1
|
Emerson JR, Scott MW, van Schaik P, Butcher N, Kenny RPW, Eaves DL. A neural signature for combined action observation and motor imagery? An fNIRS study into prefrontal activation, automatic imitation, and self-other perceptions. Brain Behav 2022; 12:e2407. [PMID: 34994997 PMCID: PMC8865155 DOI: 10.1002/brb3.2407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Research indicates that both observed and imagined actions can be represented in the brain as two parallel sensorimotor representations. One proposal is that higher order cognitive processes would align these two hypothetical action simulations. METHODS We investigated this hypothesis using an automatic imitation paradigm, with functional near-infrared spectroscopy recordings over the prefrontal cortex during different motor simulation states. On each trial, participants (n = 14) observed a picture of a rhythmical action (instructed action) followed by a distractor movie showing the same or different action. Participants then executed the instructed action. Distractor actions were manipulated to be fast or slow, and instructions were manipulated during distractor presentation: action observation (AO), combined action observation and motor imagery (AO+MI) and observe to imitate (intentional imitation). A pure motor imagery (MI) condition was also included. RESULTS Kinematic analyses showed that although distractor speed effects were significant under all instructions (shorter mean cycle times in execution for fast compared to slow trials), this imitation bias was significantly stronger for combined AO+MI than both AO and MI, and stronger for intentional imitation than the other three automatic imitation conditions. In the left prefrontal cortex, cerebral oxygenation was significantly greater for combined AO+MI than all other instructions. Participants reported that their representation of the self overlapped with the observed model significantly more during AO+MI than AO. CONCLUSION Left prefrontal activation may therefore be a neural signature of AO+MI, supporting attentional switching between concurrent representations of self (MI, top-down) and other (AO, bottom-up) to increase imitation and perceived closeness.
Collapse
Affiliation(s)
- Jonathan R Emerson
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Matthew W Scott
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Paul van Schaik
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Natalie Butcher
- Department of Psychology, School of Social Sciences, Humanities & Law, Teesside University, Middlesbrough, UK
| | - Ryan P W Kenny
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Daniel L Eaves
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
2
|
Guo Z, Chen F. Idle-state detection in motor imagery of articulation using early information: A functional Near-infrared spectroscopy study. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Jalalvandi M, Riyahi Alam N, Sharini H, Hashemi H, Nadimi M. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). J Biomed Phys Eng 2021; 11:583-594. [PMID: 34722403 PMCID: PMC8546162 DOI: 10.31661/jbpe.v0i0.1051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/29/2018] [Indexed: 12/04/2022]
Abstract
Background: fNIRS is a useful tool designed to record the changes in the density of blood’s oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) molecules during brain activity.
This method has made it possible to evaluate the hemodynamic changes of the brain during neuronal activity in a completely non-aggressive manner. Objective: The present study has been designed to investigate and evaluate the brain cortex activities during imagining of the execution of wrist motor tasks by comparing fMRI and fNIRS imaging methods. Material and Methods: This novel observational Optical Imaging study aims to investigate the brain motor cortex activity during imagining of the right wrist motor tasks
in vertical and horizontal directions. To perform the study, ten healthy young right-handed volunteers were asked to think about right-hand movements in different
directions according to the designed movement patterns. The required data were collected in two wavelengths, including 845 and 763 nanometers using a 48 channeled fNIRS machine. Results: Analysis of the obtained data showed the brain activity patterns during imagining of the execution of a movement are formed in various points of the motor
cortex in terms of location. Moreover, depending on the direction of the movement, activity plans have distinguishable patterns. The results showed contralateral M1 was
mainly activated during imagining of the motor cortex (p<0.05). Conclusion: The results of our study showed that in brain imaging, it is possible to distinguish between patterns of activities during wrist motion in different directions
using the recorded signals obtained through near-infrared Spectroscopy. The findings of this study can be useful in further studies related to movement control and BCI.
Collapse
Affiliation(s)
- Maziar Jalalvandi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, Medical Pharmaceutical Sciences Research Centre (MPRC), The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Sharini
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Hasan Hashemi
- MD, Department of Radiology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- MD, Advanced Diagnostic and Interventional Radiology Research Centre (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohadeseh Nadimi
- MSc Student, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Vu AT, Feinberg DA. The Role of Cerebral Metabolism in Improving Time Pressured Decisions. Front Psychol 2021; 12:690198. [PMID: 34354635 PMCID: PMC8329240 DOI: 10.3389/fpsyg.2021.690198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Speed-accuracy tradeoff (SAT) theory dictates that decisions can be made more quickly by sacrificing accuracy. Here we investigate whether the human brain can operate in a brief metabolic overdrive to overcome SAT and successfully make decisions requiring both high levels of speed and accuracy. In the context of BOLD fMRI we expect “a brief metabolic overdrive” to involve an increase in cerebral oxygen metabolism prior to increased cerebral blood flow–a phenomenon known as the “initial dip” which results from a sudden drop in oxyhemoglobin in perfusing blood. Human subjects performed a motion discrimination task consisting of different difficulties while emphasizing either accuracy (i.e., without time pressure) or both speed and accuracy (i.e., with time pressure). Using simultaneous multi-slice fMRI, for very fast (333 ms) measurement of whole brain BOLD activity, revealed two modes of physiological overdrive responses when subjects emphasized both speed and accuracy. The majority of subjects exhibited the hypothesized enhancement of initial dip amplitude in posterior visual cortex (PVC) with the size of the enhancement significantly correlated with improvement in behavioral performance. For these subjects, the traditionally analyzed post-stimulus overshoot was not affected by task emphasis. These results demonstrate the complexity and variability of the BOLD hemodynamic response. The discovered relationships between BOLD response and behavior were only observed when subjects emphasized both speed and accuracy in more difficult trials suggesting that the brain can perform in a state of metabolic overdrive with enhanced neural processing of sensory information specifically in challenging situations.
Collapse
Affiliation(s)
- An Thanh Vu
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - David A Feinberg
- Advanced Magnetic Resonance Imaging (MRI) Technologies, Sebastopol, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discov 2020; 6:39. [PMID: 32566247 PMCID: PMC7296038 DOI: 10.1038/s41421-020-0180-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Functional hyperemia, or the matching of blood flow with activity, directs oxygen and nutrients to regionally firing neurons. The mechanisms responsible for this spatial accuracy remain unclear but are critical for brain function and establish the diagnostic resolution of BOLD-fMRI. Here, we described a mosaic of pericytes, the vasomotor capillary cells in the living retina. We then tested whether this net of pericytes and surrounding neuroglia predicted a connectivity map in response to sensory stimuli. Surprisingly, we found that these connections were not only selective across cell types, but also highly asymmetric spatially. First, pericytes connected predominantly to other neighboring pericytes and endothelial cells, and less to arteriolar smooth muscle cells, and not to surrounding neurons or glia. Second, focal, but not global stimulation evoked a directional vasomotor response by strengthening connections along the feeding vascular branch. This activity required local NO signaling and occurred by means of direct coupling via gap junctions. By contrast, bath application of NO or diabetes, a common microvascular pathology, not only weakened the vascular signaling but also abolished its directionality. We conclude that the exclusivity of neurovascular interactions may thus establish spatial accuracy of blood delivery with the precision of the neuronal receptive field size, and is disrupted early in diabetes.
