1
|
Scarfo S, Marsella AMA, Grigoriadou L, Moshfeghi Y, McGeown WJ. Neuroanatomical correlates and predictors of psychotic symptoms in Alzheimer's disease: A systematic review and meta-analysis. Neuropsychologia 2024; 204:109006. [PMID: 39326784 DOI: 10.1016/j.neuropsychologia.2024.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Psychotic symptoms (hallucinations and delusions) are a type of neuropsychiatric symptom found during Alzheimer's Disease (AD). OBJECTIVE This systematic review aims to comprehensively capture, analyse, and evaluate the body of evidence that has investigated associations between brain regions/networks and psychotic symptoms in AD. METHODS The protocol, created according to the PRISMA guidelines, was pre-registered on OSF (https://osf.io/tg8xp/). Searches were performed using PubMed, Web of Science and PsycInfo. A partial coordinate-based meta-analysis (CBMA) was performed based on data availability. RESULTS Eighty-two papers were selected: delusions were found to be associated mainly with right fronto-temporal brain regions and the insula; hallucinations mainly with fronto-occipital areas; both were frequently associated with the anterior cingulate cortex. The CBMA, performed on the findings of fourteen papers on delusions, identified a cluster in the frontal lobe, one in the putamen, and a smaller one in the insula. CONCLUSIONS The available evidence highlights that key brain regions, predominantly in the right frontal lobe, the anterior cingulate cortex, and temporo-occipital areas, appear to underpin the different manifestations of psychotic symptoms in AD and MCI. The fronto-temporal areas identified in relation to delusions may underpin a failure to assimilate correct information and consider alternative possibilities (which might generate and maintain the delusional belief), and dysfunction within the salience network (anterior cingulate cortex and insula) may suggest a contribution for how internal and external stimuli are identified; the fronto-occipital areas linked to hallucinations may indicate diminished sensory processing and non-optimal predictive processing, that together contribute to misinterpretation of stimuli and misperceptions; the fronto-temporal and occipital areas, as well as the anterior cingulate cortex were linked to the psychotic cluster.
Collapse
Affiliation(s)
- Sara Scarfo
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | | | - Loulouda Grigoriadou
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Yashar Moshfeghi
- Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| | - William J McGeown
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Iordan AD, Ploutz-Snyder R, Ghosh B, Rahman-Filipiak A, Koeppe R, Peltier S, Giordani B, Albin RL, Hampstead BM. Salience network segregation mediates the effect of tau pathology on mild behavioral impairment. Alzheimers Dement 2024. [PMID: 39364768 DOI: 10.1002/alz.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION A recently developed mild behavioral impairment (MBI) diagnostic framework standardizes the early characterization of neuropsychiatric symptoms in older adults. However, the joint contributions of Alzheimer's disease (AD) pathology and brain function to MBI remain unclear. METHODS We test a novel model assessing direct relationships between AD biomarker status and MBI symptoms, as well as mediated effects through segregation of the salience and default-mode networks, using data from 128 participants with diagnosis of amnestic mild cognitive impairment or mild dementia-AD type. RESULTS We identified a mediated effect of tau positivity on MBI through functional segregation of the salience network from the other high-level, association networks. There were no direct effects of AD biomarkers status on MBI. DISCUSSION Our findings suggest that tau pathology contributes to MBI primarily by disrupting salience network function and emphasize the role of the salience network in mediating relationships between neuropathological changes and behavioral manifestations. HIGHLIGHTS Network segregation mediates Alzheimer's disease (AD) pathology impact on mild behavioral impairment (MBI). The salience network is pivotal in linking tau pathology and MBI. This study used path analysis with AD biomarkers and network integrity. The study evaluated the roles of salience, default mode, and frontoparietal networks. This is the first study to integrate MBI with AD biomarkers and network functionality.
Collapse
Affiliation(s)
- Alexandru D Iordan
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, Michigan, USA
| | - Bidisha Ghosh
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, Ann Arbor, Michigan, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruno Giordani
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan, USA
| | - Benjamin M Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Neuropsychology Section, Mental Health Service, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Ronde M, van der Zee EA, Kas MJH. Default mode network dynamics: An integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehav Rev 2024; 164:105839. [PMID: 39097251 DOI: 10.1016/j.neubiorev.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.
