1
|
Konkobo A, Ouattara AK, Mètuor Dabiré A, Simporé J. Exploring antibiotic-induced persister formation and bacterial persistence genes in clinical isolates from Burkina Faso. BMC Infect Dis 2024; 24:994. [PMID: 39289656 PMCID: PMC11409487 DOI: 10.1186/s12879-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND In addition to antibiotic resistance, persistence is another cause of treatment failure in bacterial infections, representing a significant public health concern. Due to a lack of adequate data on clinical isolates, this study was initiated to investigate persistence in clinical isolates in Burkina Faso. METHODS Eighty (80) clinical isolates, including 32 Pseudomonas aeruginosa, 41 Staphylococcus aureus, and 7 Salmonella sp. obtained from clinical laboratories in Burkina Faso, were analyzed to assess their susceptibility to ciprofloxacin and gentamicin, as well as to determine the presence of persistence genes. The effects of ciprofloxacin and gentamicin on persister formation were evaluated by conducting colony counts at 1, 3, 5, 7, and 20 h after exposing the bacteria to high concentrations of these antibiotics. RESULTS Results showed high sensitivity to both antibiotics (72.5% for ciprofloxacin and 82.5% for gentamicin). Persister formation occurred in Staphylococcus aureus with gentamicin and in Salmonella sp. with ciprofloxacin, while Pseudomonas aeruginosa did not form persisters. The mazF gene was found in 28.13% of P. aeruginosa and 2.44% of S. aureus isolates, and the hipA gene in 28.57% of Salmonella sp. None of the relE1 or relE2 genes were detected. CONCLUSIONS The study revealed high sensitivity in clinical bacterial isolates to ciprofloxacin and gentamicin. Staphylococcus aureus and Salmonella sp. showed persister formation under antibiotic stress, with low frequencies of the studied persistence genes. These findings enhance understanding of clinical bacterial behavior and inform strategies against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Augustin Konkobo
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
- Université Norbert Zongo, Centre Universitaire de Manga, B.P. 376, Koudougou, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso.
| | - Amana Mètuor Dabiré
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
- Université de Dédougou, BP 176, Dédougou, Burkina Faso
| | - Jacques Simporé
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), UFR-SVT, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| |
Collapse
|
2
|
Narimisa N, Razavi S, Masjedian Jazi F. Risk Factors Associated with Human Brucellosis: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2024; 24:403-410. [PMID: 38597916 DOI: 10.1089/vbz.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background: Brucellosis is a zoonosis disease that can affect humans and a wide range of domestic and wild animals. Susceptibility to brucellosis in humans can be related to various factors, such as nutritional and occupational factors. This study evaluated factors related to brucellosis and identified influential risk factors for human infection. Methods: We performed a systematic literature review and meta-analysis of studies in PubMed, Web of Science, and Scopus. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to measure the strength of the association between some potential factors and the risk of brucellosis. Results: From 277 initial studies, 19 case-control studies were included in this review. Significant risk factors for brucellosis included occupation (OR 3.31, 95% CI 1.68-6.55), having aborted animals (OR 4.16, 95% CI 2.03-8.50), consumption of meat (OR 2.17, 95% CI 1.44-3.36), unpasteurized milk (OR 3.86, 95% CI 1.81-8.23), and raw cheese (OR 4.20, 95% CI 1.63-10.85). Conclusion: The results of this study advance the understanding of the etiology of brucellosis. In this meta-analysis, we found the association of different environmental factors with the risk of brucellosis. Additional high-quality prospective studies are needed to determine whether these factors cause brucellosis and to identify other factors.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Karimaei S, Aghamir SMK, Pourmand MR. Comparative analysis of genes expression involved in type II toxin-antitoxin system in Staphylococcus aureus following persister cell formation. Mol Biol Rep 2024; 51:324. [PMID: 38393536 DOI: 10.1007/s11033-023-09179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/18/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The formation of persister cells is the main reason for persistent infections. They are associated with antibiotic treatment failure and subsequently chronic infection. The study aimed to assess the expression of type II toxin/antitoxin (TA) system genes in persister cells of Staphylococcus aureus in the presence of the following antibiotics vancomycin, ciprofloxacin, and gentamicin in exponential and stationary phases. METHODS AND RESULTS The colony count was used to evaluate the effect of different types of antibiotics on S. aureus persister cell formation during exponential and stationary phases. Moreover, the expression level of TA systems and clpP genes in the persister population in exponential and stationary phases were measured by quantitative reverse transcriptase real-time PCR (qRT-PCR). The results of the study showed the presence of persister phenotype of S. aureus strains in the attendance of bactericidal antibiotics in comparison to the control group during the exponential and stationary phases. Moreover, qRT-PCR resulted in the fact that the role of TA systems involved in the persister cell formation depends on the bacterial growth phase and the type of strain and antibiotic. CONCLUSIONS In total, the present study provides some data on the persister cell formation and the possible role of TA system genes in this process.
