1
|
Okada M, Welling DB, Liberman MC, Maison SF. Chronic Conductive Hearing Loss Is Associated With Speech Intelligibility Deficits in Patients With Normal Bone Conduction Thresholds. Ear Hear 2021; 41:500-507. [PMID: 31490800 PMCID: PMC7056594 DOI: 10.1097/aud.0000000000000787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The main objective of this study is to determine whether chronic sound deprivation leads to poorer speech discrimination in humans. DESIGN We reviewed the audiologic profile of 240 patients presenting normal and symmetrical bone conduction thresholds bilaterally, associated with either an acute or chronic unilateral conductive hearing loss of different etiologies. RESULTS Patients with chronic conductive impairment and a moderate, to moderately severe, hearing loss had lower speech recognition scores on the side of the pathology when compared with the healthy side. The degree of impairment was significantly correlated with the speech recognition performance, particularly in patients with a congenital malformation. Speech recognition scores were not significantly altered when the conductive impairment was acute or mild. CONCLUSIONS This retrospective study shows that chronic conductive hearing loss was associated with speech intelligibility deficits in patients with normal bone conduction thresholds. These results are as predicted by a recent animal study showing that prolonged, adult-onset conductive hearing loss causes cochlear synaptopathy.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Otolaryngology, Head and Neck Surgery, Ehime University Graduate School of Medicine, Toon Ehime, Japan
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - D. Bradley Welling
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - M. Charles Liberman
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| | - Stéphane F. Maison
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, USA
| |
Collapse
|
2
|
van Zwieten G, Jahanshahi A, van Erp ML, Temel Y, Stokroos RJ, Janssen MLF, Smit JV. Alleviation of Tinnitus With High-Frequency Stimulation of the Dorsal Cochlear Nucleus: A Rodent Study. Trends Hear 2019; 23:2331216519835080. [PMID: 30868944 PMCID: PMC6419256 DOI: 10.1177/2331216519835080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deep brain stimulation of the central auditory pathway is emerging as a promising treatment modality for tinnitus. Within this pathway, the dorsal cochlear nucleus (DCN) plays a key role in the pathophysiology of tinnitus and is believed to be a tinnitus generator. We hypothesized that high-frequency stimulation (HFS) of the DCN would influence tinnitus-related abnormal neuronal activity within the auditory pathway and hereby suppress tinnitus. To this end, we assessed the effect of HFS of the DCN in a noise-induced rat model of tinnitus. The presence of tinnitus was verified using the gap prepulse inhibition of the acoustic startle response paradigm. Hearing thresholds were determined before and after noise trauma by measuring the auditory brainstem responses. In addition, changes in neuronal activity induced by noise trauma and HFS were assessed using c-Fos immunohistochemistry in related structures. Results showed tinnitus development after noise trauma and hearing loss ipsilateral to the side exposed to noise trauma. During HFS of the DCN, tinnitus was suppressed. There was no change in c-Fos expression within the central auditory pathway after HFS. These findings suggest that DCN-HFS changes patterns of activity and results in information lesioning within the network and hereby blocking the relay of abnormal tinnitus-related neuronal activity.