Collapse
Affiliation(s)
- Mirthe Ronde
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
4
|
Iordan AD, Ploutz-Snyder R, Ghosh B, Rahman-Filipiak A, Koeppe R, Peltier S, Giordani B, Albin RL, Hampstead BM. Salience Network Segregation Mediates the Effect of Tau Pathology on Mild Behavioral Impairment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.26.24307943. [PMID: 38854100 PMCID: PMC11160832 DOI: 10.1101/2024.05.26.24307943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
INTRODUCTION A recently developed mild behavioral impairment (MBI) diagnostic framework standardizes the early characterization of neuropsychiatric symptoms in older adults. However, the links between MBI, brain function, and Alzheimer's disease (AD) biomarkers are unclear. METHODS Using data from 128 participants with diagnosis of amnestic mild cognitive impairment and mild dementia - Alzheimer's type, we test a novel model assessing direct relationships between AD biomarker status and MBI symptoms, as well as mediated effects through segregation of the salience and default-mode networks. RESULTS We identified a mediated effect of tau positivity on MBI through functional segregation of the salience network from the other high-level, association networks. There were no direct effects of AD biomarkers status on MBI. DISCUSSION Our findings suggest an indirect role of tau pathology in MBI through brain network dysfunction and emphasize the role of the salience network in mediating relationships between neuropathological changes and behavioral manifestations.
Collapse
Affiliation(s)
- Alexandru D. Iordan
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
| | - Robert Ploutz-Snyder
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, 426 N Ingalls St, Ann Arbor, MI 48109, USA
| | - Bidisha Ghosh
- Applied Biostatistics Laboratory, School of Nursing, University of Michigan, 426 N Ingalls St, Ann Arbor, MI 48109, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
| | - Robert Koeppe
- Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, 2360 Bonisteel Blvd, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Bruno Giordani
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Roger L. Albin
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
- Neurology Service & GRECC, VAAAHS, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Benjamin M. Hampstead
- Research Program on Cognition and Neuromodulation Based Interventions (RP-CNBI), Department of Psychiatry, University of Michigan, 4251 Plymouth Rd., Ann Arbor, MI, 48105, USA
- VA Ann Arbor Healthcare System, Neuropsychology Section, Mental Health Service, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| |
Collapse
|
5
|
Wang S, Mimmack K, Cacciamani F, Elnemais Fawzy M, Munro C, Gatchel J, Marshall GA, Gagliardi G, Vannini P. Anosognosia is associated with increased prevalence and faster development of neuropsychiatric symptoms in mild cognitive impairment. Front Aging Neurosci 2024; 16:1335878. [PMID: 38511196 PMCID: PMC10950916 DOI: 10.3389/fnagi.2024.1335878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Both the loss of awareness for cognitive decline (a. k.a anosognosia) and neuropsychiatric symptoms (NPS) are common in patients with Alzheimer's disease (AD) dementia, even in prodromal stages, and may exacerbate functional impairment and negatively impact caregiver burden. Despite the high impact of these symptoms on patients and their caregivers, our knowledge of how they develop across the AD spectrum is limited. Here, we explored the cross-sectional and longitudinal associations between anosognosia and NPS in individuals with mild cognitive impairment (MCI). Methods We included 237 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with a baseline clinical diagnosis of MCI. Everyday Cognition (ECog) questionnaire scores were used to measure complaints from participants and study-partners at baseline and annually over a mean of 4.29 years [standard deviation (SD) = 2.72]. Anosognosia was defined as the study-partner having an ECog score ≥2.5/4 and the participant having an ECog score < 2.5/4 on their baseline measure and their last observation without more than two consecutive deviating observations during the follow-up period. The 12-item study-partner-rated Neuropsychiatric Inventory determined the presence or absence of specific NPS. Survival analyses were performed to analyze the frequency and temporal onset of NPS over time in individuals with and without anosognosia. Results Thirty-eight out of 237 participants displayed anosognosia. Groups had similar lengths of follow-up at baseline (p > 0.9), though participants with anosognosia had lower MMSE scores (p = 0.049) and a higher proportion of amyloid-positivity using PET (p < 0.001. At baseline, the frequencies of agitation (p = 0.029) and disinhibition (p < 0.001) were higher in the anosognosia group compared to the non-anosognosia group. Survival analyses showed earlier onset of seven of the 12 NPS in the anosognosia group (p's < 0.001). Discussion Loss of awareness for cognitive decline is associated with greater frequency and earlier onset of NPS over time in participants with MCI. These results support the hypothesis of a potential common underlying neurophysiological process for anosognosia and NPS, a finding that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Sharon Wang
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Kayden Mimmack
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Federica Cacciamani