Collapse
Affiliation(s)
- Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Etemad A, Kalani BS, Ghafourian S, Khodaei N, Davari M, Sadeghifard N. GNAT toxin may have a potential role in Pseudomonas aeruginosa persistence: an in vitro and in silico study. Future Microbiol 2024; 19:21-31. [PMID: 38294294 DOI: 10.2217/fmb-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 02/01/2024] Open
Abstract
Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Anahita Etemad
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sobhan Ghafourian
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Niloofar Khodaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Davari
- IT Unit of Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Shahbazi S, Shivaee A, Nasiri M, Mirshekar M, Sabzi S, Sariani OK. Zinc oxide nanoparticles impact the expression of the genes involved in toxin-antitoxin systems in multidrug-resistant Acinetobacter baumannii. J Basic Microbiol 2023; 63:1007-1015. [PMID: 36086811 DOI: 10.1002/jobm.202200382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on the expression of genes involved in toxin-antitoxin (TA) systems in multidrug-resistant (MDR) Acinetobacter baumannii. Seventy clinical isolates of A. baumannii were collected from variuos clinical samples. Antimicrobial susceptibility test was determined by disk diffusion. Type II TA system-related genes including GNAT, XRE-like, hipA, hipB, hicA, hicB were screened using polymerase chain reaction (PCR). ZnO-NPs prepared and characterized by field emission scanning electron microscopy and X-ray diffraction. MIC of ZnO-NPs of A. baumannii isolates was performed using the microdilution method. The expression of type II TA systems-related genes were assessed with and without exposure to ZnO-NPs using real-time PCR. The highest rate of resistance and sensitivity was observed against cefepime (77.14%), and ampicillin/sulbactam (42.85%), respectively. All A. baumannii isolates were considered as MDR. In this study, three TA loci were identified for A. baumannii including GNAT/XRE-like, HicA/HicB, and HipA/HipB and their prevalence was 100%, 42%, and 27.1%, respectively. There was no significant relationship between the prevalence of these systems and the origin of A. baumannii. Our data showed significant correlations between the presence of HicA/HicB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05), and the presence of HipA/HipB system and resistance to ceftazidime, meropenem, imipenem, and cefepime (p < 0.05). In presence of ZnO-NPs, the expression of all studied genes decreased. GNAT and hicB showed the highest and lowest expression changes by 2.4 folds (p < 0.001) and 1.3 folds (p < 0.05), respectively. This study demonstrates the promising potential of nanoparticles to impact the expression of the genes involved in TA Systems. So, the application of ZnO-NPs may be helpful to design target-based strategies towards MDRs pathogens for empowered clinical applications by microbiologists and nanotechnologists.