Collapse
Affiliation(s)
- Gusta van Zwieten
- 1 Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,2 School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Ali Jahanshahi
- 3 Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marlieke L van Erp
- 2 School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Yasin Temel
- 2 School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,3 Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J Stokroos
- 4 Department of Ear Nose Throat/Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcus L F Janssen
- 2 School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,5 Department of Neurophysiology and Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jasper V Smit
- 1 Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,2 School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Xu J, Berret E, Kim JH. Activity-dependent formation and location of voltage-gated sodium channel clusters at a CNS nerve terminal during postnatal development. J Neurophysiol 2016; 117:582-593. [PMID: 27832602 DOI: 10.1152/jn.00617.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/05/2016] [Indexed: 01/18/2023] Open
Abstract
In auditory pathways, the precision of action potential (AP) propagation depends on axon myelination and high densities of voltage-gated Na (Nav) channels clustered at nodes of Ranvier. Changes in Nav channel expression at the heminode, the final node before the nerve terminal, can alter AP invasion into the presynaptic terminal. We studied the activity-dependent formation of Nav channel clusters before and after hearing onset at postnatal day 12 in the rat and mouse auditory brain stem. In rats, the Nav channel cluster at the heminode formed progressively during the second postnatal week, around hearing onset, whereas the Nav channel cluster at the nodes was present before hearing onset. Initiation of heminodal Nav channel clustering was correlated with the expression of scaffolding protein ankyrinG and paranodal protein Caspr. However, in whirler mice with congenital deafness, heminodal Nav channels did not form clusters and maintained broad expression, but Nav channel clustering was normal at the nodes. In addition, a clear difference in the distance from the heminodal Nav channel to the calyx across the mediolateral axis of the medial nucleus of the trapezoid body (MNTB) developed after hearing onset. In the medial MNTB, where neurons respond best to high-frequency sounds, the heminodal Nav channel cluster was located closer to the terminal than in the lateral MNTB, where neurons respond best to low-frequency sounds. Thus sound-mediated neuronal activities are potentially associated with the refinement of the heminode adjacent to the presynaptic terminal in the auditory brain stem. NEW & NOTEWORTHY Clustering of voltage-gated sodium (Nav) channels and their distribution along the axon, specifically at the unmyelinated axon segment next to the nerve terminal, are essential for tuning propagated action potentials. Nav channel clusters near the nerve terminal and their location as a function of neuronal position along the mediolateral axis are controlled by auditory inputs after hearing onset. Thus sound-mediated neuronal activity influences the tonotopic organization of Nav channels at the nerve terminal in the auditory brain stem.
Collapse
Affiliation(s)
- Jie Xu
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Emmanuelle Berret
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Jun Hee Kim
- The Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and .,Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
4
|
Auditory neuroplasticity, hearing loss and cochlear implants. Cell Tissue Res 2014; 361:251-69. [DOI: 10.1007/s00441-014-2004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
5
|
D'Alessandro LM, Harrison RV. Excitatory and inhibitory tonotopic bands in chinchilla inferior colliculus revealed by c-fos immuno-labeling. Hear Res 2014; 316:122-8. [DOI: 10.1016/j.heares.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
|
6
|
Fournier P, Schönwiesner M, Hébert S. Loudness modulation after transient and permanent hearing loss: implications for tinnitus and hyperacusis. Neuroscience 2014; 283:64-77. [PMID: 25135356 DOI: 10.1016/j.neuroscience.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
Loudness is the primary perceptual correlate of sound intensity. The relationship between sound intensity and loudness is not fixed, and can be modified by short-term sound deprivation or stimulation. Deprivation increases sound sensitivity, whereas stimulation decreases it. We review the effects of short-term auditory deprivation and stimulation on the auditory central nervous system of humans and animals, and we extend the discussion to permanent auditory deprivation (hearing loss) and auditory pathologies of loudness perception. Although there is sufficient evidence to conclude that loudness can be modulated in normal hearing listeners by temporary sound deprivation and stimulation, evidence is scanter for the hearing-impaired listeners. In addition, cortical effects of sound deprivation and stimulation in humans, which may correlate with loudness coding, are still largely unknown and should be the target of future research.
Collapse
Affiliation(s)
- P Fournier
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| | - M Schönwiesner
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - S Hébert
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
| |
Collapse
|
7
|
Negandhi J, Harrison AL, Allemang C, Harrison RV. Time course of cochlear injury discharge (excitotoxicity) determined by ABR monitoring of contralateral cochlear events. Hear Res 2014; 315:34-9. [PMID: 24973579 DOI: 10.1016/j.heares.2014.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022]
Abstract
The dynamics of cochlear excitotoxicity can be monitored from effects on the contralateral ear. After unilateral mechanical ablation of the cochlea (in a mouse model) we observed immediate elevations in auditory brainstem evoked response (ABR) thresholds in the contralateral ear. Threshold elevations peaked at 2-3 h post ablation, and returned to baseline levels after 5-6 h. These contralateral effects are initiated by cochlear afferent injury discharges most likely activating the olivocochlear efferent system. Six hours after cochlear injury, ABR thresholds were fully returned to pre-lesion baseline levels and remained normal for up to 10 days of monitoring. We have confirmed that our cochlear ablation procedure increases short-term activity levels in the auditory brainstem and midbrain using c-fos labelling. The study provides insight into the dynamics of glutamate excitotoxicity, a pathological process directly related to acute tinnitus after acoustic trauma, and more generally implicated in many types of brain injury and neuro-degenerative disease.