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Bordeaux Population Health Center, University of Bordeaux, Inserm, Bordeaux, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Qarinel SAS, Paris, France
| | - Michael Elnemais Fawzy
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Catherine Munro
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jennifer Gatchel
- Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
- Division of Geriatric Psychiatry, McLean Hospital, Belmont, MA, United States
| | - Gad A. Marshall
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Geoffroy Gagliardi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Patrizia Vannini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Wang Y, Li Q, Yao L, He N, Tang Y, Chen L, Long F, Chen Y, Kemp GJ, Lui S, Li F. Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease. Cereb Cortex 2024; 34:bhae094. [PMID: 38521993 DOI: 10.1093/cercor/bhae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024] Open
Abstract
Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Qian Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Li Yao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan, P.R. China
| | - Lizhou Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Fenghua Long
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Yufei Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Graham J Kemp
- Institute of Life Course and Medical Sciences, University of Liverpool, 6 West Derby Street, Liverpool L7 8TX, United Kingdom
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No. 37 Guo Xue Alley, Wuhou District, Chengdu 610041, Sichuan Province, P.R. China
| |
Collapse
|
7
|
Singh AK, Malviya R, Prakash A, Verma S. Neuropsychiatric Manifestations in Alzheimer's Disease Patients: Genetics and Treatment Options. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:39-54. [PMID: 36856177 DOI: 10.2174/1871527322666230301111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 03/02/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neuropsychiatric symptoms (NPS), which cause great misery to those with dementia and those who care for them and may lead to early institutionalization. OBJECTIVE The present systematic review aims to discuss the various aspects of Alzheimer's, including treatment options. METHODS The databases Embase, PubMed, and Web of Science were searched to collect data. RESULTS Incipient cognitive deterioration is commonly accompanied by these early warning signals of neurocognitive diseases. The neurobiology of NPSs in Alzheimer's disease, as well as particular symptoms, including psychosis, agitation, apathy, sadness, and sleep disorders, will be examined in this review. For NPSs in Alzheimer's disease, clinical trial designs, as well as regulatory issues, were also addressed. A fresh wave of research, however, is helping to push the discipline ahead. For medication development and repurposing, we highlight the most recent results in genetics, neuroimaging, and neurobiology. Even though identifying and treating psychosis in adults with dementia is still a challenging endeavor, new options are coming up that give the field fresh focus and hope. Conclsuion: It can be concluded from the complete literature survey that Alzheimer's-related psychosis as well as other symptoms that are not psychotic, have made significant progress in the last decade. These milestones in the development of safer, more effective treatments have been achieved as a consequence of great focus on non-pharmacological interventions like DICE or WHELD; the investigation into ways to improve existing drugs like aripiprazole, risperidone, amisulpride, and Escitalopram for safer precision-based treatment; and the development of a clinical trial program for pimavanserin.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| | - Anuj Prakash
- Reference Standard Division, Indian Pharmacopoeia Commission, Sec-23, Raj Nagar, Ghaziabad, Uttar Pradesh, India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Pisani S, Gunasekera B, Lu Y, Vignando M, Ffytche D, Aarsland D, Chaudhuri KR, Ballard C, Lee JY, Kim YK, Velayudhan L, Bhattacharyya S. Grey matter volume loss in Parkinson's disease psychosis and its relationship with serotonergic gene expression: A meta-analysis. Neurosci Biobehav Rev 2023; 147:105081. [PMID: 36775084 DOI: 10.1016/j.neubiorev.2023.105081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Neuroanatomical alterations underlying psychosis in Parkinson's Disease (PDP) remain unclear. We carried out a meta-analysis of MRI studies investigating the neural correlates of PDP and examined its relation with dopaminergic and serotonergic receptor gene expression. METHODS PubMed, Web of Science and Embase were searched for MRI studies (k studies = 10) of PDP compared to PD patients without psychosis (PDnP). Seed-based d Mapping with Permutation of Subject Images and multiple linear regression analyses was used to examine the relationship between pooled estimates of grey matter volume (GMV) loss in PDP and D1/D2 and 5-HT1a/5-HT2a receptor gene expression estimates from Allen Human Brain Atlas. RESULTS We observed lower grey matter volume in parietal-temporo-occipital regions (PDP n = 211, PDnP, n = 298). GMV loss in PDP was associated with local expression of 5-HT1a (b = 0.109, p = 0.012) and 5-HT2a receptors (b= -0.106, p = 0.002) but not dopaminergic receptors. CONCLUSION Widespread GMV loss in the parieto-temporo-occipital regions may underlie PDP. Association between grey matter volume and local expression of serotonergic receptor genes may suggest a role for serotonergic receptors in PDP.