Collapse
Affiliation(s)
- Tamas Kovacs-Oller
- Burke Neurological Institute, White Plains, NY 10605 USA
- Szentagothai Research Centre, University of Pécs, Pécs, H-7624 Hungary
| | - Elena Ivanova
- Burke Neurological Institute, White Plains, NY 10605 USA
| | | | - Botir T. Sagdullaev
- Burke Neurological Institute, White Plains, NY 10605 USA
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
7
|
Abstract
Nowadays, several techniques exist to study and better understand how the brain works (fMRI, EEG, electrophysiology, etc.). Each has its own advantages and disadvantages (spatiotemporal resolution, maximal recording depth, signal-to-noise ratio, etc.). In this article, we show that the new functional ultrasound (fUS) imaging technique is appropriate to record and map brain activity in awake primates on a scale previously unreachable. It allows distinguishing patterns similar to ocular dominance bands in the visual cortex through all layers of the cortex, which was impossible before with common techniques. This paper demonstrates the utility of fUS imaging for studying brain activity in awake primates and its interest to all neuroscientists. Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.
Collapse
|
8
|
He Y, Shi J, Maslov KI, Cao R, Wang LV. Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32529816 PMCID: PMC7289453 DOI: 10.1117/1.jbo.25.6.066501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/28/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE The initial dip in hemoglobin-oxygenation response to stimulations is a spatially confined endogenous indicator that is faster than the blood flow response, making it a desired label-free contrast to map the neural activity. A fundamental question is whether a single-impulse stimulus, much shorter than the response delay, could produce an observable initial dip without repeated stimulation. AIM To answer this question, we report high-speed functional photoacoustic (PA) microscopy to investigate the initial dip in mouse brains. APPROACH We developed a Raman-laser-based dual-wavelength functional PA microscope that can image capillary-level blood oxygenation at a 1-MHz one-dimensional imaging rate. This technology was applied to monitor the hemodynamics of mouse cerebral vasculature after applying an impulse stimulus to the forepaw. RESULTS We observed a transient initial dip in cerebral microvessels starting as early as 0.13 s after the onset of the stimulus. The initial dip and the subsequent overshoot manifested a wave pattern propagating across different microvascular compartments. CONCLUSIONS We quantified both spatially and temporally the single-impulse-stimulated microvascular hemodynamics in mouse brains at single-vessel resolution. Fast label-free imaging of single-impulse response holds promise for real-time brain-computer interfaces.
Collapse
Affiliation(s)
- Yun He
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Konstantin I. Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lihong V. Wang, E-mail:
| |
Collapse
|
9
|
Zafar A, Hong KS. Reduction of Onset Delay in Functional Near-Infrared Spectroscopy: Prediction of HbO/HbR Signals. Front Neurorobot 2020; 14:10. [PMID: 32132918 PMCID: PMC7040361 DOI: 10.3389/fnbot.2020.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
An intrinsic problem when using hemodynamic responses for the brain-machine interface is the slow nature of the physiological process. In this paper, a novel method that estimates the oxyhemoglobin changes caused by neuronal activations is proposed and validated. In monitoring the time responses of blood-oxygen-level-dependent signals with functional near-infrared spectroscopy (fNIRS), the early trajectories of both oxy- and deoxy-hemoglobins in their phase space are scrutinized. Furthermore, to reduce the detection time, a prediction method based upon a kernel-based recursive least squares (KRLS) algorithm is implemented. In validating the proposed approach, the fNIRS signals of finger tapping tasks measured from the left motor cortex are examined. The results show that the KRLS algorithm using the Gaussian kernel yields the best fitting for both ΔHbO (i.e., 87.5%) and ΔHbR (i.e., 85.2%) at q = 15 steps ahead (i.e., 1.63 s ahead at a sampling frequency of 9.19 Hz). This concludes that a neuronal activation can be concluded in about 0.1 s with fNIRS using prediction, which enables an almost real-time practice if combined with EEG.
Collapse
Affiliation(s)
- Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Electrical Engineering, University of Wah, Wah Cantonment, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
10
|
Yamato H, Jin T, Nomura Y. Near infrared imaging of intrinsic signals in cortical spreading depression observed through the intact scalp in hairless mice. Neurosci Lett 2019; 701:213-217. [PMID: 30797869 DOI: 10.1016/j.neulet.2019.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/15/2023]
Abstract
Brain cooling was inevitable in both thinned and intact skull windows in neuroimaging in vivo of mice. Thus we proposed the novel imaging method leaving intact scalp on the skull using the light at 670, 785, and 975 nm. In this study, we used hairless mice (Hos:HR-1) since the deterioration of image quality was resulted from the hair. Cortical spreading depression was induced by KCl application through small incision and burr hole on the frontal bone. Intrinsic optical signals through the intact scalp in the observation area were detected. Time course of the signal showed a triphasic feature which was consistent with the intrinsic optical signals through the intact skull. In three pairs of signal amplitudes at the different wavelengths, no significant differences were observed. Although the intact scalp weakened the amplitudes significantly, e.g., 4.0 from 6.9 at 975 nm, the signals during cortical spreading depression were sufficient to be detected.
Collapse
Affiliation(s)
- Hiro Yamato
- Department of Systems Life Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Takashi Jin
- Laboratory for Nano-Bio Probes, RIKEN Quantitative Biology Center, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Yasutomo Nomura
- Department of Systems Life Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi, Gunma 371-0816, Japan; Laboratory for Nano-Bio Probes, RIKEN Quantitative Biology Center, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
11
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Wriessnegger SC, Bauernfeind G, Kurz EM, Raggam P, Müller-Putz GR. Imagine squeezing a cactus: Cortical activation during affective motor imagery measured by functional near-infrared spectroscopy. Brain Cogn 2018; 126:13-22. [DOI: 10.1016/j.bandc.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
|
13
|
Bauernfeind G, Wriessnegger SC, Haumann S, Lenarz T. Cortical activation patterns to spatially presented pure tone stimuli with different intensities measured by functional near-infrared spectroscopy. Hum Brain Mapp 2018. [PMID: 29516587 DOI: 10.1002/hbm.24034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the assessment of functional activity of the cerebral cortex. Recently fNIRS was also envisaged as a novel neuroimaging approach for measuring the auditory cortex activity in the field of in auditory diagnostics. This study aimed to investigate differences in brain activity related to spatially presented sounds with different intensities in 10 subjects by means of functional near-infrared spectroscopy (fNIRS). We found pronounced cortical activation patterns in the temporal and frontal regions of both hemispheres. In contrast to these activation patterns, we found deactivation patterns in central and parietal regions of both hemispheres. Furthermore our results showed an influence of spatial presentation and intensity of the presented sounds on brain activity in related regions of interest. These findings are in line with previous fMRI studies which also reported systematic changes of activation in temporal and frontal areas with increasing sound intensity. Although clear evidence for contralaterality effects and hemispheric asymmetries were absent in the group data, these effects were partially visible on the single subject level. Concluding, fNIRS is sensitive enough to capture differences in brain responses during the spatial presentation of sounds with different intensities in several cortical regions. Our results may serve as a valuable contribution for further basic research and the future use of fNIRS in the area of central auditory diagnostics.
