1
|
Unlu MD, Asci H, Yusuf Tepebasi M, Arlioglu M, Huseynov I, Ozmen O, Sezer S, Demirci S. The ameliorative effects of cannabidiol on methotrexate-induced neuroinflammation and neuronal apoptosis via inhibiting endoplasmic reticulum and mitochondrial stress. J Biochem Mol Toxicol 2024; 38:e23571. [PMID: 37927177 DOI: 10.1002/jbt.23571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Methotrexate (MTX) is an antineoplastic agent and has neurotoxic effects. It exerts its toxic effect on the brain by triggering inflammation and apoptosis. Cannabidiol (CBD) is an agent known for its antioxidant, anti-inflammatory effects in various tissues. The aim of this study is to examine the protective effects of CBD treatment in various brain structures from MTX damage and to evaluate the effect of intracellular pathways involved in apoptosis. Thirty-two adult Wistar Albino female rats were divided into four groups as control, MTX (20 mg/kg intraperitoneally [i.p.]), MTX + CBD (0.1 mL of 5 mg/kg i.p.), and CBD (for 7 days, i.p.). At the end of the experiment, brain tissues collected for biochemical analyses as total oxidant status (TOS), total antioxidant status, oxidative stress index (OSI), histopathological and immunohistochemical analyses as tumor necrosis factor-α (TNF-α), serotonin, mammalian target of rapamycin (mTOR) staining, genetic analyses as caspase-9 (Cas-9), caspase-12 (Cas-12), C/EBP homologous protein (CHOP), and cytochrome-c (Cyt-c) gene expressions. In the histopathological and immunohistochemical evaluation, hyperemia, microhemorrhage, neuronal loss, and significant decreasing expressions of seratonin were observed in the cortex, hippocampus, and cerebellum regions in the MTX group. mTOR, TNF-α, Cas-9, Cas-12, CHOP, and Cyt-c expressions with TOS and OSI levels were increased in the cortex. It was observed that these findings were reversed after CBD application in all regions. MTX triggers neuronal apoptosis via endoplasmic reticulum and mitochondrial stress while destroying serotonergic neurons. The reversal of the pathological changes with CBD treatment proves that it has anti-inflammatory and antiapoptotic activity in brain.
Collapse
Affiliation(s)
- Melike D Unlu
- Department of Neurology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - M Yusuf Tepebasi
- Department of Genetic, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Melih Arlioglu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ibrahim Huseynov
- Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Serdar Sezer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Department of Pharmacology, Natural Products Application and Research Center (SUDUM), Suleyman Demirel University, Isparta, Turkey
| | - Serpil Demirci
- Department of Neurology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Yao M, Li G, Zhou LY, Zheng Z, Sun YL, Liu SF, Wang YJ, Cui XJ. Shikonin inhibits neuronal apoptosis via regulating endoplasmic reticulum stress in the rat model of double-level chronic cervical cord compression. Cell Biol Toxicol 2023; 39:907-928. [PMID: 35028790 DOI: 10.1007/s10565-021-09648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.
Collapse
Affiliation(s)
- Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China
| | - Zhong Zheng
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Feng Y, Lang J, Sun B, Yan Z, Zhao Z, Sun G. Atorvastatin prevents endoplasmic reticulum stress-mediated apoptosis via the Nrf2/HO-1 signaling pathway in TBI mice. Neurol Res 2023; 45:590-602. [PMID: 36681943 DOI: 10.1080/01616412.2023.2170905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Our present study evaluated the neuroprotection effects of atorvastatin by inhibiting TBI-induced ER stress, as well as the potential role of the Nrf2/HO-1 pathway in experimental TBI. METHODS First, the mice were divided into four groups:sham, TBI, TBI+Vehicle and TBI+atorvastatin groups. The mice received atorvastatin (10 mg/kg/day) through intragastric gavage once a day for 3 days before TBI. In addition, Nrf2 WT and Nrf2 knockout mice were randomly divided into four groups: Nrf2+/+ TBI, Nrf2+/+ TBI+atorvastatin, Nrf2-/- TBI, and Nrf2-/- TBI+atorvastatin groups. Several neurobehavioral parameters were assessed post-TBI using mNSS, brain edema and the rotarod test, and the brain was isolated for molecular and biochemical analysis conducted through TUNEL staining and western blotting. . RESULTS The results showed that atorvastatin treatment significantly improved neurological deficits, alleviated brain edema, and apoptosis caused by TBI. Western blotting analysis showed that atorvastatin significantly suppressed ER stress and its related apoptotic pathway after TBI, which may be associated with the further activation of the Nrf2/HO-1 pathway. However, compared with the Nrf2+/+ TBI+Vehicle group, Nrf2 deficiency further aggravated neurological deficits and promoted ER stress-mediated apoptosis induced by TBI. Interestingly, atorvastatin failed to improve neurological deficits but reversed apoptosis, and the loss of the beneficial properties of anti-ER stress in the Nrf2-/- TBI mice. . CONCLUSIONS The results indicated that atorvastatin improves the neurologic functions and protects the brain from injury in the Nrf2+/+ TBI mice, primarily by counteracting ER stress-mediated apoptosis, which may be achieved through the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China
| |
Collapse
|
5
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
6
|
Gao H, Lei X, Ye S, Ye T, Hua R, Wang G, Song H, Zhou P, Wang Y, Cai B. Genistein attenuates memory impairment in Alzheimer's disease via ERS-mediated apoptotic pathway in vivo and in vitro. J Nutr Biochem 2022; 109:109118. [PMID: 35933022 DOI: 10.1016/j.jnutbio.2022.109118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/04/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Genistein (GS), an isoflavone compound found in soybean, plays a neuroprotective role in Alzheimer's disease (AD). However, the mechanism of its action remains unclear. Herein, binding ability between GS and GRP78 was predicted by molecular docking, and the effect of GS in vivo and vitro were further studied. In this study, the effects of GS on learning and memory ability, changes of hippocampal neurons and ultrastructure of hippocampal CA3 region in AD rats were investigated. Besides, the protein or mRNA levels of the related proteins were detected. The results showed GS could effectively improve the learning and the memory ability, reduce the damage of hippocampal neurons, and decrease the protein or mRNA expression levels of GRP78, CHOP, Caspase-12, Cle-Caspase-9, Cle-Caspase-3, PERK, and p-PERK. Taken together, our data reveal GS has a neuroprotective effect by inhibiting the ERS-mediated apoptotic pathway, which may be a new therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Huawu Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Lei
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rupeng Hua
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guoquan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
7
|
Wang Y, Liu Z, Wei J, Di L, Wang S, Wu T, Li N. Norlignans and phenolics from genus Curculigo protect corticosterone-injured neuroblastoma cells SH-SY5Y by inhibiting endoplasmic reticulum stress-mitochondria pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115430. [PMID: 35659626 DOI: 10.1016/j.jep.2022.115430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of genus Curculigo are divided into the Section Curculigo and the Section Capitulata, which are mainly distributed in southeastern and southwestern China. Various ancient chinese books record that these plants were used as an important herb for tonifying kidney yang. Traditional Chinese medicine often draws on this property to treat depression syndrome. Thus genus Curculigo has potential for the treatment of neurodegenerative diseases (ND). The study showed that phenolics were the main characteristic components of plants in the Section Curculigo, represented by orcinol glucoside and curculigoside; the norlignans, with Ph-C5-Ph as the basic backbone, were the main characteristic components of the Section Capitulata. However, there is a lack of sufficient scientific evidence as to whether these two types of ingredients have neuroprotective effects. AIM OF THE STUDY To determine the neuroprotective effects of phenolics and norlignans in genus Curculigo on human neuroblastoma cells SH-SY5Y. To discuss their structure-activity relationship and screen for compounds with high activity and neuroprotective effects. To reveal that the amelioration of endoplasmic reticulum (ER) stress by two classes of compounds is mediated by the PERK/eIF2α/ATF4 pathway. MATERIALS AND METHODS The cytotoxicity of 17 compounds was assayed by MTT. SH-SY5Y cells were damaged by corticosterone (Cort) (200 μM) for 24 h and then co-administered with 17 compounds (0.1-100 μM) and Cort (200 μM) for 24 h. Cell survival was determined by MTT assay. Apoptosis rate, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) levels