Collapse
Affiliation(s)
- Sara Pisani
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Brandon Gunasekera
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Yining Lu
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Miriam Vignando
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dominic Ffytche
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dag Aarsland
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.
| | - K Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, and Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Clive Ballard
- Medical School, Medical School Building, St Luke's Campus, Magdalen Road, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Latha Velayudhan
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Population Health Sciences, University of Leicester, United Kingdom.
| | - Sagnik Bhattacharyya
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
9
|
Cruzat J, Herzog R, Prado P, Sanz-Perl Y, Gonzalez-Gomez R, Moguilner S, Kringelbach ML, Deco G, Tagliazucchi E, Ibañez A. Temporal Irreversibility of Large-Scale Brain Dynamics in Alzheimer's Disease. J Neurosci 2023; 43:1643-1656. [PMID: 36732071 PMCID: PMC10008060 DOI: 10.1523/jneurosci.1312-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Ruben Herzog
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Fundación para el Estudio de la Conciencia Humana (ECoH), 7550000, Santiago, Chile
| | - Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Yonatan Sanz-Perl
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Global Brain Health Institute, Trinity College, Dublin 2, Ireland
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Århus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04303 Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne 3168, Australia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- Department of Physics, University of Buenos Aires, C1428EGA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, 7911328, Santiago, Chile
- National Scientific and Technical Research Council (CONICET), C1033AAJ, Buenos Aires, Argentina
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, C116ABJ, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California 94143
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Yin Z, Wang Z, Li Y, Zhou J, Chen Z, Xia M, Zhang X, Wu J, Zhao L, Liang F. Neuroimaging studies of acupuncture on Alzheimer's disease: a systematic review. BMC Complement Med Ther 2023; 23:63. [PMID: 36823586 PMCID: PMC9948384 DOI: 10.1186/s12906-023-03888-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Acupuncture effectively improves cognitive function in Alzheimer's disease (AD). Many neuroimaging studies have found significant brain alterations after acupuncture treatment of AD, but the underlying central modulation mechanism is unclear. OBJECTIVE This review aims to provide neuroimaging evidence to understand the central mechanisms of acupuncture in patients with AD. METHODS Relevant neuroimaging studies about acupuncture for AD were retrieved from eight English and Chinese medicine databases (PubMed, Embase, Cochrane Library, Web of Science, SinoMed, CNKI, WF, VIP) and other resources from inception of databases until June 1, 2022, and their methodological quality was assessed using RoB 2.0 and ROBINS - I. Brain neuroimaging information was extracted to investigate the potential neural mechanism of acupuncture for AD. Descriptive statistics were used for data analysis. RESULTS Thirteen neuroimaging studies involving 275 participants were included in this review, and the overall methodological quality of included studies was moderate. The approaches applied included task-state functional magnetic resonance imaging (ts-fMRI; n = 9 studies) and rest-state functional magnetic resonance imaging (rs-fMRI; n = 4 studies). All studies focused on the instant effect of acupuncture on the brains of AD participants, including the cingulate gyrus, middle frontal gyrus, and cerebellum, indicating that acupuncture may regulate the default mode, central executive, and frontoparietal networks. CONCLUSION This study provides evidence of the neural mechanisms underlying the effect of acupuncture on AD involving cognitive- and motor-associated networks. However, this evidence is still in the preliminary investigation stage. Large-scale, well-designed, multimodal neuroimaging trials are still required to provide comprehensive insight into the central mechanism underlying the effect of acupuncture on AD. (Systematic review registration at PROSPERO, No. CRD42022331527).
Collapse
Affiliation(s)
- Zihan Yin
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Ziqi Wang
- grid.517561.1the Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Yaqin Li
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhou
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghong Chen
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Manze Xia
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Xinyue Zhang
- grid.411304.30000 0001 0376 205XSchool of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China ,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
| | - Jiajing Wu
- grid.417409.f0000 0001 0240 6969School of Nursing, Zunyi Medical University, Zunyi, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China.