Collapse
Affiliation(s)
- Jaina Negandhi
- Auditory Science Laboratory, Neuroscience and Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, M5G 1X8 Canada
| | - Adrienne L Harrison
- Auditory Science Laboratory, Neuroscience and Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, M5G 1X8 Canada
| | - Cullen Allemang
- Auditory Science Laboratory, Neuroscience and Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, M5G 1X8 Canada
| | - Robert V Harrison
- Auditory Science Laboratory, Neuroscience and Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, M5G 1X8 Canada; Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children and the University of Toronto, 190 Elizabeth St., Rm 3S-438, R. Fraser Elliott Building, Toronto, M5G 2N2 Canada.
| |
Collapse
|
8
|
Grande G, Negandhi J, Harrison RV, Wang LY. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss. J Physiol 2014; 592:1581-600. [PMID: 24469075 DOI: 10.1113/jphysiol.2013.268839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity and excitability, heterogeneities in the spiking fidelity among the population of both SD and SE synapses showed similar continuums to those in normal hearing mice. Our study suggests that preservations in the heterogeneity in spiking fidelity via synaptic remodelling ensures symmetric functional stability which is probably important for retaining the capability to maximally code sound localization cues despite moderate asymmetries in hearing experience.
Collapse
Affiliation(s)
- Giovanbattista Grande
- Corresponding Author L.-Y. Wang, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | |
Collapse
|
9
|
Takesian AE, Kotak VC, Sharma N, Sanes DH. Hearing loss differentially affects thalamic drive to two cortical interneuron subtypes. J Neurophysiol 2013; 110:999-1008. [PMID: 23719211 PMCID: PMC3742974 DOI: 10.1152/jn.00182.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/26/2013] [Indexed: 11/22/2022] Open
Abstract
Sensory deprivation, such as developmental hearing loss, leads to an adjustment of synaptic and membrane properties throughout the central nervous system. These changes are thought to compensate for diminished sound-evoked activity. This model predicts that compensatory changes should be synergistic with one another along each functional pathway. To test this idea, we examined the excitatory thalamic drive to two types of cortical inhibitory interneurons that display differential effects in response to developmental hearing loss. The inhibitory synapses made by fast-spiking (FS) cells are weakened by hearing loss, whereas those made by low threshold-spiking (LTS) cells remain strong but display greater short-term depression (Takesian et al. 2010). Whole-cell recordings were made from FS or LTS interneurons in a thalamocortical brain slice, and medial geniculate (MG)-evoked postsynaptic potentials were analyzed. Following hearing loss, MG-evoked net excitatory potentials were smaller than normal at FS cells but larger than normal at LTS cells. Furthermore, MG-evoked excitatory potentials displayed less short-term depression at FS cells and greater short-term depression at LTS cells. Thus deprivation-induced adjustments of excitatory synapses onto inhibitory interneurons are cell-type specific and parallel the changes made by the inhibitory afferents.
Collapse
Affiliation(s)
- Anne E Takesian
- Center for Neural Science, New York University, New York, New York, USA.
| | | | | | | |
Collapse
|
10
|
Kotak VC, Takesian AE, MacKenzie PC, Sanes DH. Rescue of inhibitory synapse strength following developmental hearing loss. PLoS One 2013; 8:e53438. [PMID: 23326429 PMCID: PMC3543446 DOI: 10.1371/journal.pone.0053438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022] Open
Abstract
Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABAA receptor a1 subunit specific agonist (zolpidem), or a selective GABA reuptake inhibitor (SGRI), rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABAB receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABAA receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | | | | | |
Collapse
|