were detected using flow cytometry. Intracellular Ca2+ levels were detected using a fluorescent probe. Cellular mitochondrial and ER damage was observed using transmission electron microscopy (TEM). ER stress and apoptotic pathway-related proteins (BiP, CHOP, cleaved caspase-3, cleaved caspase-9, Bax/Bcl-2), and the expression level of PERK/eIF2α/ATF4 pathway was measured via western blot (WB). RESULTS The experimental data showed that Cort treatment of SH-SY5Y cells resulted in decreased cell survival and increased apoptosis, mitochondrial depolarization, ROS, and intracellular Ca2+ levels. The co-action of 17 compounds and Cort for a period of time significantly increased cell survival. Compounds 3, 7, 12, 13 also reduced apoptosis rate, mitochondrial depolarization, ROS and intracellular Ca2+ levels in the subsequent experiments. In addition, TEM observed that Cort caused mitochondrial and ER damage, and the damage was improved after treatment. WB analysis obtained that Cort increased the expression of apoptotic and ER stress-related proteins and activated pathway expression. However, in the presence of compounds 3, 7, 12, 13, the expression of BiP, CHOP, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 was significantly reduced, and the phosphorylation of PERK and eIF2α and the expression of ATF4 were inhibited. CONCLUSION This study found that one phenolic (3) and three norlignans (7, 12, 13) from genus Curculigo have significant neuroprotective effects. The results of the structure-activity relationship indicated that the glucosyl polymeric norlignans and the phenolics with benzoic acid as the parent nucleus were more active. The neuroprotective effect of three norlignans is the latest discovery. This finding has important research value in the field of prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Zhenzhen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Juanru Wei
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Lei Di
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Tingni Wu
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
9
|
Yan Z, Lai M, Jia Y, Deng C, Zhuo Y. CircXPO5 Plays a Neuroprotective Function in the Lateral Geniculate Nucleus of Glaucoma by Regulating GRIN2A. Brain Sci 2022; 12:780. [PMID: 35741665 PMCID: PMC9221081 DOI: 10.3390/brainsci12060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Previous studies have found the neurodegeneration and atrophy of glaucomatous lateral geniculate nucleus (LGN), but the mechanism is still unknown. Circular RNA (circRNA) plays some important roles in physiological and pathological progression of the disease. In this study, we focused on the differentially expressed circRNAs and the mechanism for circXPO5 in LGN degeneration in a macaque glaucoma model. METHODS Using RNA-seq, we analyzed the differentially expressed circRNAs in a macaque glaucoma model. An RT-QPCR was used to check the expression of selected differentially expressed circRNAs, candidate miRNAs and mRNAs. A competing endogenous RNA (ceRNA) network analysis was performed to examine the mechanism of circXPO5 action. RESULTS circXPO5 significantly decreased in the glaucoma model and a ceRNA network analysis revealed that circXPO5 can bind to miR-330-5p, which also binds to GRIN2A (ionotropic receptor NMDA type subunit 2A). QPCR detection showed a decrease in GRIN2A and an increase in miR-330-5p. CONCLUSIONS Our earlier studies revealed that the GRIN2A gene regulates the calcium signal pathway. Decreasing of GRIN2A related with neuron apoptosis and neurodegeneration. These findings indicate that the reduction in circXPO5 may have a protective effect on neuronal apoptosis in the visual central system of glaucoma.
Collapse
Affiliation(s)
- Zhichao Yan
- Department of Glaucoma and Neuro-Ophthalmology, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, School of Optometry, Shenzhen University, Shenzhen 518040, China;
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Mingying Lai
- Department of Glaucoma and Neuro-Ophthalmology, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, School of Optometry, Shenzhen University, Shenzhen 518040, China;
| | - Yu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.J.); (C.D.)
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.J.); (C.D.)
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Y.J.); (C.D.)
| |
Collapse
|
10
|
Lai MC, Liu WY, Liou SS, Liu IM. Diosmetin Targeted at Peroxisome Proliferator-Activated Receptor Gamma Alleviates Advanced Glycation End Products Induced Neuronal Injury. Nutrients 2022; 14:nu14112248. [PMID: 35684047 PMCID: PMC9183070 DOI: 10.3390/nu14112248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to evaluate the role of diosmetin in alleviating advanced glycation end products (AGEs)-induced Alzheimer’s disease (AD)-like pathology and to clarify the action mechanisms. Before stimulation with AGEs (200 μg/mL), SH-SY5Y cells were treated with diosmetin (10 μmol/L), increasing cell viability. The induction of AGEs on the reactive oxygen species overproduction and downregulation of antioxidant enzyme activities, including superoxide dismutase, glutathione peroxidase, and catalase, were ameliorated by diosmetin. Amyloid precursor protein upregulation, accompanied by increased production of amyloid-β, caused by AGEs, was reversed by diosmetin. In the presence of diosmetin, not only β-site amyloid precursor protein cleaving enzyme1 expression was lowered, but the protein levels of insulin-degrading enzyme and neprilysin were elevated. Diosmetin protects SH-SY5Y cells from endoplasmic reticulum (ER) stress response to AGEs by suppressing ER stress-induced glucose regulated protein 78, thereby downregulating protein kinase R-like endoplasmic reticulum kinase, eukaryotic initiation factor 2 α, activating transcription factor 4, and C/EBP homologous protein. Diosmetin-pretreated cells had a lower degree of apoptotic DNA fragmentation; this effect may be associated with B-cell lymphoma (Bcl) 2 protein upregulation, Bcl-2-associated X protein downregulation, and decreased activities of caspase-12/-9/-3. The reversion of diosmetin on the AGEs-induced harmful effects was similar to that produced by pioglitazone. The peroxisome proliferator-activated receptor (PPAR)γ antagonist T0070907 (5 μmol/L) abolished the beneficial effects of diosmetin on AGEs-treated SH-SY5Y cells, indicating the involvement of PPARγ. We conclude that diosmetin protects neuroblastoma cells against AGEs-induced ER injury via multiple mechanisms and may be a potential option for AD.
Collapse
Affiliation(s)
- Mei Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan;
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan; (M.C.L.); (S.-S.L.)
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
11
|
GPx8 regulates apoptosis and autophagy in esophageal squamous cell carcinoma through the IRE1/JNK pathway. Cell Signal 2022; 93:110307. [DOI: 10.1016/j.cellsig.2022.110307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022]
|
12
|
Lai MC, Liu WY, Liou SS, Liu IM. The Citrus Flavonoid Hesperetin Encounters Diabetes-Mediated Alzheimer-Type Neuropathologic Changes through Relieving Advanced Glycation End-Products Inducing Endoplasmic Reticulum Stress. Nutrients 2022; 14:nu14040745. [PMID: 35215394 PMCID: PMC8874695 DOI: 10.3390/nu14040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 01/24/2023] Open
Abstract
The present study investigates whether hesperetin, a citrus flavonoid, can encounter advanced glycation end-product (AGE)-induced Alzheimer’s disease-like pathophysiological changes with the underlying mechanisms. SH-SY5Y cells pretreated with hesperetin before stimulation with AGEs (200 μg/mL) were assessed in the following experiments. Hesperetin (40 μmol/L) elevated the reduced cell viability induced by AGEs. Hesperetin ameliorated reactive oxygen species overproduction and the downregulation of superoxide dismutase, glutathione peroxidase, and catalase, triggered by AGEs. Amyloid precursor protein upregulation, accompanied by the increased production of Aβ, caused by AGEs, was reversed by hesperetin. However, hesperetin lowered β-site APP-cleaving enzyme 1 expression, inducing insulin-degrading and neprilysin expression. In addition, hesperetin downregulated the expressions of the AGEs-induced endoplasmic reticulum (ER) stress proteins, including 78-kDa glucose-regulated protein and C/EBP homologous protein, and lowered the phosphorylation of protein kinase R-like ER kinase and activating transcription factor 4. Hesperetin-pretreated cells had a minor apoptotic DNA fragmentation. Hesperetin is able to upregulate Bcl-2 protein expression, downregulate Bax expression, and decrease caspase-12/-9/-3 activity as well, indicating that it inhibits ER stress-mediated neuronal apoptosis. There is a similar effect between hesperetin and positive rosiglitazone control against Aβ aggravation of SH-SY5Y cell injury induced by AGEs. Thus, hesperetin might be a potential agent for treating glycation-induced Aβ neurotoxicity.