| |
Collapse
|
11
|
Ghahremani M, Nathan S, Smith EE, McGirr A, Goodyear B, Ismail Z. Functional connectivity and mild behavioral impairment in dementia-free elderly. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12371. [PMID: 36698771 PMCID: PMC9847513 DOI: 10.1002/trc2.12371] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
Background Mild behavioral impairment (MBI) is a syndrome that uses later-life emergent and persistent neuropsychiatric symptoms (NPS) to identify a group at high risk for incident dementia. MBI is associated with neurodegenerative disease markers in advance of syndromic dementia. Functional connectivity (FC) correlates of MBI are understudied and could provide further insights into mechanisms early in the disease course. We used resting-state functional magnetic resonance imaging (rs-fMRI) to test the hypothesis that FC within the default mode network (DMN) and salience network (SN) of persons with MBI (MBI+) is reduced, relative to those without (MBI-). Methods From two harmonized dementia-free cohort studies, using a score of ≥6 on the MBI Checklist to define MBI status, 32 MBI+ and 63 MBI- individuals were identified (mean age: 71.7 years; 54.7% female). Seed-based connectivity analysis was implemented in each MBI group using the CONN fMRI toolbox (v20.b), with the posterior cingulate cortex (PCC) as the seed region within the DMN and anterior cingulate cortex (ACC) as the seed within the SN. The average time series from the PCC and ACC were used to determine FC with other regions within the DMN (medial prefrontal cortex, lateral inferior parietal cortex) and SN (anterior insula, supramarginal gyrus, rostral prefrontal cortex), respectively. Age, sex, years of education, and Montreal Cognitive Assessment scores were included as model covariates. The false discovery rate approach was used to correct for multiple comparisons, with a p-value of .05 considered significant. Results For the DMN, MBI+ individuals exhibited reduced FC between the PCC and the medial prefrontal cortex, compared to MBI-. For the SN, MBI+ individuals exhibited reduced FC between the ACC and left anterior insula. Conclusion MBI in dementia-free older adults is associated with reduced FC in networks known to be disrupted in dementia. Our results complement the evidence linking MBI with Alzheimer's disease biomarkers. Highlights Resting-state functional magnetic resonance imaging was completed in 95 dementia-free persons from FAVR and COMPASS-ND studies.Participants were stratified by informant-rated Mild Behavioral Impairment Checklist (MBI-C) score, ≥6 for MBI+.MBI+ participants showed reduced functional connectivity (FC) within the default mode network and salience network.These FC changes are consistent with those seen in early-stage Alzheimer's disease.MBI may help identify persons with early-stage neurodegenerative disease.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
| | - Santhosh Nathan
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Eric E. Smith
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
| | - Alexander McGirr
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
| | - Bradley Goodyear
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
- Department of RadiologyCumming School of MedicineCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
- College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
12
|
Nowrangi MA, Outen JD, Kim J, Avramopoulos D, Lyketsos CG, Rosenberg PB. Neuropsychiatric Symptoms of Alzheimer's Disease: An Anatomic-Genetic Framework for Treatment Development. J Alzheimers Dis 2023; 95:53-68. [PMID: 37522204 DOI: 10.3233/jad-221247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Despite the burden on patients and caregivers, there are no approved therapies for the neuropsychiatric symptoms of Alzheimer's disease (NPS-AD). This is likely due to an incomplete understanding of the underlying mechanisms. OBJECTIVE To review the neurobiological mechanisms of NPS-AD, including depression, psychosis, and agitation. METHODS Understanding that genetic encoding gives rise to the function of neural circuits specific to behavior, we review the genetics and neuroimaging literature to better understand the biological underpinnings of depression, psychosis, and agitation. RESULTS We found that mechanisms involving monoaminergic biosynthesis and function are likely key elements of NPS-AD and while current treatment approaches are in line with this, the lack of effectiveness may be due to contributions from additional mechanisms including neurodegenerative, vascular, inflammatory, and immunologic pathways. CONCLUSION Within an anatomic-genetic framework, development of novel effective biological targets may engage targets within these pathways but will require a better understanding of the heterogeneity in NPS-AD.