Collapse
Affiliation(s)
- Günther Bauernfeind
- Department of Otolaryngology, Hannover Medical School, Hannover, 30625, Germany.,Cluster of Excellence "Hearing4all", Hannover Medical School, Hannover, 30625, Germany
| | | | - Sabine Haumann
- Department of Otolaryngology, Hannover Medical School, Hannover, 30625, Germany.,Cluster of Excellence "Hearing4all", Hannover Medical School, Hannover, 30625, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, 30625, Germany.,Cluster of Excellence "Hearing4all", Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
14
|
Zhang J, Zhang S, Yu C, Zheng X, Xu K. Intrinsic optical imaging study on cortical responses to electrical stimulation in ventral posterior medial nucleus of thalamus. Brain Res 2018; 1684:40-49. [PMID: 29408501 DOI: 10.1016/j.brainres.2018.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Intracortical electrical micro-stimulation has been applied widely for the attempts on reconstruction of sensory functions. More recently, thalamic electrical stimulation has been proposed as a promising target for somatosensory stimulation. However, the cortical activations and mechanisms evoked by VPM stimulation remained unclear. In this report, the cortical neural responses to electrical stimulations were recorded by optical imaging of intrinsic signals. The impact of stimulation parameters was characterized to illustrate how the VPM stimulation alter cortical activities. Significant increases were found in cortical responses with increased stimulation amplitude or pulse width. However, frequency modulation exhibited significant inhibition with higher frequency stimulation. Our results suggest that optical imaging of intrinsic signals is sensitive and reliable to deep brain stimulations. These results may not only help to understand the modulation effects through thalamocortical pathway, but also show the possibility to use VPM stimulation to evoke frequency-tuned tactile sensations in rats.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou 310027, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou 310027, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, China
| | - Chaonan Yu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou 310027, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, China
| | - Xiaoxiang Zheng
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou 310027, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou 310027, China; Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, China.
| |
Collapse
|
15
|
Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EMC. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0360. [PMID: 27574312 PMCID: PMC5003860 DOI: 10.1098/rstb.2015.0360] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Ying Ma
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mariel G Kozberg
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hang Yu
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
16
|
Uhlirova H, Kılıç K, Tian P, Sakadžić S, Gagnon L, Thunemann M, Desjardins M, Saisan PA, Nizar K, Yaseen MA, Hagler DJ, Vandenberghe M, Djurovic S, Andreassen OA, Silva GA, Masliah E, Kleinfeld D, Vinogradov S, Buxton RB, Einevoll GT, Boas DA, Dale AM, Devor A. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0356. [PMID: 27574309 DOI: 10.1098/rstb.2015.0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Hana Uhlirova
- Department of Radiology, UCSD, La Jolla, CA 92093, USA CEITEC-Central European Institute of Technology and Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kıvılcım Kılıç
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Peifang Tian
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Department of Physics, John Carroll University, University Heights, OH 44118, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | - Payam A Saisan
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Krystal Nizar
- Neurosciences Graduate Program, UCSD, La Jolla, CA 92093, USA
| | - Mohammad A Yaseen
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Matthieu Vandenberghe
- Department of Radiology, UCSD, La Jolla, CA 92093, USA NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0407 Oslo, Norway NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Gabriel A Silva
- Department of Bioengineering, UCSD, La Jolla, CA 92093, USA Department of Opthalmology, UCSD, La Jolla, CA 92093, USA
| | | | - David Kleinfeld
- Department of Physics, UCSD, La Jolla, CA 92093, USA Department of Electrical and Computer Engineering, UCSD, La Jolla, CA 92093, USA Section of Neurobiology, UCSD, La Jolla, CA 92093, USA
| | - Sergei Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - David A Boas
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anders M Dale
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Sauvage A, Hubert G, Touboul J, Ribot J. The hemodynamic signal as a first-order low-pass temporal filter: Evidence and implications for neuroimaging studies. Neuroimage 2017; 155:394-405. [PMID: 28343986 DOI: 10.1016/j.neuroimage.2017.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 01/26/2023] Open
Abstract
Neuronal activation triggers local changes in blood flow and hemoglobin oxygenation. These hemodynamic signals can be recorded through functional magnetic resonance imaging or intrinsic optical imaging, and allows inferring neural activity in response to stimuli. These techniques are widely used to uncover functional brain architectures. However, their accuracy suffers from distortions inherent to hemodynamic responses and noise. The analysis of these signals currently relies on models of impulse hemodynamic responses to brief stimuli. Here, in order to infer precise functional architectures, we focused on integrated signals associated to the dynamic response of functional maps. To this end, we recorded orientation and direction maps in cat primary visual cortex and compared two protocols: the conventional episodic stimulation technique and a continuous, periodic stimulation paradigm. Conventional methods show that the dynamics of activation and deactivation of the functional maps follows a linear first-order differential equation representing a low-pass filter. Comparison with the periodic stimulation methods confirmed this observation: the phase shifts and magnitude attenuations extracted at various frequencies were consistent with a low-pass filter with a 5s time constant. This dynamics presumably reflects the variations in deoxyhemoglobin mediated by arterial dilations. This dynamics open new avenues in the analysis of neuroimaging data that differs from common methods based on the hemodynamic response function. In particular, we demonstrate that inverting this first-order low-pass filter minimized the distortions of the signal and enabled a much faster and accurate reconstruction of functional maps.
Collapse
Affiliation(s)
- Antoine Sauvage
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Guillaume Hubert
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Jonathan Touboul
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France; INRIA Mycenae Team, Paris-Rocquencourt, France
| | - Jérôme Ribot
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
18
|
Cellular origin of intrinsic optical signals in the rabbit retina. Vision Res 2017; 137:40-49. [PMID: 28687326 DOI: 10.1016/j.visres.2017.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/23/2022]
Abstract
Optical imaging of retinal intrinsic signals is a relatively new method that provides spatiotemporal patterns of retinal activity through activity-dependent changes in light reflectance of the retina. The exact physiological mechanisms at the origin of retinal intrinsic signals are poorly understood and there are significant inter-species differences in their characteristics and cellular origins. In this study, we re-examined this issue through pharmacological dissection of retinal intrinsic signals in the rabbit with simultaneous ERG recordings. Retinal intrinsic signals faithfully reflected retinal activity as their amplitude was strongly associated with stimulation intensity (r2=0.85). Further, a strong linear relation was found using linear regression (r2=0.98) between retinal intrinsic signal amplitude and the ERG b wave, which suggests common cellular origins. Intravitreal injections of pharmacological agents were performed to isolate the activity of the retina's major cell types. Retinal intrinsic signals were abolished when the photoreceptors' activity was isolated with aspartate, indicative that they are not at the origin of this signal. A small but significant decrease in intrinsic response (20%) was observed when ganglion and amacrine cells' activity was inhibited by TTX injections. The remaining intrinsic responses were abolished in a dose-dependent manner through the inhibition of ON-bipolar cells by APB. Our results indicate that, in rabbits, retinal intrinsic signals reflect stimulation intensity and originate from the inner retina with a major contribution of bipolar cells and a minor one from ganglion or amacrine cells.