Collapse
Affiliation(s)
- Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.-C.L.); (S.-S.L.)
| | - Wayne-Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung City 41265, Taiwan;
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.-C.L.); (S.-S.L.)
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.-C.L.); (S.-S.L.)
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
13
|
Liu C, Zeng Y, Wen Y, Huang X, Liu Y. Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:806148. [PMID: 35173617 PMCID: PMC8841338 DOI: 10.3389/fphar.2022.806148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinggui Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
14
|
Song P, Huang H, Ma Y, Wu C, Yang X, Choi HY. Davidone C Induces the Death of Hepatocellular Carcinoma Cells by Promoting Apoptosis and Autophagy. Molecules 2021; 26:molecules26175219. [PMID: 34500653 PMCID: PMC8434093 DOI: 10.3390/molecules26175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Davidone C is a newly discovered flavonoid compound purified from the ethyl acetate-soluble fraction of Sophora davidii (Franch.) Skeels. This study explored the anti-tumor activity of davidone C on hepatocellular carcinoma HepG2 and Bel-7402 cells and its mechanism through MTT method, morphological observation, flow cytometry and Western blotting. The results showed that davidone C significantly inhibited the proliferation of HepG2 and Bel-7402 cells in a time- and dose-dependent manner. The morphological changes of apoptotic cells can be observed under an inverted microscope, such as cell floating, chromosome condensation, apoptotic bodies, and other phenomena. The expressions of Bax, cleaved caspase-9, cleaved caspase-3 and cleaved PARP increased with the increase of dosage while Bcl-2 decreased, suggesting that the apoptotic mechanism might be related to the mitochondrial apoptotic pathway. Moreover, davidone C administration can down-regulate the expression of Grp78, and simultaneously up-regulate the expression of caspase-7 and caspase-12, indicating that the apoptotic mechanism might be related to the ERS pathway. In addition, davidone C can down-regulate the expression of p62, and simultaneously up-regulate the expression of LC3-I and LC3-II with a quantitative dependence, suggesting that the mechanism of apoptosis may be related to the autophagy signal pathway. All these results showed davidone C has potential effects on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Song
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, China;
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (H.H.); (Y.M.); (C.W.)
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| | - Ho-Young Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (X.Y.); (H.-Y.C.); Tel.: +86-27-6784-1196 (X.Y.); +82-2-9619372 (H.-Y.C.)
| |
Collapse
|
15
|
Shi H, Yu Y, Wang Y, Liu X, Yu Y, Li M, Zou Y, Chen R, Ge J. Inhibition of Calpain Alleviates Apoptosis in Coxsackievirus B3-induced Acute Virus Myocarditis Through Suppressing Endoplasmic Reticulum Stress. Int Heart J 2021; 62:900-909. [PMID: 34234076 DOI: 10.1536/ihj.20-803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virus myocarditis (VMC) is a common cardiovascular disease and a major cause of sudden death in young adults. However, there is still a lack of effective treatments. Our previous studies found that calpain activation was involved in VMC pathogenesis. This study aims to explore the underlying mechanisms further. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin (Tg-CAST), the endogenous calpain inhibitor, were used to establish VMC model. Hematoxylin and eosin and Masson staining revealed inflammatory cell infiltration and fibrosis. An ELISA array detected myocardial injury. Cardiac function was measured using echocardiography. CVB3 replication was assessed by capsid protein VP1. Apoptosis was measured by TUNEL staining, flow cytometry, and western blot. The endoplasmic reticulum (ER) stress-related proteins were detected by western blot. Our data showed that CVB3 infection resulted in cardiac injury, as evidenced by increased inflammatory responses and fibrosis, which induced myocardial apoptosis. Inhibiting calpain, both by PD150606 and calpastatin overexpression, could attenuate these effects. Furthermore, ER stress was activated during CVB3 infection. However, calpain inhibition could downregulate some ER stress-associated protein levels such as GRP78, pancreatic ER kinase-like ER kinase (PERK), and inositol-requiring enzyme-1α (IRE-1α), and ER stress-related apoptotic factors, during CVB3 infection. In conclusion, calpain inhibition attenuated CVB3-induced myocarditis by suppressing ER stress, thereby inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Xiaoxiao Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
16
|
Jing GC, Liu D, Liu YQ, Zhang MR. Nao-Fu-Cong ameliorates diabetic cognitive dysfunction by inhibition of JNK/CHOP/Bcl2-mediated apoptosis in vivo and in vitro. Chin J Nat Med 2021; 18:704-713. [PMID: 32928514 DOI: 10.1016/s1875-5364(20)60009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/18/2022]
Abstract
Chinese herbal compound Nao-Fu-Cong (NFC) has been mainly used to treat cognitive disorders in Traditional Chinese Medicine (TCM). The present study aimed to investigate whether its neuroprotective effects might be related to the inhibition of JNK/CHOP/Bcl2-mediated apoptosis pathway or not. We randomly assigned STZ (60 mg·kg-1)-induced diabetic rats into control group, diabetic model group and NFC groups (low-dose, medium-dose and high-dose). The primary culture of hippocampal neurons were transferred into different culture media on the third day. The cells were then divided into control group, high-glucose group, NFC (low-dose, medium-dose and high-dose) groups, CHOP si-RNA intervention group, JNK pathway inhibitor SP600125 group and oxidative stress inhibitor N-acetylcysteine (NAC) group. NFC significantly improved the cognitive function of diabetic rats, and had neuroprotective effect on hippocampal neurons cultured in high glucose. Further research results showed that NFC could reduce the apoptosis of hippocampal neurons in rats with diabetic cognitive dysfunction. NFC had inhibitory effects on CHOP/JNK apoptosis pathway induced by high glucose, and also decreased the levels of ROS and increased the mitochondrial membrane potential. These suggested that the neuroprotective effect of NFC might be related to the inhibition of CHOP and JNK apoptotic signaling pathways, and the cross pathway between oxidative stress and mitochondrial damage pathway.
Collapse
Affiliation(s)
- Guang-Chan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yu-Qin Liu
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meng-Ren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
17
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
18
|
Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Boost. Cells 2021; 10:cells10020370. [PMID: 33578870 PMCID: PMC7916582 DOI: 10.3390/cells10020370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Postmitotic cells, like neurons, must live through a lifetime. For this reason, organisms/cells have evolved with self-repair mechanisms that allow them to have a long life. The discovery workflow of neuroprotectors during the last years has focused on blocking the pathophysiological mechanisms that lead to neuronal loss in neurodegeneration. Unfortunately, only a few strategies from these studies were able to slow down or prevent neurodegeneration. There is compelling evidence demonstrating that endorsing the self-healing mechanisms that organisms/cells endogenously have, commonly referred to as cellular resilience, can arm neurons and promote their self-healing. Although enhancing these mechanisms has not yet received sufficient attention, these pathways open up new therapeutic avenues to prevent neuronal death and ameliorate neurodegeneration. Here, we highlight the main endogenous mechanisms of protection and describe their role in promoting neuron survival during neurodegeneration.