Collapse
Affiliation(s)
- Milap A Nowrangi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - John D Outen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|
13
|
Efficacy and safety of simultaneous rTMS-tDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer's disease: A prospective, randomized, sham-controlled pilot study. Brain Stimul 2022; 15:1530-1537. [PMID: 36460293 DOI: 10.1016/j.brs.2022.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Treating neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD) remains highly challenging. Noninvasive brain stimulation using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) is of considerable interest in this context. OBJECTIVE To investigate the efficacy and safety of a novel technique involving simultaneous application of rTMS and tDCS (rTMS-tDCS) over bilateral angular gyrus (AG, P5/P6 electrode site) for AD-related NPS. METHODS Eighty-four AD patients were randomized to receive rTMS-tDCS, single-rTMS, single-tDCS, or sham stimulation for 4 weeks, with evaluation at week-4 (W4, immediately after treatment) and week-12 (W12, follow-up period) after initial examination. Primary outcome comprising Neuropsychiatric Inventory (NPI) score and secondary outcomes comprising mini-mental state examination (MMSE), AD assessment scale-cognitive subscale (ADAS-cog), and Pittsburgh sleep quality index (PSQI) scores were collected and analyzed by a two-factor (time and treatment), mixed-design ANOVA. RESULTS rTMS-tDCS produced greater improvement in NPI scores than single-tDCS and sham at W4 and W12 (both P < 0.017) and trended better than single-rTMS (W4: P = 0.058, W12: P = 0.034). rTMS-tDCS improved MMSE scores compared with single-tDCS at W4 (P = 0.011) and sham at W4 and W12 (both P < 0.017). rTMS-tDCS also significantly improved PSQI compared with single-rTMS and sham (both P < 0.017). Interestingly, rTMS-tDCS-induced NPI/PSQI improvement was significantly associated with MMSE/ADAS-cog improvement. tDCS- and/or rTMS-related adverse events appeared slightly and briefly. CONCLUSIONS rTMS-tDCS application to bilateral AG can effectively improve AD-related NPS, cognitive function, and sleep quality with considerable safety.
Collapse
|
14
|
Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging. PLoS One 2022; 17:e0264710. [PMID: 35413053 PMCID: PMC9004771 DOI: 10.1371/journal.pone.0264710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) affects the quality of life as it causes; memory loss, difficulty in thinking, learning, and performing familiar tasks. Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate and analyze different brain regions for AD identification. This study investigates the effectiveness of using correlated transfer function (CorrTF) as a new biomarker to extract the essential features from rs-fMRI, along with support vector machine (SVM) ordered hierarchically, in order to distinguish between the different AD stages. Additionally, we explored the regions, showing significant changes based on the CorrTF extracted features’ strength among different AD stages. First, the process was initialized by applying the preprocessing on rs-fMRI data samples to reduce noise and retain the essential information. Then, the automated anatomical labeling (AAL) atlas was employed to divide the brain into 116 regions, where the intensity time series was calculated, and the CorrTF features were extracted for each region. The proposed framework employed the SVM classifier in two different methodologies, hierarchical and flat multi-classification schemes, to differentiate between the different AD stages for early detection purposes. The ADNI rs-fMRI dataset, employed in this study, consists of 167, 102, 129, and 114 normal, early, late mild cognitive impairment (MCI), and AD subjects, respectively. The proposed schemes achieved an average accuracy of 98.2% and 95.5% for hierarchical and flat multi-classification tasks, respectively, calculated using ten folds cross-validation. Therefore, CorrTF is considered a promising biomarker for AD early-stage identification. Moreover, the significant changes in the strengths of CorrTF connections among the different AD stages can help us identify and explore the affected brain regions and their latent associations during the progression of AD.
Collapse
|
15
|
Ismail Z, Creese B, Aarsland D, Kales HC, Lyketsos CG, Sweet RA, Ballard C. Psychosis in Alzheimer disease - mechanisms, genetics and therapeutic opportunities. Nat Rev Neurol 2022; 18:131-144. [PMID: 34983978 PMCID: PMC9074132 DOI: 10.1038/s41582-021-00597-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Psychosis is a common and distressing symptom in people with Alzheimer disease, and few safe and effective treatments are available. However, new approaches to symptom assessment and treatment are beginning to drive the field forward. New nosological perspectives have been provided by incorporating the emergence of psychotic symptoms in older adults - even in advance of dementia - into epidemiological and neurobiological frameworks as well as into diagnostic and research criteria such as the International Psychogeriatric Association criteria for psychosis in neurocognitive disorders, the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) research criteria for psychosis in neurodegenerative disease, and the ISTAART criteria for mild behavioural impairment. Here, we highlight the latest findings in genomics, neuroimaging and neurobiology that are informing approaches to drug discovery and repurposing. Current pharmacological and non-pharmacological treatment options are discussed, with a focus on safety and precision medicine. We also explore trial data for pimavanserin, a novel agent that shows promise for the treatment of psychosis in people with dementia, and discuss existing agents that might be useful but need further exploration such as escitalopram, lithium, cholinesterase inhibitors and vitamin D. Although the assessment and management of psychosis in people with dementia remain challenging, new opportunities are providing direction and hope to the field.
