decrease in the SUVmax value in NET lesions, corrected by normal liver tissue uptake assessed in [68Ga]Ga-DOTA-TATE PET/CT scans, indicates a lower risk for NET progressive disease within 20 months after PRRT and may constitute an additional and independent parameter for the estimation of overall risk for disease progression.
Collapse
Affiliation(s)
- Marta Opalińska
- Nuclear Medicine Unit, Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | | | - Adrian Kania-Kuc
- Nuclear Medicine Unit, Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | - Ibraheem Al Maraih
- Nuclear Medicine Unit, Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | - Anna Sowa-Staszczak
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- *Correspondence: Anna Sowa-Staszczak,
| | | |
Collapse
|
47
|
Peptide Receptor Radionuclide Therapy Targeting the Somatostatin Receptor: Basic Principles, Clinical Applications and Optimization Strategies. Cancers (Basel) 2021; 14:cancers14010129. [PMID: 35008293 PMCID: PMC8749814 DOI: 10.3390/cancers14010129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Peptide receptor radionuclide therapy (PRRT) is a systemic treatment consisting of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. This will subsequently cause lethal DNA damage to the tumor cell. The only target that is currently used in widespread clinical practice is the somatostatin receptor, which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review focuses on the basic principles and clinical applications of PRRT, and discusses several PRRT-optimization strategies. Abstract Peptide receptor radionuclide therapy (PRRT) consists of the administration of a tumor-targeting radiopharmaceutical into the circulation of a patient. The radiopharmaceutical will bind to a specific peptide receptor leading to tumor-specific binding and retention. The only target that is currently used in clinical practice is the somatostatin receptor (SSTR), which is overexpressed on a range of tumor cells, including neuroendocrine tumors and neural-crest derived tumors. Academia played an important role in the development of PRRT, which has led to heterogeneous literature over the last two decades, as no standard radiopharmaceutical or regimen has been available for a long time. This review provides a summary of the treatment efficacy (e.g., response rates and symptom-relief), impact on patient outcome and toxicity profile of PRRT performed with different generations of SSTR-targeting radiopharmaceuticals, including the landmark randomized-controlled trial NETTER-1. In addition, multiple optimization strategies for PRRT are discussed, i.e., the dose–effect concept, dosimetry, combination therapies (i.e., tandem/duo PRRT, chemoPRRT, targeted molecular therapy, somatostatin analogues and radiosensitizers), new radiopharmaceuticals (i.e., SSTR-antagonists, Evans-blue containing vector molecules and alpha-emitters), administration route (intra-arterial versus intravenous) and response prediction via molecular testing or imaging. The evolution and continuous refinement of PRRT resulted in many lessons for the future development of radionuclide therapy aimed at other targets and tumor types.
Collapse
|
48
|
Hou J, Yang Y, Chen N, Chen D, Hu S. Prognostic Value of Volume-Based Parameters Measured by SSTR PET/CT in Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:771912. [PMID: 34901087 PMCID: PMC8662524 DOI: 10.3389/fmed.2021.771912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose: A meta-analysis was conducted to investigate the value of the volume parameters based on somatostatin receptor (SSTR)-positron emission tomography (PET) in predicting the prognosis in patients with neuroendocrine tumors (NETs). Material: PUBMED, EMBASE, Cochrane library, and Web of Knowledge were searched from January 1990 to May 2021 for studies evaluating prognostic value of volume-based parameters of SSTR PET/CT in NETs. The terms used were "volume," "positron emission tomography," "neuroendocrine tumors," and "somatostatin receptor." Pooled hazard ratio (HR) values were calculated to assess the correlations between volumetric parameters, including total tumor volume (TTV) and total-lesion SSTR expression (TL-SSTR), with progression-free survival (PFS) and overall survival (OS). Heterogeneity and subgroup analysis were performed. Funnel plots, Begg's and Egger's test were used to assess possible underlying publication bias. Results: Eight eligible studies involving 593 patients were included in the meta-analysis. In TTV, the pooled HRs of its prognostic value of PFS and OS were 2.24 (95% CI: 1.73-2.89; P < 0.00001) and 3.54 (95% CI, 1.77-7.09; P = 0.0004), respectively. In TL-SSTR, the pooled HR of the predictive value was 1.61 (95% CI, 0.48-5.44, P = 0.44) for PFS. Conclusion: High TTV was associated with a worse prognosis for PFS and OS in with patients NETs. The TTV of SSTR PET is a potential objective prognosis predictor.
Collapse
Affiliation(s)
- Jiale Hou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Na Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dengming Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Biological Nanotechnology, Changsha, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Kennedy J, Chicheportiche A, Keidar Z. Quantitative SPECT/CT for dosimetry of peptide receptor radionuclide therapy. Semin Nucl Med 2021; 52:229-242. [PMID: 34911637 DOI: 10.1053/j.semnuclmed.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroendocrine tumors (NETs) are uncommon malignancies of increasing incidence and prevalence. As these slow growing tumors usually overexpress somatostatin receptors (SSTRs), the use of 68Ga-DOTA-peptides (gallium-68 chelated with dodecane tetra-acetic acid to somatostatin), which bind to the SSTRs, allows for PET based imaging and selection of patients for peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogues such as 177Lu-DOTATATE (lutetium-177-[DOTA,Tyr3]-octreotate), is mainly used for the treatment of metastatic or inoperable NETs. However, PRRT is generally administered at a fixed injected activity in order not to exceed dose limits in critical organs, which is suboptimal given the variability in radiopharmaceutical uptake among patients. Advances in SPECT (single photon emission computed tomography) imaging enable the absolute quantitative measure of the true radiopharmaceutical distribution providing for PRRT dosimetry in each patient. Personalized PRRT based on patient-specific dosimetry could improve therapeutic efficacy by optimizing effective tumor absorbed dose while limiting treatment related radiotoxicity.
Collapse
Affiliation(s)
- John Kennedy
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Alexandre Chicheportiche
- Department of Nuclear Medicine and Biophysics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel; B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
50
|
Ferdinandus J, Fendler WP, Morigi JJ, Fanti S. Theranostics in oncology: What radiologists want to know. Eur J Radiol 2021; 142:109875. [PMID: 34391057 DOI: 10.1016/j.ejrad.2021.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Combination of radioligand imaging and therapy, so called radiotheranostics, is a novel tool of precision oncology with proven clinical value. In-depth knowledge of functional imaging nuances is critically needed for precise prognostication and guidance of management. Here, we review theranostic applications with up to Phase III type evidence for outcome improvement: Imaging and therapy of neuroendocrine neoplasms (NEN) exploiting high levels of somatostatin receptor (SSTR) expression and radiotheranostics of prostate cancer targeting the prostate specific membrane antigen (PSMA). This narrative review focusses on these two applications and elucidates patient selection and response assessment by radioligand scintigraphy and/or positron emission tomography. Furthermore, we provide a brief outlook on future applications for novel targets outside of NEN and prostate cancer.
Collapse
Affiliation(s)
- Justin Ferdinandus
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Joshua James Morigi
- PET/CT Unit, Department of Medical Imaging, Royal Darwin Hospital, Darwin, Australia.
| | - Stefano Fanti
- Nuclear Medicine Division, Policlinico S Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|