Collapse
Affiliation(s)
- Sara Marmolejo-Martínez-Artesero
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - Caty Casas
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - David Romeo-Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Laboratory “Hormonal Regulation of Brain Development and Functions”—Team 8, Institut Necker Enfants-Malades (INEM), INSERM U1151, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
- Correspondence: ; Tel.: +33-01-40-61-53-57
| |
Collapse
|
19
|
Sukprasansap M, Chanvorachote P, Tencomnao T. Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells. BMC Complement Med Ther 2020; 20:46. [PMID: 32046712 PMCID: PMC7076852 DOI: 10.1186/s12906-020-2819-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cyanidin-3-glucoside (C3G), a major anthocyanin present in berries, exhibits a strong antioxidant and has been shown to possess a neuroprotection. Prolonged exposure to glutamate will lead to oxidative damage and endoplasmic reticulum stress which could play a key detrimental role in the development of neurodegenerative disorders (NDs). In the present study, we investigated the neuroprotective effect and underlying mechanisms of C3G on the reduction of oxidative/ER stress-induced apoptosis by glutamate in HT22 mouse hippocampal neuronal cells. METHOD Cells were pre-treated with C3G in various concentrations, followed by glutamate. Cell viability and toxicity were examined using MTT and LDH assays. The apoptotic and necrotic cell death were carried out by Annexin V-FITC/propidium iodide co-staining assays. Generation of intracellular reactive oxygen species (ROS) in cells was measured by flow cytometry using DCFH-DA probe. Expression of antioxidant genes was evaluated by Real-time polymerase chain reaction analysis. The possible signaling pathways and proteins involved were subsequently demonstrated by Western blot analysis. RESULT The pretreatment of the HT22 cells with C3G protected cell death from oxidative toxicity induced by glutamate. We demonstrated that treatment cells with glutamate caused several radical forms of ROS formation, and they were abolished by specific ROS inhibitors. Interestingly, C3G directly scavenged radical activity and inhibited intracellular ROS generation in our cell-based system. In addition, C3G pretreatment suppressed the up-regulation of specific ER proteins namely calpain, caspase-12 and C/EBP homologous proteins (CHOP) induced by glutamate-mediated oxidative and ER stress signal by up-regulating the expressions of survival proteins, including extracellular regulated protein kinase (ERK) and nuclear factor E2-related factor 2 (Nrf2). Furthermore, dramatically activated gene expression of endogenous antioxidant enzymes (i.e. superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPx)), and phase II enzymes (glutathione-S-transferases (GSTs)) was found in C3G-treated with cells. CONCLUSIONS Our finding suggest that C3G could be a promising neuroprotectant via inhibition of glutamate-induced oxidative and ER stress signal and activation of ERK/Nrf2 antioxidant mechanism pathways.
Collapse
Affiliation(s)
- Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya campus, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170 Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
20
|
Wu Q, Zhang H, Nie H, Zeng Z. Anti‑Nogo‑A antibody promotes brain function recovery after cardiopulmonary resuscitation in rats by reducing apoptosis. Mol Med Rep 2019; 21:77-88. [PMID: 31746353 PMCID: PMC6896331 DOI: 10.3892/mmr.2019.10825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/08/2019] [Indexed: 02/05/2023] Open
Abstract
Brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is the main cause of neurological dysfunction and death in cardiac arrest. To assess the effect of Nogo-A antibody on brain function in rats following CPR and to explore the underlying mechanisms, CA/CPR (ventricular fibrillation) rats were divided into the CPR+Nogo-A, CPR+saline and sham groups. Hippocampal caspase-3 levels were detected by RT-PCR and immunoblotting. Next, Nogo-A, glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), cysteinyl aspartate specific proteinase-12 (casapse-12), Bcl-2 and Bax protein levels in the hippocampus were detected by immunoblotting. Coronal brain sections were analyzed by TUNEL assay to detect apoptosis at 72 h, while Nissl staining and electron microscopy were performed to detect Nissl bodies and microstructure at 24 h, respectively. Finally, rats were assessed for neurologic deficits at various times. Nissl staining revealed morphological improvement after Nogo-A antibody treatment. Sub-organelle structure was preserved as assessed by electron microscopy in model animals post-antibody treatment; neurological function was improved as well (P<0.05), while the apoptosis index was decreased (26.2±9.85 vs. 46.6±12.95%; P<0.05). Hippocampal caspase-3 mRNA and protein, Nogo-A protein levels were significantly decreased after antibody treatment (P<0.05). Hippocampal Nogo-A expression was positively correlated with caspase-3 (Pearson's correlation; r=0.790, P=0.000). Hippocampal GRP78 and Bcl-2 protein levels were higher after antibody treatment than these levels noted in the model animals (P<0.05), while CHOP, caspase-12 and Bax levels were reduced (P<0.05). Nogo-A antibody ameliorates neurological function after restoration of spontaneous circulation (ROSC), possibly by suppressing apoptosis induced by endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qinqin Wu
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Haihong Zhang
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Hu Nie
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Zeng
- Emergency Department, West China Hospital, Sichuan University, Wuhou, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Li YH, Zhang WL, Zhou HY, Yu DW, Sun XN, Hu Q. Halofuginone protects against advanced glycation end products‑induced injury of H9C2 cells via alleviating endoplasmic reticulum stress‑associated apoptosis and inducing autophagy. Mol Med Rep 2019; 20:3131-3139. [PMID: 31432112 PMCID: PMC6755159 DOI: 10.3892/mmr.2019.10554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/22/2018] [Indexed: 01/07/2023] Open
Abstract
Advanced glycation end products (AGEs) have been reported to serve an important role in the stiffening of cardiac tissues and myocardial cell injury. Serious myocardial cell injury can result in various heart diseases with high mortality. Halofuginone (HF), which possesses marked anti-inflammatory and antifibrotic effects, has recently been applied to inhibit the effects of cardiac stress. The present study aimed to investigate the potential effects of HF and its underlying mechanism in the treatment of AGEs-induced H9C2 cardiomyocyte damage. The western blot results of the present study demonstrated that HF may reduce the expression levels of myocardial injury markers, including myoglobin, creatine kinase MB and cardiac troponin I. In addition, flow cytometric analysis indicated that the production of reactive oxygen species (ROS) was significantly decreased by HF. Additionally, endoplasmic reticulum (ER) stress was suppressed in response to treatment with HF, as observed by low expression levels of ER stress-associated proapoptotic proteins (CCAAT/enhancer-binding protein homologous protein and cleaved caspase-12); overexpression of prosurvival proteins (growth arrest and DNA damage-inducible protein GADD34 and binding immunoglobulin protein) was also reported. Furthermore, the expression levels of microtubule-associated proteins 1A/1B light chain 3B (LC3)II/LC3I and Beclin 1 were elevated, whereas P62 expression levels were reduced following treatment with HF. These findings, together with immunofluorescence staining of LC3, indicated that HF may induce autophagy. Finally, the protective effects of HF on AGEs-treated H9C2 cells were reversed following treatment with the inhibitor 3-methyladenine, as indicated by inhibition of autophagy, and increases in apoptosis, ROS production and the ER stress response. Collectively, the findings of the present study suggested that the protective effects of HF against AGEs-induced myocardial cell injury may be associated with the induction of autophagy and amelioration of ROS-mediated ER stress and apoptosis. These findings may contribute to the development of a novel therapeutic method to inhibit the progression of myocardial cell injury.
Collapse
Affiliation(s)
- Yu-Hui Li
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei-Li Zhang
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Hao-Ying Zhou
- Department of Thoracic Surgery, People's Hospital of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Da-Wei Yu
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Xiao-Ning Sun
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Qin Hu
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with increased brain apoptosis. Pediatr Res 2019; 85:105-112. [PMID: 30420709 DOI: 10.1038/s41390-018-0230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts cell death in the brain with implications for neurodevelopmental adversity. METHODS Guinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Fetuses were necropsied near term and brain tissues processed for necrosis (H&E), apoptosis (TUNEL), and pro- (Bax) and anti- (Bcl-2 and Grp78) apoptotic protein immunoreactivity. RESULTS FGR-MNR fetal and brain weights were decreased 38% and 12%, respectively, indicating brain sparing but with brains still smaller. While necrosis remained unchanged, apoptosis was increased in the white matter and hippocampus in the FGR brains, and control and FGR-related apoptosis were increased in males for most brain areas. Bax was increased in the CA4 and Bcl-2 was decreased in the dentate gyrus in the FGR brains supporting a role in the increased apoptosis, while Grp78 was increased in the FGR females, possibly contributing to the sex-related differences. CONCLUSIONS MNR-induced FGR results in increased brain apoptosis with regional and sex-related differences that may contribute to the reduction in brain area size reported clinically and increased risk in FGR males for later neurodevelopmental adversity.
