1
|
Godoy AC, Ziemniczak HM, Fantini-Hoag L, da Silva WV, Ferreira ACV, Saturnino KC, Neu DH, Gandra JR, de Padua Pereira U, Honorato CA. The effects of probiotic-based additives on aflatoxin intoxication in Piaractus mesopotamicus: a study of liver histology and metabolic performance. Vet Res Commun 2024; 48:2281-2294. [PMID: 38739261 DOI: 10.1007/s11259-024-10409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Mycotoxins, produced by fungi, can contaminate fish food and harm their health. Probiotics enhance immune balance and primarily function in the animal intestine. This study aimed to assess aflatoxin's impact on Piaractus mesopotamicus and explore probiotic-based additive (PBA) benefits in mitigating these effects, focusing on antioxidant activity, biochemical indices, and hepatic histopathology. Two experiments were conducted using P. mesopotamicus fry. The first experimental assay tested various levels of aflatoxin B1 (0.0, 25.0, 50.0, 100.0, 200.0, and 400.0 µg kg-1) over a 10-day period. The second experimental assay examined the efficacy of the probiotic (supplemented at 0.20%) in diets with different levels of aflatoxin B1 (0.0, 25.0, and 400.0 µg kg-1) for 15 days. At the end of each assay, the fish underwent a 24-hour fasting period, and the survival rate was recorded. Six liver specimens from each treatment group were randomly selected for metabolic indicator assays, including superoxide dismutase, catalase, alanine aminotransferase, aspartate aminotransferase, and albumin. Additionally, histopathological analysis was performed on six specimens. The initial study discovered that inclusion rates above 25.0 µg kg-1 resulted in decreased activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALB (albumin), CAT (catalase), and SOD (superoxide dismutase), accompanied by liver histopathological lesions. In the second study, the inclusion of PBA in diets contaminated with AFB1 improved the activity of AST and ALT up to 25.0 µg kg-1 of AFB1, with no histopathological lesions observed. The study demonstrated the hepatoprotective effects of PBA in diets contaminated with AFB1. The enzyme activity and hepatic histopathology were maintained, indicating a reduction in damage caused by high concentrations of AFB1 (400.0 µg kg-1 of AFB1). The adverse effects of AFB1 on biochemical and histopathological parameters were observed from 25.0 µg kg-1 onwards. Notably, PBA supplementation enhanced enzymatic activity at a concentration of 25 µg kg-1 of AFB1 and mitigated the effects at 400.0 µg kg-1 of AFB1. The use of PBAs in pacu diets is highly recommended as they effectively neutralize the toxic effects of AFB1 when added to diets containing 25.0 µg kg-1 AFB1. Dietary inclusion of aflatoxin B1 at a concentration of 25.0 µg kg-1 adversely affects the liver of Piaractus mesopotamicus (Pacu). However, the addition of a probiotic-based additive (PBA) to the diets containing this concentration of aflatoxin neutralized its toxic effects. Therefore, the study recommends the use of PBAs in Pacu diets to mitigate the adverse effects of aflatoxin contamination.
Collapse
Affiliation(s)
- Antonio Cesar Godoy
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil.
| | - Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Leticia Fantini-Hoag
- School of Fisheries, Aquaculture and Aquatic Science, Auburn University, 203 Swingle Hall, 36849, Auburn, AL, United States of America
| | - Welinton V da Silva
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Annye C V Ferreira
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Klaus C Saturnino
- Instituto de Desenvolvimento Agrário e Regional Quadra Sete (Fl.31), Universidade Federal do Sul e Sudeste Do Pará, Rua Nova Marabá, 68507590, Marabá, Pará, Brazil
| | - Dacley H Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Jeferson R Gandra
- Instituto de Desenvolvimento Agrário, Universidade Federal de Jataí, BR 364 km 195, Setor Parque Industrial nº 3800, 75801615, Jataí, Goiás, Brazil
| | - Ulisses de Padua Pereira
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid 445 Km, 86057970, Londrina, Paraná, Brazil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
2
|
Venturini FP, de Moraes FD, Rossi PA, Avilez IM, Shiogiri NS, Moraes G. A multi-biomarker approach to lambda-cyhalothrin effects on the freshwater teleost matrinxa Brycon amazonicus: single-pulse exposure and recovery. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:341-353. [PMID: 30269262 DOI: 10.1007/s10695-018-0566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Effects of the pyrethroid lambda-cyhalothrin (LCH) were investigated in matrinxa Brycon amazonicus, a non-target freshwater teleost. The fish were submitted to a single-pulse exposure (10% of LC50; 96 h, 0.65 μg L-1), followed by 7 days of recovery in clean water. Hematologic parameters indicated impairments in oxygen transport, which were not recovered. Plasma [Na+], [Cl-], and protein were diminished, and only [Na+] remained low after recovery. Gill Na+/K+ATPase activity was increased and recovered to basal values. Brain acetylcholinesterase activity was not responsive to LCH. Liver ascorbic acid concentration was not altered, and reduced glutathione levels remained augmented even after recovery. LCH inhibited hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, while glutathione-S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH) activities were steady. After recovery, SOD remained low, and GPx was augmented. Liver depicted lipid peroxidation, which was not observed after recovery. Hepatic morphology was affected by LCH and was not completely recovered. These responses, combined with the persistence of changes even after recovery span, clearly show the feasibility of these biomarkers in evaluating LCH toxic potential to non-target organisms, highlighting the importance of pyrethroids' responsible use.
Collapse
Affiliation(s)
- F P Venturini
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil.
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil.
| | - F D de Moraes
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - P A Rossi
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - I M Avilez
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - N S Shiogiri
- Department of Physiological Sciences, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| | - G Moraes
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luiz, Km 235, Sao Carlos, SP, CEP 13565-905, Brazil
| |
Collapse
|
3
|
Kurek M, Barchańska H, Turek M. Degradation Processes of Pesticides Used in Potato Cultivations. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 242:105-151. [PMID: 27718007 DOI: 10.1007/398_2016_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.
Collapse
Affiliation(s)
- M Kurek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - H Barchańska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| | - M Turek
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland
| |
Collapse
|