Collapse
|
19
|
Gratton G, Chiarelli AM, Fabiani M. From brain to blood vessels and back: a noninvasive optical imaging approach. NEUROPHOTONICS 2017; 4:031208. [PMID: 28413807 PMCID: PMC5384652 DOI: 10.1117/1.nph.4.3.031208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/10/2017] [Indexed: 06/01/2023]
Abstract
The seminal work of Grinvald et al. has paved the way for the use of intrinsic optical signals measured with reflection methods for the analysis of brain function. Although this work has focused on the absorption signal associated with deoxygenation, due to its detailed mapping ability and good signal-to-noise ratio, Grinvald's group has also described other intrinsic signals related to increased blood flow, scattering effects directly related to neural activation, and pulsation effects related to arterial function. These intrinsic optical signals can also be measured using noninvasive diffuse optical topographic and tomographic imaging (DOT) methods that can be applied to humans. Here we compare the reflection and DOT methods and the evidence for each type of intrinsic signal in these two domains, with particular attention to work that has been conducted in our laboratory. This work reveals the refined two-way relationship that exists between vascular and neural phenomena in the brain: arterial health is related to normal brain structure and function, both across individuals and across brain regions within an individual, and neural function influences blood flow to specific cortical regions. DOT methods can provide quantitative tools for investigating these relationships in normal human subjects.
Collapse
Affiliation(s)
- Gabriele Gratton
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Antonio M. Chiarelli
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Monica Fabiani
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| |
Collapse
|
20
|
Herman MC, Cardoso MMB, Lima B, Sirotin YB, Das A. Simultaneously estimating the task-related and stimulus-evoked components of hemodynamic imaging measurements. NEUROPHOTONICS 2017; 4:031223. [PMID: 28721355 PMCID: PMC5502953 DOI: 10.1117/1.nph.4.3.031223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Task-related hemodynamic responses contribute prominently to functional magnetic resonance imaging (fMRI) recordings. They reflect behaviorally important brain states, such as arousal and attention, and can dominate stimulus-evoked responses, yet they remain poorly understood. To help characterize these responses, we present a method for parametrically estimating both stimulus-evoked and task-related components of hemodynamic responses from subjects engaged in temporally predictable tasks. The stimulus-evoked component is modeled by convolving a hemodynamic response function (HRF) kernel with spiking. The task-related component is modeled by convolving a Fourier-series task-related function (TRF) kernel with task timing. We fit this model with simultaneous electrode recordings and intrinsic-signal optical imaging from the primary visual cortex of alert, task-engaged monkeys. With high [Formula: see text], the model returns HRFs that are consistent across experiments and recording sites for a given animal and TRFs that entrain to task timing independent of stimulation or local spiking. When the task schedule conflicts with that of stimulation, the TRF remains locked to the task emphasizing its behavioral origins. The current approach is strikingly more robust to fluctuations than earlier ones and gives consistently, if modestly, better fits. This approach could help parse the distinct components of fMRI recordings made in the context of a task.
Collapse
Affiliation(s)
- Max Charles Herman
- Columbia University, Department of Neuroscience, New York, New York, United States
| | - Mariana M. B. Cardoso
- Columbia University, Department of Neuroscience, New York, New York, United States
- University of California at San Francisco, Department of Physiology and Center for Integrative Neuroscience, San Francisco, California, United States
| | - Bruss Lima
- Columbia University, Department of Neuroscience, New York, New York, United States
- Federal University of Rio de Janeiro, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Yevgeniy B. Sirotin
- Columbia University, Department of Neuroscience, New York, New York, United States
| | - Aniruddha Das
- Columbia University, Department of Neuroscience, New York, New York, United States
| |
Collapse
|
21
|
Wriessnegger SC, Kirchmeyr D, Bauernfeind G, Müller-Putz GR. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Brain Cogn 2017; 117:108-116. [PMID: 28673464 DOI: 10.1016/j.bandc.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria.
| | - Daniela Kirchmeyr
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| | - Günther Bauernfeind
- Department of Otolaryngology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| |
Collapse
|
22
|
Bauernfeind G, Steyrl D, Brunner C, Muller-Putz GR. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: a comparison between different classifiers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:2004-7. [PMID: 25570376 DOI: 10.1109/embc.2014.6944008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Functional near infrared spectroscopy (fNIRS) is an emerging technique for the in-vivo assessment of functional activity of the cerebral cortex as well as in the field of brain-computer-interface (BCI) research. A common challenge for the utilization of fNIRS for BCIs is a stable and reliable single trial classification of the recorded spatio-temporal hemodynamic patterns. Many different classification methods are available, but up to now, not more than two different classifiers were evaluated and compared on one data set. In this work, we overcome this issue by comparing five different classification methods on mental arithmetic fNIRS data: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machines (SVM), analytic shrinkage regularized LDA (sLDA), and analytic shrinkage regularized QDA (sQDA). Depending on the used method and feature type (oxy-Hb or deoxy-Hb), achieved classification results vary between 56.1 % (deoxy-Hb/QDA) and 86.6% (oxy-Hb/SVM). We demonstrated that regularized classifiers perform significantly better than non-regularized ones. Considering simplicity and computational effort, we recommend the use of sLDA for fNIRS-based BCIs.
Collapse
|
23
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Grinvald A, Sharon D, Omer D, Vanzetta I. Imaging the Neocortex Functional Architecture Using Multiple Intrinsic Signals: Implications for Hemodynamic-Based Functional Imaging. Cold Spring Harb Protoc 2016; 2016:pdb.top089375. [PMID: 26933255 DOI: 10.1101/pdb.top089375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Optical imaging based on intrinsic signals has provided a new level of understanding of the principles underlying cortical development, organization, and function, providing a spatial resolution of up to 20 µm for mapping cortical columns in vivo. This introduction briefly reviews the development of this technique, the types of applications that have been pursued, and the general implications of some findings for other neuroimaging techniques based on hemodynamic responses (e.g., functional magnetic resonance imaging).
Collapse
|
25
|
Quantifying movement intentions with multimodal neuroimaging for functional electrical stimulation-based rehabilitation. Neuroreport 2016; 27:61-6. [PMID: 26656935 DOI: 10.1097/wnr.0000000000000480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Functional electrical stimulation (FES) is a common rehabilitation method for the purpose of recovery of paralyzed muscle by means of sequential electrical stimulation. Reports indicate that active participation by the patient, as opposed to simple stimulation, leads to improved recovery when using FES and other rehabilitation techniques. In this paper, we investigate the neurophysiological effect of an active participant's intention in the FES rehabilitation task. To observe the difference in brain signal between intentional and involuntary movement during FES, electroencephalography and near-infrared spectroscopy were simultaneously measured in the motor cortex area. The result showed that the presence of intention affects the activation of the brain significantly in both hemodynamic responses (near-infrared spectroscopy) and electrical (electroencephalography) patterns, and the accuracy of classification between passive and active mental states during FES was 85.3%. Our result implies the possibility to quantify motivation, or active participation, during rehabilitation, which has not been considered a measurable value in the rehabilitation field.