Collapse
|
23
|
Kim SH, Cho SN, Lim YJ, Choi JA, Lee J, Go D, Song CH. Phagocytosis influences the intracellular survival of Mycobacterium smegmatis via the endoplasmic reticulum stress response. Cell Biosci 2018; 8:52. [PMID: 30288253 PMCID: PMC6162933 DOI: 10.1186/s13578-018-0250-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Mycobacterium smegmatis, a rapidly growing non-tuberculosis mycobacterium, is a good model for studying the pathogenesis of tuberculosis because of its genetic similarity to Mycobacterium tuberculosis (Mtb). Macrophages remove mycobacteria during an infection. Macrophage apoptosis is a host defense mechanism against intracellular bacteria. We have reported that endoplasmic reticulum (ER) stress is an important host defense mechanism against Mtb infection. Results In this study, we found that M. smegmatis induced strong ER stress. M. smegmatis-induced reactive oxygen species (ROS) play a critical role in the induction of ER stress-mediated apoptosis. Pretreatment with an ROS scavenger suppressed M. smegmatis-induced ER stress. Elimination of ROS decreased the ER stress response and significantly increased the intracellular survival of M. smegmatis. Interestingly, inhibition of phagocytosis significantly decreased ROS synthesis, ER stress response induction, and cytokine production. Conclusions Phagocytosis of M. smegmatis induces ROS production, leading to production of proinflammatory cytokines. Phagocytosis-induced ROS is associated with the M. smegmatis-mediated ER stress response in macrophages. Therefore, phagocytosis plays a critical role in the induction of ER stress-mediated apoptosis during mycobacterial infection.
Collapse
Affiliation(s)
- Seon-Hwa Kim
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Soo-Na Cho
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Yun-Ji Lim
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Ji-Ae Choi
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Junghwan Lee
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Dam Go
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea
| | - Chang-Hwa Song
- 1Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,2Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 South Korea.,3Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
| |
Collapse
|
24
|
Bian H, Song X, Li N, Man H, Xiao Y. Quantitatively monitoring oxygen variation in endoplasmic reticulum with a fluorophore–phosphor energy transfer cassette. J Mater Chem B 2018; 6:1699-1705. [DOI: 10.1039/c7tb03279j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
EET cassette Ir-Np-OH has been constructed by connecting an Ir(iii) complex as acceptor to a naphthalimide dye as donor.
Collapse
Affiliation(s)
- Hui Bian
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xinbo Song
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Ning Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Huizi Man
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
25
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
26
|
Xue Q, Li C, Chen J, Guo H, Li D, Wu X. The Protective effect of the endoplasmic reticulum stress-related factors BiP/GRP78 and CHOP/Gadd153 on noise-induced hearing loss in guinea pigs. Noise Health 2017; 18:247-255. [PMID: 27762253 PMCID: PMC5187652 DOI: 10.4103/1463-1741.192481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Context: The audiological features and cochlear morphology of individuals with noise-induced hearing loss (NIHL) are well characterized. However, the molecular processes in the cochlea are not well understood. Aims: To explore the role of the endoplasmic reticulum stress (ERS) response in the guinea pig model of cochlear damage induced by exposure to intense noise. Settings and Design: A pilot case–control study. Subjects and Methods: Forty-eight guinea pigs were divided into four equal groups. At 1, 4, or 14 days (d) post-exposure, the auditory brainstem responses (ABRs) were tested before sacrificing the subjects. The expression levels of the binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78) and C/EBP-homologous protein/growth arrest and DNA damage-inducible gene 153 (CHOP/Gadd153) proteins were evaluated using immunohistochemistry and Western blotting. The number of cochlear hair cells with altered nuclei was counted using confocal fluorescence microscopy. Statistical analysis used: One-way analysis of variance (ANOVA) and the least squares difference (LSD) test. Results: The outer hair cells (OHCs) showed changes of apoptosis, necrosis, and loss after noise exposure. In the 1- and 4-d groups, more apoptotic cells were found than necrotic cells (P < 0.01). The level of BiP/GRP78 was significantly higher in all three experimental groups compared to the control group (P < 0.01). The level of CHOP/Gadd153 was increased at 1 d post-exposure, achieving a peak that was maintained until 4 d, after which it returned to baseline levels by 14 d post-exposure. Conclusions: ERS response was activated by inducing the expression of BiP/GRP78 to lessen the extent of the resulting cellular damage and activating the CHOP/Gadd153 pathway to eliminate the most severely damaged cells.
Collapse
Affiliation(s)
- Qiuhong Xue
- Department of Otorhinolaryngology, Tianyou Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caihong Li
- Department of Otorhinolaryngology, Head and Neck Surgery of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jia Chen
- Department of Otorhinolaryngology, Tianyou Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Guo
- Department of Otorhinolaryngology, Tianyou Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Dongqing Li
- Department of Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xianglei Wu
- Department of Otorhinolaryngology, Head and Neck Surgery of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China; Laboratory of Immunology, Faculty of Medicine, University of Lorraine, Vandoeuvre-Les-Nancy, Nancy, France
| |
Collapse
|
27
|
Endoplasmic reticulum stress-mediated membrane expression of CRT/ERp57 induces immunogenic apoptosis in drug-resistant endometrial cancer cells. Oncotarget 2017; 8:58754-58764. [PMID: 28938593 PMCID: PMC5601689 DOI: 10.18632/oncotarget.17678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the role of endoplasmic reticulum (ER) stress-mediated CRT/ERp57 complex expression underlying the mechanism of resistance to doxorubicin (DOX) in endometrial carcinoma (EC) in vivo and in vitro. METHODS The expression of CRT, ERp57, p-PERK, eIF2α, p-eIF2α in EC patients and EC cells was detected by Western blots and by immunofluorescence assay. MTT assay was used to determine the LC50 of EC cells to DOX and cell viability. Apoptosis was assayed using flow cytometer. The protein expression of PERK, cleaved-caspase-8, p-eIF2α and CHOP were detected by Western blot, and the expression of VAMP-1, SNAP23 and PERK was knockdown by siRNA and/or shRNA. The expression of CRT/ERp57 complex was detected by flow cytometry. In addition, the expression of eIF2α and p-eIF2α was detected by Western blot analysis after drug-resistant EC cells were transfected with lentivirus overexpressing CRT, treated with GADD34 inhibitor and ES stress inducer. MTT assay was used to detect the phagocytic activity of T cells induced by maturation of dendritic cells in drug-resistant EC cells. RESULTS The expression of CRT, ERp57, p-PERK and p-eIF2α was significantly decreased in the drug-resistant patients in EC patients. The IC50 of the drug-resistant EC cells was 10 times higher than that of the wild type cells. In the drug-resistant EC cells the expression of CRT, ERp57, p-PERK, p-eIF2α, caspase-8 and CHOP was significantly lower than in the wild type cells. After treatment with DOX, CRT and ER stress-related proteins p-PERK, p-eIF2α, caspase-8 and apoptosis were significantly increased in wild-type EC cells, but not in drug-resistant EC cells. The increased expressions led to inhibition of cell growth and apoptosis. The knockdown of PERK gene and addition of DOX resulted in significant decrease of cleaved-caspase 8 and p-eIF2α in sensitive EC cells. The expression of CRT/ERp57 in sensitive EC cells was further significantly decreased by blocking VAMP and SNAP23. In addition, transfection with CRT overexpressing lentivirus and addition of GADD34 inhibitor and ER stress inducer in drug-resistant EC cells revealed a significant increase in the expression of CRT/ERp57 complex and p-eIF2α when DOX was added simultaneously, which promoted the maturation and chemotaxis of T lymphocytes to phagocytose drug-resistant EC cells. CONCLUSION DOX can induce the death of tumor cells by ER stress-mediated CRT/ERp57 expression in EC cells. Induction of ER stress in drug-resistant EC cells up-regulates the membrane expression of CRT/ERp57, enhances phagocytosis, induces immunogenic apoptosisand sensitizes the cells to DOX.
Collapse
|
28
|
Sukprasansap M, Chanvorachote P, Tencomnao T. Cleistocalyx nervosum var. paniala berry fruit protects neurotoxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem Toxicol 2017; 103:279-288. [PMID: 28315776 DOI: 10.1016/j.fct.2017.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
Oxidative and endoplasmic reticulum (ER) stresses cause neuronal damage leading to neurodegenerative disorders. Cleistocalyx nervosum var. paniala (CNP) berry fruit has been shown to possess powerful antioxidant properties. Here, we investigated the neuroprotective effect of CNP extract against glutamate-mediated oxidative/ER stress-induced cell death in mouse hippocampal neuronal HT22 cells. CNP extract was clarified for its radical scavenging activities, total phenolic and anthocyanin contents. The key anthocyanin cyanidin-3-glucoside was used as a marker to standardize the extract used in the study. We found that pretreated cells with CNP extract (0.05-1 μg/ml) prevented neuronal cell death in response to 5 mM glutamate evaluated by cell viability MTT, LDH and apoptosis/necrosis Annexin V/propidium iodide co-staining assays. For mechanistic approach, glutamate-induced cell death through reactive oxygen species (ROS)-mediated ER stress pathways, indicating the increase of ROS and ER stress signature molecules including calpain, caspases-12 and C/EBP homologous proteins (CHOP). CNP extract inhibited ROS production. Moreover, the extract also suppressed the specific-ER stress apoptotic proteins level in glutamate-induced cells by upregulating the gene expression of cellular antioxidant enzymes (SODs, CAT, GPx and GSTs). Taken together, our results provide information about and the molecular mechanism of CNP extract as a promising neuroprotectant and antioxidant.
