1
|
Ebrahimzadegan R, Fuchs J, Chen J, Schubert V, Meister A, Houben A, Mirzaghaderi G. Meiotic segregation and post-meiotic drive of the Festuca pratensis B chromosome. Chromosome Res 2023; 31:26. [PMID: 37658970 PMCID: PMC10474989 DOI: 10.1007/s10577-023-09728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
In many species, the transmission of B chromosomes (Bs) does not follow the Mendelian laws of equal segregation and independent assortment. This deviation results in transmission rates of Bs higher than 0.5, a process known as "chromosome drive". Here, we studied the behavior of the 103 Mbp-large B chromosome of Festuca pratensis during all meiotic and mitotic stages of microsporogenesis. Mostly, the B chromosome of F. pratensis segregates during meiosis like standard A chromosomes (As). In some cases, the B passes through meiosis in a non-Mendelian segregation leading to their accumulation already in meiosis. However, a true drive of the B happens during the first pollen mitosis, by which the B preferentially migrates to the generative nucleus. During second pollen mitosis, B divides equally between the two sperms. Despite some differences in the frequency of drive between individuals with different numbers of Bs, at least 82% of drive was observed. Flow cytometry-based quantification of B-containing sperm nuclei agrees with the FISH data.
Collapse
Affiliation(s)
- Rahman Ebrahimzadegan
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| | - Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
2
|
Mitrenina EY, Erst AS, Peruzzi L, Skaptsov MV, Ikeda H, Nikulin VY, Wang W. Karyotype and genome size variation in white-flowered Eranthis sect. Shibateranthis (Ranunculaceae). PHYTOKEYS 2021; 187:207-227. [PMID: 35068976 PMCID: PMC8741716 DOI: 10.3897/phytokeys.187.75715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Comparative karyomorphological analyses of six out of the eight white-flowered species of Eranthissect.Shibateranthis have been carried out. All studied specimens of E.byunsanensis, E.lobulata, E.pinnatifida, and E.stellata had a somatic chromosome number 2n = 16 with basic chromosome number x = 8. On the contrary, E.tanhoensis and E.sibirica had a basic chromosome number x = 7. The specimens of E.tanhoensis were diploid with 2n = 14, while the specimens of E.sibirica were polyploid with 2n = 42. Monoploid chromosome sets of the investigated diploid species had 4-5 metacentric chromosomes and 2-4 submetacentric/subtelocentric/acrocentric chromosomes. The highest level of interchromosomal asymmetry, estimated via CVCL, was found in E.byunsanensis and E.pinnatifida. The highest levels of intrachromosomal asymmetry (MCA) and heterogeneity in centromere position (CVCI) were found in E.lobulata and E.byunsanensis, while E.sibirica had the most symmetric karyotype. A multivariate PCoA analysis of basic karyotype parameters (2n, x, THL, CVCL, MCA, and CVCI) highlighted no overlap among species accessions, which was also confirmed by LDA. The average absolute monoploid DNA content (1Cx) of the 23 investigated samples of six Eranthis species varied from 9.26 ± 0.25 pg in E.sibirica to 15.93 ± 0.32 pg in E.stellata. Overall karyological affinity was highlighted between E.lobulata and E.stellata, on one side, and between E.byunsanensis and E.pinnatifida, on the other side. Interestingly, there was no significant correlation between total haploid (monoploid) chromosome length (THL) and 1Cx values in these species.
Collapse
Affiliation(s)
- Elizaveta Yu. Mitrenina
- Laboratory of Herbarium, National Research Tomsk State University, Tomsk, RussiaNational Research Tomsk State UniversityTomskRussia
| | - Andrey S. Erst
- Laboratory of Herbarium, National Research Tomsk State University, Tomsk, RussiaNational Research Tomsk State UniversityTomskRussia
- Laboratory of Herbarium, Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaLaboratory of Herbarium, Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
| | - Lorenzo Peruzzi
- Department of Biology, Botany Unit, University of Pisa, Pisa, ItalyUniversity of PisaPisaItaly
| | - Mikhail V. Skaptsov
- South-Siberian Botanical Garden, Altai State University, Barnaul, RussiaAltai State UniversityBarnaulRussia
| | - Hiroshi Ikeda
- The University Museum, The University of Tokyo, Tokyo, JapanThe University of TokyoTokyoJapan
| | - Vyacheslav Yu. Nikulin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, RussiaFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of SciencesVladivostokRussia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany of the Chinese Academy of Sciences, Beijing, ChinaState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Chromosome numbers and meiotic behavior in some species of Asteraceae from high altitudinal regions of Kashmir Himalayas. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Kumar G, Rajani Singh. Deciphering Enigmatic Response of B Chromosomes on Genetic Recombination of Artemisia annua L. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Dhar MK, Kour J, Kaul S. Origin, Behaviour, and Transmission of B Chromosome with Special Reference to Plantago lagopus. Genes (Basel) 2019; 10:E152. [PMID: 30781667 PMCID: PMC6410184 DOI: 10.3390/genes10020152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/30/2022] Open
Abstract
B chromosomes have been reported in many eukaryotic organisms. These chromosomes occur in addition to the standard complement of a species. Bs do not pair with any of the A chromosomes and they have generally been considered to be non-essential and genetically inert. However, due to tremendous advancements in the technologies, the molecular composition of B chromosomes has been determined. The sequencing data has revealed that B chromosomes have originated from A chromosomes and they are rich in repetitive elements. In our laboratory, a novel B chromosome was discovered in Plantago lagopus. Using molecular cytogenetic techniques, the B chromosome was found to be composed of ribosomal DNA sequences. However, further characterization of the chromosome using next generation sequencing (NGS) etc. revealed that the B chromosome is a mosaic of sequences derived from A chromosomes, 5S ribosomal DNA (rDNA), 45S rDNA, and various types of repetitive elements. The transmission of B chromosome through the female sex track did not follow the Mendelian principles. The chromosome was found to have drive due to which it was perpetuating in populations. The present paper attempts to summarize the information on nature, transmission, and origin of B chromosomes, particularly the current status of our knowledge in P. lagopus.
Collapse
Affiliation(s)
- Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Jasmeet Kour
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu-180006, India.
| |
Collapse
|
6
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
D'Ambrosio U, Alonso-Lifante MP, Barros K, Kovařík A, Mas de Xaxars G, Garcia S. B-chrom: a database on B-chromosomes of plants, animals and fungi. THE NEW PHYTOLOGIST 2017; 216:635-642. [PMID: 28742254 DOI: 10.1111/nph.14723] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Ugo D'Ambrosio
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - M Pilar Alonso-Lifante
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - Karina Barros
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno CZ-61265, Czech Republic
| | - Gemma Mas de Xaxars
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII s.n., Barcelona 08028, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| |
Collapse
|