Collapse
|
26
|
Ardestani A, Shen W, Darvas F, Toga AW, Fuster JM. Modulation of Frontoparietal Neurovascular Dynamics in Working Memory. J Cogn Neurosci 2015; 28:379-401. [PMID: 26679214 DOI: 10.1162/jocn_a_00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our perception of the world is represented in widespread, overlapping, and interactive neuronal networks of the cerebral cortex. A majority of physiological studies on the subject have focused on oscillatory synchrony as the binding mechanism for representation and transmission of neural information. Little is known, however, about the stability of that synchrony during prolonged cognitive operations that span more than just a few seconds. The present research, in primates, investigated the dynamic patterns of oscillatory synchrony by two complementary recording methods, surface field potentials (SFPs) and near-infrared spectroscopy (NIRS). The signals were first recorded during the resting state to examine intrinsic functional connectivity. The temporal modulation of coactivation was then examined on both signals during performance of working memory (WM) tasks with long delays (memory retention epochs). In both signals, the peristimulus period exhibited characteristic features in frontal and parietal regions. Examination of SFP signals over delays lasting tens of seconds, however, revealed alternations of synchronization and desynchronization. These alternations occurred within the same frequency bands observed in the peristimulus epoch, without a specific correspondence between any definite cognitive process (e.g., WM) and synchrony within a given frequency band. What emerged instead was a correlation between the degree of SFP signal fragmentation (in time, frequency, and brain space) and the complexity and efficiency of the task being performed. In other words, the incidence and extent of SFP transitions between synchronization and desynchronization-rather than the absolute degree of synchrony-augmented in correct task performance compared with incorrect performance or in a control task without WM demand. An opposite relationship was found in NIRS: increasing task complexity induced more uniform, rather than fragmented, NIRS coactivations. These findings indicate that the particular features of neural oscillations cannot be linearly mapped to cognitive functions. Rather, information and the cognitive operations performed on it are primarily reflected in their modulations over time. The increased complexity and fragmentation of electrical frequencies in WM may reflect the activation of hierarchically diverse cognits (cognitive networks) in that condition. Conversely, the homogeneity in coherence of NIRS responses may reflect the cumulative vascular reactions that accompany that neuroelectrical proliferation of frequencies and the longer time constant of the NIRS signal. These findings are directly relevant to the mechanisms mediating cognitive processes and to physiologically based interpretations of functional brain imaging.
Collapse
Affiliation(s)
- Allen Ardestani
- University of California, Los Angeles.,Cedars Sinai Medical Center, Los Angeles, CA
| | - Wei Shen
- University of California, Los Angeles
| | | | | | | |
Collapse
|
27
|
Li Z, Huang Q, Liu P, Li P, Ma L, Lu J. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:096008. [PMID: 26358821 DOI: 10.1117/1.jbo.20.9.096008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during functional activation induced by somatosensory stimulation might not be seriously impaired in the somatosensory cortex of rats with SAH. Therefore, our findings might help to understand the clinical phenomenon that DIND might not occur even when CVS was found in SAH patients.
Collapse
Affiliation(s)
- Zhiguo Li
- Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Qin Huang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| | - Peng Liu
- Wuhan General Hospital of Guangzhou Military Command, Department of Neurosurgery, 627 Wuluo Road, Wuhan 430070, China
| | - Pengcheng Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| | - Lianting Ma
- Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, ChinacWuhan General Hospital of Guangzhou Military Command, Department of Neurosurgery, 627 Wuluo Road, Wuhan 430070, China
| | - Jinling Lu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luo yu Road, Wuhan 430074, China
| |
Collapse
|
28
|
Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex. J Neurosci 2015; 34:15931-46. [PMID: 25429135 DOI: 10.1523/jneurosci.1818-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transgenic mice expressing genetically encoded activity indicators are an attractive means of mapping mesoscopic regional functional cortical connectivity given widespread stable and cell-specific expression compatible with chronic recordings. Cortical functional connectivity was evaluated using wide-field imaging in lightly anesthetized Emx1-creXRosa26-GCaMP3 mice expressing calcium sensor in cortical neurons. Challenges exist because green fluorescence signals overlap with endogenous activity-dependent autofluorescence and are affected by changes in blood volume and oxygenation. Under the conditions used for imaging and analysis (0.1-1 Hz frequency band), autofluorescence and hemodynamic effects contributed 3% and 8% of the SD of spontaneous activity-dependent GCaMP3 fluorescence when signals were recorded through intact bone. To evaluate the accuracy and sensitivity of this approach, the topology of functional connections between somatomotor cortex (primary S1 and secondary S2 somatosensory, and primary motor cortex M1) was estimated. During sequences of spontaneous activity, calcium signals recorded at each location of area S1 were correlated with activity in contralateral area S1, ipsilateral area S2, and bilateral areas M1. Reciprocal results were observed when "seed pixels" were placed in S2 and M1. Coactivation of areas implies functional connections but could also be attributed to both regions receiving common upstream drive. These apparent connections revealed during spontaneous activity coactivation by GCaMP3 were confirmed by intracortical microstimulation but were more difficult to detect using intrinsic signals from reflected red light. We anticipate GCAMP wide-field imaging will enable longitudinal studies during plasticity paradigms or after models of CNS disease, such as stroke, where the weighting within these connectivity maps may be altered.
Collapse
|
29
|
Bauernfeind G, Wriessnegger SC, Daly I, Müller-Putz GR. Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals. J Neural Eng 2014; 11:056010. [PMID: 25111822 DOI: 10.1088/1741-2560/11/5/056010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain-computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). APPROACH We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. MAIN RESULTS All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. SIGNIFICANCE The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Collapse
Affiliation(s)
- G Bauernfeind
- Institute for Knowledge Discovery, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
30
|
Feuerstein D, Takagaki M, Gramer M, Manning A, Endepols H, Vollmar S, Yoshimine T, Strong AJ, Graf R, Backes H. Detecting tissue deterioration after brain injury: regional blood flow level versus capacity to raise blood flow. J Cereb Blood Flow Metab 2014; 34:1117-27. [PMID: 24690942 PMCID: PMC4083373 DOI: 10.1038/jcbfm.2014.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/16/2022]
Abstract
Regional cerebral blood flow (rCBF) is spatially and temporally adjusted to local energy needs. This coupling involves dilation of vessels both at the site of metabolite exchange and upstream of the activated region. Deficits in upstream blood supply limit the 'capacity to raise rCBF' in response to functional activation and therefore compromise brain function. We here demonstrate in rats that the 'capacity to raise rCBF' can be determined from real-time measurements of rCBF using laser speckle imaging during an energy challenge induced by cortical spreading depolarizations (CSDs). Cortical spreading depolarizations (CSDs) occur with high incidence in stroke and various other brain injuries and cause large metabolic changes. Various conditions of cerebral perfusion were induced, either by modifying microvascular tone, or by altering upstream blood supply independently. The increase in rCBF per unit of time in response to CSD was linearly correlated to the upstream blood supply. In an experimental model of stroke, we found that this marker of the capacity to raise rCBF which, in pathologic tissue may be additionally limited by impaired vasoactive signaling, was a better indicator of the functional status of cerebral tissue than local rCBF levels.