Collapse
Affiliation(s)
- Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, Community Health Sciences, and Pathology, Hotchkiss Brain Institute and O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
| | - Byron Creese
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Science, Johns Hopkins Bayview, Johns Hopkins University, Baltimore, MD, USA
| | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clive Ballard
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
16
|
Gagliardi G, Vannini P. Episodic Memory Impairment Mediates the Loss of Awareness in Mild Cognitive Impairment. Front Aging Neurosci 2022; 13:802501. [PMID: 35126092 PMCID: PMC8814670 DOI: 10.3389/fnagi.2021.802501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Loss of awareness is a common symptom in Alzheimer's Disease (AD) and responsible for a significant loss of functional abilities. The mechanisms underlying loss of awareness in AD is unknown, although previous findings have implicated dysfunction of primary executive functioning (EF) or episodic memory (EM) to be the cause. Therefore, our main study objective was to explore the involvement of EF and EM dysfunction in amyloid-related loss of awareness across the clinical spectrum of AD. METHODS A total of 895 participants (362 clinically normal [CN], 422 people with mild cognitive impairment [MCI] and 111 with dementia) from the Alzheimer's Disease Neuroimaging Initiative were used for the analyses. A sub-analysis was performed in 202 participants who progressed in their clinical diagnosis from CN to MCI or MCI to dementia as well as dementia patients. Mediation models were used in each clinical group with awareness (assessed with the Everyday Cognitive function questionnaire) as a dependent variable to determine whether EF and/or EM would mediate the effect of amyloid on awareness. We also ran these analyses with subjective and informant complaints as dependent variables. Direct correlations between all variables were also performed. RESULTS We found evidence for a decline in awareness across the groups, with increased awareness observed in the CN group and decreased awareness observed in the MCI and dementia groups. Our results showed that EM, and not EF, partially mediated the relationship between amyloid and awareness such that greater amyloid and lower EM performance was associated with lower awareness. When analyzing each group separately, this finding was only observed in the MCI group and in the group containing progressors and dementia patients. When repeating the analyses for subjective and informant complaints separately, the results were replicated only for the informant's complaints. DISCUSSION Our results demonstrate that decline in EM and, to a lesser degree, EF, mediate the effect of amyloid on awareness. In line with previous studies demonstrating the development of anosognosia in the prodromal stage, our findings suggest that decreased awareness is the result of an inability for the participant to update his/her insight into his/her cognitive performance (i.e., demonstrating a petrified self).
Collapse
Affiliation(s)
- Geoffroy Gagliardi
- Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Cambridge, MA, United States
| | - Patrizia Vannini
- Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Cambridge, MA, United States
| |
Collapse
|
17
|
Wang T, Chen Y, Zou Y, Pang Y, He X, Chen Y, Liu Y, Feng W, Zhang Y, Li Q, Shi J, Ding F, Marshall C, Gao J, Xiao M. Locomotor Hyperactivity in the Early-Stage Alzheimer’s Disease-like Pathology of APP/PS1 Mice: Associated with Impaired Polarization of Astrocyte Aquaporin 4. Aging Dis 2022; 13:1504-1522. [PMID: 36186142 PMCID: PMC9466968 DOI: 10.14336/ad.2022.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Non-cognitive behavioral and psychological symptoms often occur in Alzheimer's disease (AD) patients and mouse models, although the exact neuropathological mechanism remains elusive. Here, we report hyperactivity with significant inter-individual variability in 4-month-old APP/PS1 mice. Pathological analysis revealed that intraneuronal accumulation of amyloid-β (Aβ), c-Fos expression in glutamatergic neurons and activation of astrocytes were more evident in the frontal motor cortex of hyperactive APP/PS1 mice, compared to those with normal activity. Moreover, the hyperactive phenotype was associated with mislocalization of perivascular aquaporin 4 (AQP4) and glymphatic transport impairment. Deletion of the AQP4 gene increased hyperactivity, intraneuronal Aβ load and glutamatergic neuron activation, but did not influence working memory or anxiety-like behaviors of 4-month-old APP/PS1 mice. Together, these results demonstrate that AQP4 mislocalization or deficiency leads to increased intraneuronal Aβ load and neuronal hyperactivity in the motor cortex, which in turn causes locomotor over-activity during the early pathophysiology of APP/PS1 mice. Therefore, improving AQP4 mediated glymphatic clearance may offer a new strategy for early intervention of hyperactivity in the prodromal phase of AD.