Collapse
Affiliation(s)
- Monruedee Sukprasansap
- Ph.D. program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, 10330 Bangkok, Thailand.
| |
Collapse
|
29
|
Tungkum W, Jumnongprakhon P, Tocharus C, Govitrapong P, Tocharus J. Melatonin suppresses methamphetamine-triggered endoplasmic reticulum stress in C6 cells glioma cell lines. J Toxicol Sci 2017; 42:63-71. [DOI: 10.2131/jts.42.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wanida Tungkum
- Department of Biochemistry, Faculty of Medical Science Naresuan University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
- Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| |
Collapse
|
30
|
Li MH, Yang P, Yang T, Zhang K, Liu Y, Liu J, Li LM, Luo XY, Yang SX, Zou Q, Zhang CJ. A novel water-soluble benzothiazole derivative BD926 triggers ROS-mediated B lymphoma cell apoptosis via mitochondrial and endoplasmic reticulum signaling pathways. Int J Oncol 2016; 49:2127-2134. [PMID: 27600372 DOI: 10.3892/ijo.2016.3684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
Benzothiazole derivatives are known for various biological activities, and their potency in cancer therapy have received considerable attention in recent years. However, the poor water solubility of most benzothiazole derivatives has limited their clinical application. We developed BD926, a novel water-soluble benzothiazole derivative and showed here that it could inhibit the proliferation and induce apoptosis of human Ramos B-lymphoma cells. We further showed that BD926 triggered apoptosis through both mitochondria and endoplasmic reticulum pathways. Moreover, BD926 caused cell cycle arrest at G0/G1 stage. Furthermore, accumulation of reactive oxygen species (ROS) were observed after BD926 treatment and ROS inhibitor was able to attenuate BD926-induced apoptosis, which suggested that BD926-induced apoptosis may be due to over-producing ROS. These results demonstrate the anticancer effects of BD926 in cell models and raise the possibility for the application of BD926 in cancer therapy.
Collapse
Affiliation(s)
- Min-Hui Li
- College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ping Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Tai Yang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Kun Zhang
- School of Biomedicine Sciences, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Yang Liu
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Jin Liu
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Li-Mei Li
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xing-Yan Luo
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Shu-Xia Yang
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Qiang Zou
- Center of Science and Research, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Chong-Jie Zhang
- College of Basic and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
31
|
Sun GZ, Gao FF, Zhao ZM, Sun H, Xu W, Wu LW, He YC. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury. Neural Regen Res 2016; 11:1260-6. [PMID: 27651773 PMCID: PMC5020824 DOI: 10.4103/1673-5374.189190] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 02/05/2023] Open
Abstract
Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury.
Collapse
Affiliation(s)
- Guo-zhu Sun
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Correspondence to: Guo-zhu Sun,
| | - Fen-fei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zong-mao Zhao
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hai Sun
- Division of Neurological Surgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Wei Xu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li-wei Wu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yong-chang He
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
32
|
Go BS, Kim J, Yang JH, Choe ES. Psychostimulant-Induced Endoplasmic Reticulum Stress and Neurodegeneration. Mol Neurobiol 2016; 54:4041-4048. [PMID: 27314686 DOI: 10.1007/s12035-016-9969-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle that ensures proper protein folding process. The ER stress is defined as cellular conditions that disturb the ER homeostasis, resulting in accumulation of unfolded and/or misfolded proteins in the lumen of the ER. The presence of these proteins within the ER activates the ER stress response, known as unfolded protein response (UPR), to restore normal functions of the ER. However, under the severe and/or prolonged ER stress, UPR initiates apoptotic cell death. Psychostimulants such as cocaine, amphetamine, and methamphetamine cause the ER stress and/or apoptotic cell death in regions of the brain related to drug addiction. Recent studies have shown that the ER stress in response to psychostimulants is linked to behavioral sensitization and that the psychostimulant-induced ER stress signaling cascades are closely associated with the pathogenesis of the neurodegenerative diseases. Therefore, this review was conducted to improve understanding of the functional role of the ER stress in the addiction as well as neurodegenerative diseases. This would be helpful to facilitate development of new therapeutic strategies for the drug addiction and/or neurodegenerative diseases caused or exacerbated by exposure to psychostimulants.
Collapse
Affiliation(s)
- Bok Soon Go
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea.,Department of Psychology, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea.
| |
Collapse
|
33
|
Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 2016; 59:240-255. [PMID: 27212452 DOI: 10.1016/j.neuro.2016.05.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Timothy Shafer
- Integrated Systems Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
34
|
Isoquercetin ameliorates tunicamycin-induced apoptosis in rat dorsal root ganglion neurons via suppressing ROS-dependent endoplasmic reticulum stress. Biomed Pharmacother 2016; 80:343-351. [DOI: 10.1016/j.biopha.2016.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
|
35
|
Ebselen alters cellular oxidative status and induces endoplasmic reticulum stress in rat hippocampal astrocytes. Toxicology 2016; 357-358:74-84. [DOI: 10.1016/j.tox.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
|
36
|
Yu X, Qiao S, Wang D, Dai J, Wang J, Zhang R, Wang L, Li L. A metabolomics-based approach for ranking the depressive level in a chronic unpredictable mild stress rat model. RSC Adv 2016. [DOI: 10.1039/c6ra00665e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An untargeted metabolomics study to investigate the metabolome change in plasma, hippocampus and prefrontal cortex (PFC) in an animal model with a major depressive disorder (MDD) had been conducted.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Shanlei Qiao
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Di Wang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Jiayong Dai
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Jun Wang
- The Key Laboratory of Modern Toxicology
- Ministry of Education
- School of Public Health
- Nanjing Medical University
- Nanjing 211166
| | - Rutan Zhang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Li Wang
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection
- School of Public Health
- Nanjing Medical University
- Nanjing
- P. R. China
| |
Collapse
|
37
|
Fan H, Tang HB, Kang J, Shan L, Song H, Zhu K, Wang J, Ju G, Wang YZ. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury. Neuroscience 2015; 311:362-73. [PMID: 26523978 DOI: 10.1016/j.neuroscience.2015.10.049] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia/macrophages play a crucial role in inflammation after spinal cord injury (SCI). Although extensive studies have been performed on the mechanisms of microglia/macrophage activation and recruitment, how microglia/macrophages are eliminated remains unclear. In the present study, we observed a high-level expression of mixed lineage kinase domain-like protein (MLKL), a key molecule in the execution of necroptosis, in microglia/macrophages after SCI in mice. In vivo PI-labeling and Necrostatin-1 treatment confirmed the necroptosis of microglia/macrophages. Interestingly, our electronic microscopic (EM) study revealed that MLKL localized not only at the membrane but also on the endoplasmic reticulum (ER) of necroptotic microglia/macrophages. Furthermore, receptor-interacting protein 3 (RIP3), another necrosome component, was also found on the ER of necroptotic microglia/macrophages. And Glucose-regulated protein 78 (GRP78), an ER stress sensor, was up-regulated in MLKL-positive microglia/macrophages after SCI, suggesting a possible link between necroptosis and ER stress. In vitro, oxygen-glucose deprivation (OGD) stress induced ER stress and necroptosis in microglia. Inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly blocked the OGD-induced necroptosis of microglia. In the end, our data showed that, GRP78 and phosphorylated MLKL were co-expressed by the microglia/macrophages in the injured human spinal cord. Taken together, these results suggested that microglia/macrophages undergo an ER-stress involved necroptosis after SCI, implying that ER stress and necroptosis could be manipulated for modulating inflammation post-SCI.