Collapse
Affiliation(s)
| | | | - Markus Gramer
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Andrew Manning
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Heike Endepols
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Stefan Vollmar
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Antony J Strong
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Rudolf Graf
- Max Planck Institute for Neurological Research, Cologne, Germany
| | - Heiko Backes
- Max Planck Institute for Neurological Research, Cologne, Germany
| |
Collapse
|
31
|
Impaired functional organization in the visual cortex of muscarinic receptor knock-out mice. Neuroimage 2014; 98:233-42. [PMID: 24837499 DOI: 10.1016/j.neuroimage.2014.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine modulates maturation and neuronal activity through muscarinic and nicotinic receptors in the primary visual cortex. However, the specific contribution of different muscarinic receptor subtypes in these neuromodulatory mechanisms is not fully understood. The present study evaluates in vivo the functional organization and the properties of the visual cortex of different groups of muscarinic receptor knock-out (KO) mice. Optical imaging of intrinsic signals coupled to continuous and episodic visual stimulation paradigms was used. Retinotopic maps along elevation and azimuth were preserved among the different groups of mice. However, compared to their wild-type counterparts, the apparent visual field along elevation was larger in M2/M4-KO mice but smaller in M1-KO. There was a reduction in the estimated relative receptive field size of V1 neurons in M1/M3-KO and M1-KO mice. Spatial frequency and contrast selectivity of V1 neuronal populations were affected only in M1/M3-KO and M1-KO mice. Finally, the neuronal connectivity was altered by the absence of M2/M4 muscarinic receptors. All these effects suggest the distinct roles of different subtypes of muscarinic receptors in the intrinsic organization of V1 and a strong involvement of the muscarinic transmission in the detectability of visual stimuli.
Collapse
|
32
|
Guy J, Wagener RJ, Möck M, Staiger JF. Persistence of Functional Sensory Maps in the Absence of Cortical Layers in the Somsatosensory Cortex of Reeler Mice. Cereb Cortex 2014; 25:2517-28. [PMID: 24759695 PMCID: PMC4537421 DOI: 10.1093/cercor/bhu052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In rodents, layer IV of the primary somatosensory cortex contains the barrel field, where individual, large facial whiskers are represented as a dense cluster of cells. In the reeler mouse, a model of disturbed cortical development characterized by a loss of cortical lamination, the barrel field exists in a distorted manner. Little is known about the consequences of such a highly disturbed lamination on cortical function in this model. We used in vivo intrinsic signal optical imaging together with piezo-controlled whisker stimulation to explore sensory map organization and stimulus representation in the barrel field. We found that the loss of cortical layers in reeler mice had surprisingly little incidence on these properties. The overall topological order of whisker representations is highly preserved and the functional activation of individual whisker representations is similar in size and strength to wild-type controls. Because intrinsic imaging measures hemodynamic signals, we furthermore investigated the cortical blood vessel pattern of both genotypes, where we also did not detect major differences. In summary, the loss of the reelin protein results in a widespread disturbance of cortical development which compromises neither the establishment nor the function of an ordered, somatotopic map of the facial whiskers.
Collapse
Affiliation(s)
- Julien Guy
- Institut für Neuroanatomie, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen D-37075, Germany
| | - Robin J Wagener
- Institut für Neuroanatomie, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen D-37075, Germany
| | - Martin Möck
- Institut für Neuroanatomie, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen D-37075, Germany
| | - Jochen F Staiger
- Institut für Neuroanatomie, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen D-37075, Germany
| |
Collapse
|
33
|
Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014; 53:553-61. [PMID: 24443233 DOI: 10.1007/s12031-013-0221-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 12/11/2022]
Abstract
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.
Collapse
Affiliation(s)
- Nan Li
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
34
|
High-Resolution Wide-Field Optical Imaging of Microvascular Characteristics: From the Neocortex to the Eye. NEUROVASCULAR COUPLING METHODS 2014. [DOI: 10.1007/978-1-4939-0724-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Airan RD, Li N, Gilad AA, Pelled G. Genetic tools to manipulate MRI contrast. NMR IN BIOMEDICINE 2013; 26:803-809. [PMID: 23355411 PMCID: PMC3669659 DOI: 10.1002/nbm.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Advances in molecular biology in the early 1970s revolutionized research strategies for the study of complex biological processes, which, in turn, created a high demand for new means to visualize these dynamic biological changes noninvasively and in real time. In this respect, MRI was a perfect fit, because of the versatile possibility to alter the different contrast mechanisms. Genetic manipulations are now being translated to MRI through the development of reporters and sensors, as well as the imaging of transgenic and knockout mice. In the past few years, a new molecular biology toolset, namely optogenetics, has emerged, which allows for the manipulation of cellular behavior using light. This technology provides a few particularly attractive features for combination with newly developed MRI techniques for the probing of in vivo cellular and, in particular, neural processes, specifically the ability to control focal, genetically defined cellular populations with high temporal resolution using equipment that is magnetically inert and does not interact with radiofrequency pulses. Recent studies have demonstrated that the combination of optogenetics and functional MRI (fMRI) can provide an appropriate platform to investigate in vivo, at the cellular and molecular levels, the neuronal basis of fMRI signals. In addition, this novel combination of optogenetics with fMRI has the potential to resolve pre-synaptic versus post-synaptic changes in neuronal activity and changes in the activity of large neuronal networks in the context of plasticity associated with development, learning and pathophysiology.
Collapse
Affiliation(s)
- Raag D. Airan
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nan Li
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Galit Pelled
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Kaiser V, Bauernfeind G, Kreilinger A, Kaufmann T, Kübler A, Neuper C, Müller-Putz GR. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Neuroimage 2013; 85 Pt 1:432-44. [PMID: 23651839 DOI: 10.1016/j.neuroimage.2013.04.097] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 12/14/2022] Open
Abstract
The present study aims to gain insights into the effects of training with a motor imagery (MI)-based brain-computer interface (BCI) on activation patterns of the sensorimotor cortex. We used functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to investigate long-term training effects across 10 sessions using a 2-class (right hand and feet) MI-based BCI in fifteen subjects. In the course of the training a significant enhancement of activation pattern emerges, represented by an [oxy-Hb] increase in fNIRS and a stronger event-related desynchronization in the upper β-frequency band in the EEG. These effects were only visible in participants with relatively low BCI performance (mean accuracy ≤ 70%). We found that training with an MI-based BCI affects cortical activation patterns especially in users with low BCI performance. Our results may serve as a valuable contribution to the field of BCI research and provide information about the effects that training with an MI-based BCI has on cortical activation patterns. This might be useful for clinical applications of BCI which aim at promoting and guiding neuroplasticity.
Collapse
Affiliation(s)
- Vera Kaiser
- Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology 2013; 80:952-6. [PMID: 23460618 PMCID: PMC3653214 DOI: 10.1212/wnl.0b013e318285c135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/24/2012] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To review the discoveries underpinning the introduction of cerebral PET scanning and highlight its modern applications. BACKGROUND Important discoveries in neurophysiology, brain metabolism, and radiotracer development in the post-World War II period provided the necessary infrastructure for the first cerebral PET scan. METHODS A complete review of the literature was undertaken to search for primary and secondary sources on the history of PET imaging. Searches were performed in PubMed, Google Scholar, and select individual journal Web sites. Written autobiographies were obtained through the Society for Neuroscience Web site at www.sfn.org. A reference book on the history of radiology, Naked to the Bone, was reviewed to corroborate facts and to locate references. The references listed in all the articles and books obtained were reviewed. RESULTS The neurophysiologic sciences required to build cerebral PET imaging date back to 1878. The last 60 years have produced an evolution of technological advancements in brain metabolism and radiotracer development. These advancements facilitated the development of modern cerebral PET imaging. Several key scientists were involved in critical discoveries and among them were Angelo Mosso, Charles Roy, Charles Sherrington, John Fulton, Seymour Kety, Louis Sokoloff, David E. Kuhl, Gordon L. Brownell, Michael Ter-Pogossian, Michael Phelps, and Edward Hoffman. CONCLUSIONS Neurophysiology, metabolism, and radiotracer development in the postwar era synergized the development of the technology necessary for cerebral PET scanning. Continued use of PET in clinical trials and current developments in PET-CT/MRI hybrids has led to advancement in diagnosis, management, and treatment of neurologic disorders.