Collapse
Affiliation(s)
- Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Nasiri
- Department of Genetics, College of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Omid K Sariani
- Department of Genetics, College of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
6
|
Latifi F, Hashemi A, Kalani BS, Pakzad I, Hematian A. abkBA toxin-antitoxin system may act as antipersister modules in Acinetobacter baumannii clinical isolates. Future Microbiol 2023; 18:707-714. [PMID: 37552216 DOI: 10.2217/fmb-2022-0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: Persistence cells comprise a subpopulation of bacteria that is resistant to treatment. In this study, the role of the toxin-antitoxin (TA) system in the formation of persistence cells of Acinetobacter baumannii isolates was investigated. Methods: After confirming all isolates, TA systems abkBA, mqsRA and higBA were identified. Persister cells were confirmed using the standard method. Real-time PCR was used to compare the expression of TA systems in isolates in persistence and normal states. Results: The abkAB system was present in all isolates; 4% of isolates formed persister cells. The expression level of the abkB gene in persistent isolates showed a sevenfold increase compared with nonpersistent isolates. Conclusion: The abkBA system is proposed as an antipersistence target in A. baumannii isolates.
Collapse
Affiliation(s)
- Fatemeh Latifi
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrooz S Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Iraj Pakzad
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Ali Hematian
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
7
|
Narimisa N, Razavi S, Khoshbayan A, Masjedian Jazi F. Prevalence of Brucella endocarditis: A systematic review and meta-analysis. Health Sci Rep 2023; 6:e1301. [PMID: 37251523 PMCID: PMC10213485 DOI: 10.1002/hsr2.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Background Endocarditis caused by Brucella infection is one of this infection's complications, including a high mortality rate. However, studies on the prevalence of this complication have been limited to some case reports. This study investigated the prevalence of Brucella endocarditis globally using a systematic review and meta-analysis. Methods PubMed, Scopus, and Web of Science databases were searched using appropriate keywords until September 2022. All studies reporting the prevalence of endocarditis in patients with brucellosis were included in this current study. To investigate the pooled prevalence of Brucella endocarditis, random model was used in comprehensive meta-analysis software. Results A total of 25 studies met the inclusion criteria and were included in the systematic review and meta-analysis. The prevalence of Brucella endocarditis was 1.3%, and the death rate was 26.5%. The results did not show a significant difference in the prevalence of this complication in different regions. Conclusion According to this study's results, the prevalence of Brucella endocarditis is low, but it includes a large percentage of the deaths of affected patients. To complete our understanding of this complication and its management, more research should be done to investigate the effect of other factors, such as age and gender.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research CenterIran University of Medical ScienceTehranIran
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Shabnam Razavi
- Microbial Biotechnology Research CenterIran University of Medical ScienceTehranIran
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Amin Khoshbayan
- Microbial Biotechnology Research CenterIran University of Medical ScienceTehranIran
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research CenterIran University of Medical ScienceTehranIran
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Asadollahi P, Sadeghifard N, Kazemian H, Pakzad I, Kalani BS. In silico Study of the Proteins Involved in the Persistence of Brucella spp. Curr Drug Discov Technol 2023; 20:1-13. [PMID: 35929636 DOI: 10.2174/1570163819666220805161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the major problems with Brucella infections is its tendency to become chronic and recurrent, providing a hindrance to the management of this infection. It has been proposed that chronicity is greatly affected by a phenomenon called persistence in bacteria. Several mechanisms are involved in bacterial persistence, including the type II toxin-antitoxin system, the SOS and oxidative and stringent responses. METHODS In this in silico study, these persistence mechanisms in Brucella spp. were investigated. RESULTS The structure and the interactions between modules involved in these systems were designed, and novel peptides that can interfere with some of these important mechanisms were developed. CONCLUSION Since peptide-based therapeutics are a new and evolving field due to their ease of production, we hope that peptides developed in this study, as well as the information about the structure and interactions of modules of persistence mechanisms, can further be used to design drugs against Brucella persister cells in the hope of restraining the chronic nature of Brucellosis.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
9
|