Collapse
Affiliation(s)
- H Fan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - H-B Tang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an 710003, China
| | - J Kang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - L Shan
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xin Si Road, Xi'an, Shaanxi 710038, China
| | - H Song
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - K Zhu
- Zhejiang University China Brain Bank, Department of Pathology and Pathophysiology, Department of Neuroscience, 866 Yu-Hang-Tang Road, Zhejiang University Zi-Jin-Gang Campus, Hangzhou, Zhejiang 310058, China
| | - J Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - G Ju
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China.
| | - Y-Z Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China.
| |
Collapse
|
38
|
Chen S, Zhang XJ, Xie WJ, Qiu HY, Liu H, Le WD. A New VMAT-2 Inhibitor NBI-641449 in the Treatment of Huntington Disease. CNS Neurosci Ther 2015; 21:662-71. [PMID: 26122704 PMCID: PMC6495663 DOI: 10.1111/cns.12425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
AIMS To evaluate the effectiveness of a new VMAT-2 inhibitor NBI-641449 in controlling hyperkinetic movements of Huntington disease (HD) and to investigate its possible therapeutic effects. METHODS We applied three different doses of NBI-641449 (1, 10, 100 mg/kg/day) for 2 weeks in 4-month-old YAC128 mice and wild-type (WT) mice. Rotarod performance and locomotive activities were tested during the administration of the drug. The concentration of dopamine (DA) and its metabolites was quantified in the striatal tissues by high-performance liquid chromatography (HPLC). Neuron survival in striatum and huntingtin protein aggregates were assessed with immunostaining. Expression levels of endoplasmic reticulum (ER) stress proteins were detected by immunoblotting. RESULTS Rotarod performance was significantly improved after treatment with low or middle dose of NBI-641449 in YAC128 mice. Open field test showed that NBI-641449 treatment could attenuate the increased horizontal activity (HACTV), total vertical movement, moving time, and moving distance in YAC128 mice. High dose of NBI-641449 might cause sedative effects in WT and YAC128 mice. HPLC showed that NBI-641449 caused a dose-dependent decrease of DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid levels in the striatum. NeuN and DARPP-32 immunostaining revealed that NBI-641449 had no significant effect on the neuron survival in the striatum. However, NBI-641449 treatment reduced the huntingtin protein aggregates in the cortex of YAC128 mice. In addition, the levels of ER stress proteins were increased in YAC128 mice, which can be suppressed by NBI-641449. CONCLUSIONS These findings suggest that this new VMAT-2 inhibitor NBI-641449 may have therapeutic potential for the treatment of HD.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Neurology, Baylor College of medicine, Houston, TX, USA
| | - Xiao-Jie Zhang
- Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Jie Xie
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Hong-Yan Qiu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Dong Le
- Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Center for Translational Research of Neurology Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Wang W, Sun Y, Chen S, Zhou X, Wu X, Kong W, Kong W. Impaired unfolded protein response in the degeneration of cochlea cells in a mouse model of age-related hearing loss. Exp Gerontol 2015; 70:61-70. [PMID: 26173054 DOI: 10.1016/j.exger.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers the unfolded protein response (UPR) to prevent the accumulation of proteins in an aberrant conformation. The UPR can restore homeostasis by upregulating ER chaperones, such as glucose-regulated protein 78kD (GRP78), to refold the incorrectly handled protein, and by degrading the misfolded proteins via the ubiquitin-proteasome and autophagy-lysosome system. ER stress was recently demonstrated to be involved in the pathogenesis of age-related diseases. In this study, we measured the expression levels of GRP78 and ubiquitinated proteins in the cochleae of young C57BL/6 mice and aged mice to assess the capacity of the UPR. The lower expression of GRP78 and the increased number of ubiquitinated proteins observed in the cochleae of aged mice suggested that the capacity of the UPR was impaired and that the cell death pathway was activated. We found a markedly increased expression of the ER-related pro-apoptotic factor C/EBP homologous protein (CHOP) in the cochleae of aged mice, whereas the level of cleaved caspase-12 did not differ between the two groups. In addition, the cleavage of caspase-9, caspase-3 and poly [ADP-ribose] polymerase 1 was significantly increased in the aged cochleae, suggesting the activation of apoptosis in the cochleae resulting from the cross-talk between the ER and mitochondria through CHOP. These results indicated that impaired UPR in the cochleae of aged C57BL/6 mice resulting in ER stress may lead to apoptosis that is dependent on the mitochondrial pathway and that ER stress induced apoptosis may not be mediated by caspase-12.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xingxing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
40
|
Shen M, Wang L, Guo X, Xue Q, Huo C, Li X, Fan L, Wang X. A novel endoplasmic reticulum stress‑induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes. Mol Med Rep 2015; 12:5149-54. [PMID: 26151415 DOI: 10.3892/mmr.2015.4040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/06/2015] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is key in the development of cardiovascular diseases. However, there is a lack of a systemic ER stress‑induced cardiomyocyte apoptosis model. In the present study, primary cultured neonatal rat cardiomyocytes were exposed to tunicamycin. Cell viability was determined by an MTT assay, and cell damage was detected by a lactose dehydrogenase assay. Flow cytometry was used and the activity of caspase‑3 was analyzed in order to measure apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to examine the expression of glucose‑regulated protein 78‑kDa (GRP78) and C/EBP homologous protein (CHOP). As a result, tunicamycin significantly increased cardiomyocyte injury, which occurred in a time- and concentration‑dependent manner. In addition, tunicamycin treatment resulted in apoptosis of cardiomyocytes. Molecularly, tunicamycin (100 ng/ml) increased the levels of GRP78 and CHOP 6 h after administration. In addition, GRP78 and CHOP reached maximum mRNA and protein levels 24 h after administration. In conclusion, the results implicate that the tunicamycin‑induced ER stress‑induced apoptotic model was successfully constructed in cultured neonatal rat cardiomyocytes. A 100 ng/ml concentration of tunicamycin was selected, and MTT, LDH release and flow cytometry assay was at 72 h. In addition, GRP78 and GRP94 were detected 24 h following administration. The results of the present study indicate a novel experimental basis for the investigation of ERS-induced cardiac apoptosis.
Collapse
Affiliation(s)
- Mingzhi Shen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaowang Guo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiao Xue
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, Hainan 572013, P.R. China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Fan
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
41
|
RETRACTED ARTICLE: TN-2 Ameliorates Tunicamycin-Induced Mitochondria and Endoplasmic Reticulum Stress-Associated Apoptosis in Rat Dorsal Root Ganglion Neurons. J Mol Neurosci 2015; 57:314. [DOI: 10.1007/s12031-015-0599-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
42
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
43
|
Guo R, Liu W, Liu B, Zhang B, Li W, Xu Y. SIRT1 suppresses cardiomyocyte apoptosis in diabetic cardiomyopathy: An insight into endoplasmic reticulum stress response mechanism. Int J Cardiol 2015; 191:36-45. [PMID: 25965594 DOI: 10.1016/j.ijcard.2015.04.245] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-dependent apoptosis had been shown to occur in the hearts of people with diabetes, although the exact mechanisms are unclear. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide NAD(+)-dependent deacetylase, is known to play a role in diabetes-related complications as well as ER-stress. Therefore, we investigated the relationship between Sirtuin 1 (SIRT1) and ER stress-induced apoptosis in H9C2 cardiomyocyte. METHODS Diabetic rats were established by a single intraperitoneal injection of streptozotocin (STZ; 50mg/kg) with high-fat diet. For in vitro analysis, rat derived H9C2 cardiomyocytes were cultured. Cardiac function was assessed by Doppler, and SIRT1 as well as ER stress related protein expressions were measured by immunohistochemistry and western blotting. Cultured cells were exposed to advanced glycation end products (AGEs) (400μg/mL) for inducing ER stress and apoptosis. Cell apoptosis were detected by flow cytometry. RESULTS In vivo, ER stress was enhanced in the cardiomyocytes of diabetic rats without any treatments. A SIRT1 activator, resveratrol, could significantly restore cardiac function, reduce cardiomyocyte apoptosis, and ameliorate ER stress. In vitro, we showed that apoptosis and ER stress increased after AGE stimulation when SIRT1 expression was downregulated by short interfering RNA (siRNA) (p<0.05). However, resveratrol (10μM) restored SIRT1 levels in cardiomyocytes and markedly reduced ER stress-mediated apoptosis. CONCLUSION SIRT1 may attenuate ER stress-induced cardiomyocyte apoptosis via PERK/eIF2α, ATF6/CHOP, and IRE1α/JNK-mediated pathways. This study may provide insights into a novel underlying mechanism and a strategy for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Weijing Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Buchun Zhang
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, PR China
| | - Weiming Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
44
|
Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta. PLoS One 2015; 10:e0122295. [PMID: 25811377 PMCID: PMC4374683 DOI: 10.1371/journal.pone.0122295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/17/2015] [Indexed: 12/16/2022] Open
Abstract
Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation—a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine exposure during pregnancy on placental health.