Collapse
Affiliation(s)
- Leah H Portnow
- Department of Neurology, Center for Movement Disorders & Neurorestoration, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
38
|
Baker WB, Sun Z, Hiraki T, Putt ME, Durduran T, Reivich M, Yodh AG, Greenberg JH. Neurovascular coupling varies with level of global cerebral ischemia in a rat model. J Cereb Blood Flow Metab 2013; 33:97-105. [PMID: 23032485 PMCID: PMC3597370 DOI: 10.1038/jcbfm.2012.137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, cerebral blood flow, oxygenation, metabolic, and electrical functional responses to forepaw stimulation were monitored in rats at different levels of global cerebral ischemia from mild to severe. Laser speckle contrast imaging and optical imaging of intrinsic signals were used to measure changes in blood flow and oxygenation, respectively, along with a compartmental model to calculate changes in oxygen metabolism from these measured changes. To characterize the electrical response to functional stimulation, we measured somatosensory evoked potentials (SEPs). Global graded ischemia was induced through unilateral carotid artery occlusion, bilateral carotid artery occlusion, bilateral carotid and right subclavian artery (SCA) occlusion, or carotid and SCA occlusion with negative lower body pressure. We found that the amplitude of the functional metabolic response remained tightly coupled to the amplitude of the SEP at all levels of ischemia observed. However, as the level of ischemia became more severe, the flow response was more strongly attenuated than the electrical response, suggesting that global ischemia was associated with an uncoupling between the functional flow and electrical responses.
Collapse
Affiliation(s)
- Wesley B Baker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lay CC, Davis MF, Chen-Bee CH, Frostig RD. Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. J Am Heart Assoc 2012; 1:e001255. [PMID: 23130160 PMCID: PMC3487352 DOI: 10.1161/jaha.112.001255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals. METHODS AND RESULTS Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into "treated" and "untreated" groups. Treated aged rats received intermittent single-whisker stimulation during a 120-minute period immediately after pMCAO, whereas untreated aged rats did not. These animals were assessed using a battery of behavioral tests 1 week before and 1 week after pMCAO, after which their brains were stained for infarct. An additional treated aged group and a treated young adult group also were imaged with functional imaging. Results demonstrated that the recovery of treated aged animals was indistinguishable from that of the treated young adult animals. Treated aged rats had fully intact sensorimotor behavior and no infarct, whereas untreated aged rats were impaired and sustained cortical infarct. CONCLUSIONS Taken together, our results confirm that single-whisker stimulation is protective in an aged rodent pMCAO model, despite age-associated stroke vulnerability. These findings further suggest potential for translation to the more clinically relevant older adult human population. (J Am Heart Assoc. 2012;1:e001255 doi: 10.1161/JAHA.112.001255.).
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for the Neurobiology of Learning and Memory, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for Hearing Research, University of California, Irvine, CA (C.C.L, R.D.F.)
| | | | | | | |
Collapse
|
40
|
Abstract
Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between the neural and vascular response regions are not fully understood and require further attention to elucidate the mechanism of vascular control of CBF supply to the underlying focal and surrounding neural activity. The in-depth understanding of the anesthesia actions on neurovascular elements allows for better decision-making regarding the anesthetics used in specific models for neurovascular experiments and may also help elucidate the signal source issues in hemodynamic-based neuroimaging techniques.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan.
| | | |
Collapse
|
41
|
Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012; 63:921-35. [PMID: 22510258 DOI: 10.1016/j.neuroimage.2012.03.049] [Citation(s) in RCA: 1108] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 12/14/2022] Open
Abstract
This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes.
Collapse
Affiliation(s)
- Marco Ferrari
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
42
|
Hu X, Yacoub E. The story of the initial dip in fMRI. Neuroimage 2012; 62:1103-8. [PMID: 22426348 DOI: 10.1016/j.neuroimage.2012.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
Over the past 20 years much attention has been given to characterizing the spatial accuracy of fMRI based signals and to techniques that improve on its co-localization with neuronal activity. While the vast majority of fMRI studies have always used the conventional positive BOLD signal, alternative contrast options have demonstrated superior spatial specificity. One of these options surfaced shortly after the initial BOLD fMRI demonstrations and was motivated by optical imaging studies which revealed an early signal change that was much smaller but spatially more specific than the delayed positive response. This early signal change was attributed to oxygenation changes prior to any subsequent blood flow increases. After observation of this biphasic hemodynamic response in fMRI, because this early response resulted in a small MR signal decrease prior to the onset of the large signal increase, it became known as the "initial dip". While the initial dip in fMRI was subsequently reported by many studies, including those in humans, monkeys, and cats, there were conflicting views about the associated mechanisms and whether it could be generalized across brain regions or species, in addition to whether or not it would prove fruitful for neuroscience. These discrepancies, along with the implications that the initial dip might increase the spatial specificity of BOLD fMRI from 2 to 3mm to something more closely associated with neural activity, resulted in lot of buzz and controversy in the community for many years. In this review, the authors provide an account of the story of the initial dip in MR based functional imaging from the Minnesota perspective, where the first demonstrations, characterizations, and applications of the initial dip commenced.
Collapse
Affiliation(s)
- Xiaoping Hu
- Coulter Department of Biomedical Engineering Georgia Tech and Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
43
|
Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission. PLoS One 2012; 7:e29859. [PMID: 22253807 PMCID: PMC3254633 DOI: 10.1371/journal.pone.0029859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Maintenance of neuronal function depends on the delivery of oxygen and glucose through changes in blood flow that are linked to the level of ongoing neuronal and glial activity, yet the underlying mechanisms remain unclear. Using transgenic mice expressing the light-activated cation channel channelrhodopsin-2 in deep layer pyramidal neurons, we report that changes in intrinsic optical signals and blood flow can be evoked by activation of a subset of channelrhodopsin-2-expressing neurons in the sensorimotor cortex. We have combined imaging and pharmacology to examine the importance of glutamatergic synaptic transmission in this form of neurovascular coupling. Blockade of ionotropic glutamate receptors with the antagonists CNQX and MK801 significantly reduced forepaw-evoked hemodynamic responses, yet resulted in no significant reduction of channelrhodopsin-evoked hemodynamic responses, suggesting that stimulus-dependent coupling of neuronal activity to blood flow can be independent of local excitatory synaptic transmission. Together, these results indicate that channelrhodopsin-2 activation of sensorimotor excitatory neurons produces changes in intrinsic optical signals and blood flow that can occur under conditions where synaptic activation of neurons or other cells through ionotropic glutamate receptors would be blocked.