Mode S, Ketterer M, Québatte M, Dehio C. Antibiotic persistence of intracellular Brucella abortus. PLoS Negl Trop Dis 2022; 16:e0010635. [PMID: 35881641 PMCID: PMC9355222 DOI: 10.1371/journal.pntd.0010635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/05/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Human brucellosis caused by the facultative intracellular pathogen Brucella spp. is an endemic bacterial zoonosis manifesting as acute or chronic infections with high morbidity. Treatment typically involves a combination therapy of two antibiotics for several weeks to months, but despite this harsh treatment relapses occur at a rate of 5–15%. Although poor compliance and reinfection may account for a fraction of the observed relapse cases, it is apparent that the properties of the infectious agent itself may play a decisive role in this phenomenon. Methodology/Principal findings We used B. abortus carrying a dual reporter in a macrophage infection model to gain a better understanding of the efficacy of recommended therapies in cellulo. For this we used automated fluorescent microscopy as a prime read-out and developed specific CellProfiler pipelines to score infected macrophages at the population and the single cell level. Combining microscopy of constitutive and induced reporters with classical CFU determination, we quantified the protective nature of the Brucella intracellular lifestyle to various antibiotics and the ability of B. abortus to persist in cellulo despite harsh antibiotic treatments. Conclusion/Significance We demonstrate that treatment of infected macrophages with antibiotics at recommended concentrations fails to fully prevent growth and persistence of B. abortus in cellulo, which may be explained by a protective nature of the intracellular niche(s). Moreover, we show the presence of bona fide intracellular persisters upon antibiotic treatment, which are metabolically active and retain the full infectious potential, therefore constituting a plausible reservoir for reinfection and relapse. In conclusion, our results highlight the need to extend the spectrum of models to test new antimicrobial therapies for brucellosis to better reflect the in vivo infection environment, and to develop therapeutic approaches targeting the persister subpopulation. Brucellosis is a zoonosis endemic to many low- and middle-income countries around the world. Therapies recommended by the WHO are comprised of at least two antibiotics for several weeks, sometimes months. Relapses are frequent despite these harsh treatments. The underlying reasons for these relapses, besides reinfection and non-compliance to treatment, are unknown. Our study shows that Brucella abortus can form so called “persisters” in rich broth but also inside macrophages. This small bacterial subpopulation survives antibiotic treatment and resumes growth after removal of the antibiotics and could therefore serve as a reservoir for relapses in human brucellosis. Furthermore, we show that the intracellular lifestyle of Brucella has protective properties against recommended antibiotics as observed for other intracellular pathogens, highlighting the necessity to develop new infection models to assess antibiotic efficacy.
Collapse
Affiliation(s)
- Selma Mode
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Maxime Québatte
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (MQ); (CD)
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (MQ); (CD)
| |
Collapse
|
10
|
Golmoradi Zadeh R, Mirshekar M, Sadeghi Kalani B, Pourghader J, Barati M, Masjedian Jazi F. The expression of type II TA system genes following persister cell formation in Pseudomonas aeruginosa isolates in the exponential and stationary phases. Arch Microbiol 2022; 204:451. [PMID: 35781545 DOI: 10.1007/s00203-022-03038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Failure of infection therapy in the presence of antibiotics has become a major problem which has been mostly attributed to the ability of bacterial persister cell formation. Bacteria use various mechanisms to form persister cells in different phases, among which is the toxin-antitoxin (TA) systems. This study aimed at investigating the expression of type II TA system genes under the stress of ciprofloxacin and colistin antibiotics in the exponential and stationary phases. To determine the effects of ciprofloxacin and colistin on persister cell formation in the exponential and stationary phases of Pseudomonas aeruginosa strains, colony counting was performed at different time intervals in the presence of fivefold MIC of ciprofloxacin and colistin. In addition, the expression of relBE, Xre-COG5654, vapBC, and Xre-GNAT genes in P. aeruginosa isolates was assessed 3.5 h after antibiotic treatment in the exponential and stationary phases using qRT-PCR. Our results indicated the presence of persister phenotype of P. aeruginosa strains in the presence of fivefold MIC of ciprofloxacin and colistin compared to the control after 3.5 h of incubation in the exponential and stationary phases. Also, the number of persister cells in the stationary phase was higher than that of the exponential phase. According to the results of qRT-PCR, ciprofloxacin and colistin may induce persister cells by increasing the expression of type II TA systems in stationary and exponential phases. Ciprofloxacin and colistin may increase the formation of persister cells by affecting the expression of type II TA systems.