Collapse
Affiliation(s)
- Tianqi Wang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ying Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yali Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Liu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yanli Zhang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Li
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Charles Marshall
- College of Health Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY 41701, USA
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Matsuoka T, Ueno D, Ismail Z, Rubinstein E, Uchida H, Mimura M, Narumoto J. Neural Correlates of Mild Behavioral Impairment: A Functional Brain Connectivity Study Using Resting-State Functional Magnetic Resonance Imaging. J Alzheimers Dis 2021; 83:1221-1231. [PMID: 34420972 PMCID: PMC8543254 DOI: 10.3233/jad-210628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background: Mild behavioral impairment (MBI) is associated with accelerated cognitive decline and greater risk of dementia. However, the neural correlates of MBI have not been completely elucidated. Objective: The study aimed to investigate the correlation between cognitively normal participants and participants with amnestic mild cognitive impairment (aMCI) using resting-state functional magnetic resonance imaging. Methods: The study included 30 cognitively normal participants and 13 participants with aMCI (20 men and 23 women; mean age, 76.9 years). The MBI was assessed using the MBI checklist (MBI-C). Region of interest (ROI)-to-ROI analysis was performed to examine the correlation between MBI-C scores and functional connectivity (FC) of the default mode network, salience network, and frontoparietal control network (FPCN). Age, Mini-Mental State Examination score, sex, and education were used as covariates. A p-value of 0.05, with false discovery rate correction, was considered significant. Results: A negative correlation was observed between the MBI-C total score and FC of the left posterior parietal cortex with the right middle frontal gyrus. A similar result was obtained for the MBI-C affective dysregulation domain score. Conclusion: FPCN dysfunction was detected as a neural correlate of MBI, especially in the affective dysregulation domain. This dysfunction may be associated with cognitive impairment in MBI and conversion of MBI to dementia; however, further longitudinal data are needed to examine this relationship.
Collapse
Affiliation(s)
- Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Daisuke Ueno
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Hotchkiss Brain Institute and O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - Ellen Rubinstein
- Department of Sociology and Anthropology, North Dakota State University, Fargo, ND, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
19
|
Manca R, De Marco M, Venneri A. The Impact of COVID-19 Infection and Enforced Prolonged Social Isolation on Neuropsychiatric Symptoms in Older Adults With and Without Dementia: A Review. Front Psychiatry 2020; 11:585540. [PMID: 33192732 PMCID: PMC7649825 DOI: 10.3389/fpsyt.2020.585540] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background: The sudden and drastic changes due to the Coronavirus Disease 19 (COVID-19) pandemic have impacted people's physical and mental health. Clinically-vulnerable older people are more susceptible to severe effects either directly by the COVID-19 infection or indirectly due to stringent social isolation measures. Social isolation and loneliness negatively impact mental health in older adults and may predispose to cognitive decline. People with cognitive impairments may also be at high risk of worsening cognitive and mental health due to the current pandemic. This review provides a summary of the recent literature on the consequences of COVID-19, due to either viral infection or social isolation, on neuropsychiatric symptoms in older adults with and without dementia. Methods: A search was conducted in PubMed and Web of Science to identify all relevant papers published up to the 7th July 2020. Two independent assessors screened and selected the papers suitable for inclusion. Additional suitable papers not detected by literature search were manually added. Results: Fifteen articles were included: 8 focussed on the psychiatric symptoms caused by the COVID-19 infection and 7 investigated the impact of social isolation on older adults' neuropsychiatric symptoms. Four studies included older adults without dementia and 11 included patients with cognitive impairment mainly due to Alzheimer's disease. All studies found that different neuropsychiatric symptoms emerged and/or worsened in older adults with and without dementia. These changes were observed as the consequence of both COVID-19 infection and of the enforced prolonged conditions of social isolation. Cases were reported of viral infection manifesting with delirium at onset in the absence of other symptoms. Delirium, agitation and apathy were the symptoms most commonly detected, especially in people with dementia. Conclusion: The available evidence suggests that the COVID-19 pandemic has a wide negative impact on the mental well-being of older adults with and without dementia. Viral infection and the consequent social isolation to limit its spreading have a range of neuropsychiatric consequences. Larger and more robustly designed studies are needed to clarify such effects and to assess the long-term implications for the mental health of older adults, and to test possible mitigating strategies.
Collapse
Affiliation(s)
- Riccardo Manca
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Matteo De Marco
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|