Collapse
|
44
|
Mild sensory stimulation reestablishes cortical function during the acute phase of ischemia. J Neurosci 2011; 31:11495-504. [PMID: 21832179 DOI: 10.1523/jneurosci.1741-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When delivered within 1 and in most cases 2 h of permanent middle cerebral artery occlusion (pMCAO), mild sensory stimulation (intermittent single whisker stimulation) was shown to be completely neuroprotective 24 h after pMCAO in a rodent model of ischemic stroke, according to assessment with multiple techniques (Lay et al., 2010). The acute effect of stimulation treatment on the ischemic cortex, however, has yet to be reported. Here we characterize cortical function and perfusion during the 120 min whisker stimulation period in four experimental groups with treatment initiated 0, 1, 2 (protected groups), or 3 h (unprotected group) post-pMCAO using multiple techniques. According to functional imaging, a gradual return of evoked whisker functional representation to baseline levels was initiated with treatment onset and completed within the treatment period. Evoked neuronal activity and reperfusion to the ischemic area also showed a gradual recovery in protected animals. Surprisingly, a similar recovery profile was observed in response to treatment in all protected animals, regardless of treatment onset time. Nonstimulated pMCAO control group data demonstrate that reperfusion is not spontaneous. This makes the complete protection observed in the majority of animals stimulated at 2 h post-pMCAO even more surprising, as these animals recovered despite having been in a severely ischemic state for two full hours. In summary, when delivered within a 2 h window post-pMCAO, whisker stimulation treatment initiated reperfusion and a gradual recovery of cortical function that was completed or nearly completed within the treatment period.
Collapse
|
45
|
Functional MRI of sleep spindles and K-complexes. Clin Neurophysiol 2011; 123:303-9. [PMID: 21775199 DOI: 10.1016/j.clinph.2011.06.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/11/2011] [Accepted: 06/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Sleep spindles and K-complexes are EEG hallmarks of non-REM sleep. However, the brain regions generating these discharges and the functional connections of their generators to other regions are not fully known. We investigated the neuroanatomical correlates of spindles and K-complexes using simultaneous EEG and fMRI. METHODS EEGs recorded during EEG-fMRI studies of 7 individuals were used for fMRI analysis. Higher-level group analyses were performed, and images were thresholded at Z ≥ 2.3. RESULTS fMRI of 106 spindles and 60 K-complexes was analyzed. Spindles corresponded to increased signal in thalami and posterior cingulate, and right precuneus, putamen, paracentral cortex, and temporal lobe. K-complexes corresponded to increased signal in thalami, superior temporal lobes, paracentral gyri, and medial regions of the occipital, parietal and frontal lobes. Neither corresponded to regions of decreased signal. CONCLUSIONS fMRI of both spindles and K-complexes depicts signal subjacent to the vertex, which likely indicates each discharges' source. The thalamic signal is consistent with thalamic involvement in sleep homeostasis. The limbic region's signal is consistent with roles in memory consolidation. Unlike the spindle, the K-complex corresponds to extensive signal in primary sensory cortices. SIGNIFICANCE Identification of these active regions contributes to the understanding of sleep networks and the physiology of awareness and memory during sleep.
Collapse
|
46
|
Dubeau S, Desjardins M, Pouliot P, Beaumont E, Gaudreau P, Ferland G, Lesage F. Biophysical model estimation of neurovascular parameters in a rat model of healthy aging. Neuroimage 2011; 57:1480-91. [PMID: 21549843 DOI: 10.1016/j.neuroimage.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/27/2022] Open
Abstract
Neuronal, vascular and metabolic factors result in a deterioration of the cerebral hemodynamic response with age. The interpretation of neuroimaging studies in the context of aging is rendered difficult due to the challenge in untangling the composite effect of these modifications. In this work we integrate multimodal optical imaging in biophysical models to investigate vascular and metabolic changes occurring in aging. Multispectral intrinsic optical imaging of an animal model of healthy aging, the LOU/c rat, is used in combination with somatosensory stimulation to study the modifications of the hemodynamic response with increasing age. Results are fitted with three macroscopic biophysical models to extract parameters, providing a phenomenological description of vascular and metabolic changes. Our results show that 1) biophysical parameters are estimable from multimodal data and 2) parameter estimates in this population change with aging.
Collapse
Affiliation(s)
- S Dubeau
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Mottin S, Montcel B, de Chatellus HG, Ramstein S. Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds. J Cereb Blood Flow Metab 2011; 31:393-400. [PMID: 20959852 PMCID: PMC3049536 DOI: 10.1038/jcbfm.2010.189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Contrary to the intense debate about brain oxygen dynamics and its uncoupling in mammals, very little is known in birds. In zebra finches, picosecond optical tomography with a white laser and a streak camera can measure in vivo oxyhemoglobin (HbO(2)) and deoxyhemoglobin (Hb) concentration changes following physiologic stimulation (familiar calls and songs). Picosecond optical tomography showed sufficient submicromolar sensitivity to resolve the fast changes in the hippocampus and auditory forebrain areas with 250 μm resolution. The time course is composed of (1) an early 2-second-long event with a significant decrease in Hb and HbO(2) levels of -0.7 and -0.9 μmol/L, respectively, (2) a subsequent increase in blood oxygen availability with a plateau of HbO(2) (+0.3 μmol/L), and (3) pronounced vasodilatation events immediately after the end of the stimulus. One of the findings of our study is the direct link between blood oxygen level-dependent signals previously published in birds and our results. Furthermore, the early vasoconstriction event and poststimulus ringing seem to be more pronounced in birds than in mammals. These results in birds, tachymetabolic vertebrates with a long lifespan, can potentially yield new insights, e.g., into brain aging.
Collapse
|
48
|
Just N, Petersen C, Gruetter R. BOLD responses to trigeminal nerve stimulation. Magn Reson Imaging 2010; 28:1143-51. [DOI: 10.1016/j.mri.2010.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 02/08/2010] [Indexed: 02/07/2023]
|
49
|
Sirotin YB, Das A. Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys. FRONTIERS IN NEUROENERGETICS 2010; 2:6. [PMID: 20577638 PMCID: PMC2890124 DOI: 10.3389/fnene.2010.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022]
Abstract
Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity. To determine whether FFI signals could provide a more focal measure of cortical activity in alert animals, we compared FFI and hemodynamic point spreads (i.e. responses to a minimal visual stimulus) and functional mapping signals over V1 in macaques performing simple fixation tasks. FFI responses were biphasic, with an early and focal fluorescence increase followed by a delayed and spatially broader fluorescence decrease. As expected, the early fluorescence increase, indicating increased local oxidative metabolism, was somewhat narrower than the simultaneously observed hemodynamic response. However, the later FFI decrease was broader than the hemodynamic response and started prior to the cessation of visual stimulation suggesting different mechanisms underlying the two phases of the fluorescence signal. FFI mapping signals were free of vascular artifacts and comparable in amplitude to hemodynamic mapping signals. These results indicate that the FFI response may be a more local and direct indicator of cortical metabolism than the hemodynamic response in alert animals.
Collapse
|
50
|
Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20725515 PMCID: PMC2912025 DOI: 10.3389/fnene.2010.00005] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/28/2010] [Indexed: 12/18/2022]
Abstract
Because regional blood flow increases in association with the increased metabolic demand generated by localized increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer's disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders.
Collapse
Affiliation(s)
- Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | | | | |
Collapse
|