Collapse
Affiliation(s)
- Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Johar Pourghader
- Mechanical Engineering Department, Binghamton University, Binghamton, NY, 13902, USA
| | - Mahmood Barati
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Hamad C, Chowdhry M, Sindeldecker D, Bernthal NM, Stoodley P, McPherson EJ. Adaptive antimicrobial resistance, a description of microbial variants, and their relevance to periprosthetic joint infection. Bone Joint J 2022; 104-B:575-580. [PMID: 35491584 PMCID: PMC9948434 DOI: 10.1302/0301-620x.104b5.bjj-2021-1759.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article: Bone Joint J 2022;104-B(5):575-580.
Collapse
Affiliation(s)
- Christopher Hamad
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Madhav Chowdhry
- Nuffield Department of Primary Care Health Sciences, Kellogg College, University of Oxford, Oxford, UK
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas M. Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA,Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA,National Centre for Advanced Tribology at Southampton, Department of Mechanical Engineering, University of Southampton, Southampton, UK
| | - Edward J. McPherson
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA,Correspondence should be sent to Edward J. McPherson. E-mail:
| |
Collapse
|
12
|
Ma D, Gu H, Shi Y, Huang H, Sun D, Hu Y. Edwardsiella piscicida YefM-YoeB: A Type II Toxin-Antitoxin System That Is Related to Antibiotic Resistance, Biofilm Formation, Serum Survival, and Host Infection. Front Microbiol 2021; 12:646299. [PMID: 33732226 PMCID: PMC7957083 DOI: 10.3389/fmicb.2021.646299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.
Collapse
Affiliation(s)
- Dongmei Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Yanjie Shi
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| |
Collapse
|
13
|
Narimisa N, Amraei F, Kalani BS, Azarnezhad A, Jazi FM. Biofilm establishment, biofilm persister cell formation, and relative gene expression analysis of type II toxin-antitoxin system in Klebsiella pneumoniae. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Evaluation of gene expression and protein structural modeling involved in persister cell formation in Salmonella Typhimurium. Braz J Microbiol 2020; 52:207-217. [PMID: 33125683 DOI: 10.1007/s42770-020-00388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Persisters are phenotypic variants of the bacterial population that survive against lethal doses of bactericidal antibiotics.These phenotypes are created in numerous bacterial species, including those of clinical significance, such as Salmonella Typhimurium. Since persister cells are associated with the failure of antibiotic treatment and infection recurrence, it is crucial to identify the mechanisms that influence the formation of these cells. The aim of this study is to investigate the persister cell formation and expression analysis as well as to predict the 3D structure of the genes involved in the production of persister cells. The presence of persisters in S. Typhimurium was determined by time dependent killing of different types of bactericidal antibiotics and expression of genes associated with persister cell formation which was assessed five hours after the addition of antibiotics by the qRT-PCR. Indeed, the 3D structural model of the proteins studied was predicted by performing several computational methods of retrieved primary protein sequences. The results of the study showed that the S. Typhimurium produced high levels of persister cells in the exposure of bactericidal antibiotics. Furthermore, qRT-PCR resulted in the fact that the expression of related genes was different depending on the type of antibiotic. Overall, this study provides information on the creation of persister cells and the role of different genes in the formation of these cells and structure of proteins involved in the production of persister cells in S. Typhimurium.
Collapse
|
15
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|