Collapse
|
45
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
|
46
|
Liu L, Zhang Y, Gu H, Zhang K, Ma L. Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo. Biol Trace Elem Res 2015; 164:64-71. [PMID: 25434583 DOI: 10.1007/s12011-014-0192-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/20/2014] [Indexed: 11/26/2022]
Abstract
The present study investigated the effects of fluoride on endoplasmic reticulum (ER) stress (ERS) and osteoblast apoptosis in vivo. Forty-eight Wistar rats were randomly divided into four groups (12/group) and exposed to 0, 50, 100, and 150 mg/L of fluoride in drinking water for 8 weeks, respectively. Peripheral blood samples and bilateral femurs were used to monitor the progression of fluorosis in the animals. Hematoxylin and eosin (H&E) staining of the bone tissues was used to determine the severity of osteofluorosis. The expression of ERS chaperones (glucose-regulated protein 78 (GRP78), X-box binding protein l (XBP1), cysteine aspartate specific protease-12 (caspase-12), and growth arrest and DNA damage-inducible gene 153 (Gadd153/CHOP) was analyzed by immunohistochemistry staining, and osteoblast apoptosis was determined by TUNEL staining and flow cytometry. Accumulation of fluoride in bone was associated with the severity of osteofluorosis. The expression of GRP78, XBP1, caspase-12, and CHOP was increased in a dose-dependent manner. Fluoride-induced apoptosis in osteoblasts was also dose-dependent. High concentrations of fluoride induced ERS and osteoblast apoptosis in vivo. The increased expression of GRP78 and XBP1 increased the adaptation of osteoblasts to ERS to a certain extent. Caspase-12 and CHOP activation was associated with ERS and osteoblast apoptosis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Preventive Dentistry, School of Stomatology, China Medical University, ShenYang, China
| | | | | | | | | |
Collapse
|
47
|
Krajarng A, Imoto M, Tashiro E, Fujimaki T, Shinjo S, Watanapokasin R. Apoptosis induction associated with the ER stress response through up-regulation of JNK in HeLa cells by gambogic acid. Altern Ther Health Med 2015; 15:26. [PMID: 25887496 PMCID: PMC4340837 DOI: 10.1186/s12906-015-0544-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 01/29/2015] [Indexed: 02/08/2023]
Abstract
Background Gambogic acid (GA) was extracted from the dried yellow resin of gamboge (Garcinia hanburyi) which is traditionally used as a coloring material for painting and cloth dying. Gamboge has been also used as a folk medicine for an internal purgative and externally infected wound. We focused on the mechanisms of apoptosis induction by GA through the unfold protein response (ER stress) in HeLa cells. Methods The cytotoxic effect of GA against HeLa cells was determined by trypan blue exclusion assay. Markers of ER stress such as XBP-1, GRP78, CHOP, GADD34 and ERdj4 were analyzed by RT-PCR and Real-time RT-PCR. Cell morphological changes and apoptotic proteins were performed by Hoechst33342 staining and Western blotting technique. Results Our results indicated a time- and dose-dependent decrease of cell viability by GA. The ER stress induction is determined by the up-regulation of spliced XBP1 mRNA and activated GRP78, CHOP, GADD34 and ERdj4 expression. GA also induced cell morphological changes such as nuclear condensation, membrane blebbing and apoptotic body in Hela cells. Apoptosis cell death detected by increased DR5, caspase-8, −9, and −3 expression as well as increased cleaved-PARP, while decreased Bcl-2 upon GA treatment. In addition, phosphorylated JNK was up-regulated but phosphorylated ERK was down-regulated after exposure to GA. Conclusions These results suggest that GA induce apoptosis associated with the ER stress response through up-regulation of p-JNK and down-regulation of p-ERK in HeLa cells.
Collapse
|
48
|
Ye J, Han Y, Chen X, Xie J, Liu X, Qiao S, Wang C. l-Carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress. Neurochem Int 2014; 78:86-95. [DOI: 10.1016/j.neuint.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
49
|
Luo T, Kim JK, Chen B, Abdel-Latif A, Kitakaze M, Yan L. Attenuation of ER stress prevents post-infarction-induced cardiac rupture and remodeling by modulating both cardiac apoptosis and fibrosis. Chem Biol Interact 2014; 225:90-8. [PMID: 25450231 DOI: 10.1016/j.cbi.2014.10.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress is implicated in the pathophysiology of various cardiovascular diseases, but the role of ER stress in cardiac rupture and/or remodeling after myocardial infarction (MI) is still unclear. Here we investigated whether ER stress plays a major role for these processes in mice. We ligated the left coronary artery (LCA) without reperfusion in mice and administered either NaCl or 4-phenylbutyric acid (4-PBA, 20 mg/kg/d) intraperitoneally for 4 weeks. Cardiac rupture rates during the first week of MI were 37.5% and 18.2% in the control and 4-PBA groups, respectively. The extent of ventricular aneurysm and fibrosis was less, and the cardiac function better, in the 4-PBA group compared with the control group. The protein levels of ER stress markers in the heart tissues of the control group remained elevated during the entire 4-week period after MI, while pro-apoptotic proteins mainly increased in the early phase, and the pro-fibrotic proteins markedly increased in the late phase post MI; 4-PBA decreased all of these protein levels. In the primary cultured neonatal rat cardiomyocytes or fibroblasts, hypoxia (3% O2) increased the number of apoptotic cardiomyocytes and promoted the proliferation and migration of fibroblasts, all of which were attenuated by 4-PBA (0.5 mM). These findings indicate that MI induces ER stress and provokes cardiac apoptosis and fibrosis, culminating in cardiac rupture and remodeling, and that the attenuation of ER stress could be an effective therapeutic target to prevent post-MI complications.
Collapse
Affiliation(s)
- Tao Luo
- Division of Cardiology, Department of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA; Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jin Kyung Kim
- Division of Cardiology, Department of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA
| | - Baihe Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky, Lexington 40536-0509, USA
| | - Masafumi Kitakaze
- Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita 5675-8565, Japan
| | - Liang Yan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Chen J, Guo H, Zheng G, Shi ZN. Region-specific vulnerability to endoplasmic reticulum stress-induced neuronal death in rat brain after status epilepticus. J Biosci 2014; 38:877-86. [PMID: 24296890 DOI: 10.1007/s12038-013-9391-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We sought to clarify the involvement and the intra-cerebral distribution variability of C/EBP homologous protein (CHOP), a representative molecule related to endoplasmic reticulum (ER) stress-induced cell death signalling pathways, in neuronal death resulting from status epilepticus in rats. The expression patterns of CHOP and glucose-regulated protein (GRP) 78, a good marker of ER stress, were assessed by Western blotting, real-time PCR, Hoechst and immunohistochemistry in the hippocampus, cortex and striatum on a status epilepticus (SE) model. Double-fluorescent staining of CHOP and the terminal deoxynucleotidyl transferase-mediated DNA nick-end labelling (TUNEL) method were performed to clarify the involvement of CHOP in cell death. SE resulted in a timedependent increase in the expression of GRP78 and CHOP. The expression of GRP78 protein was increased at 3, 6 and 12 h after SE and no brain region variability was found. The expression of CHOP protein was also increased, reached its peak at 24 h and remained high at 48 h. CHOP protein expression, however, showed brain region variability with highest expression noted in the hippocampus followed by the striatum, and lowest in the cortex. The up-regulation of CHOP occurring at the transcriptional level was demonstrated by real-time PCR. Double fluorescence showed that CHOP expression strongly correlated with neurons undergoing apoptosis. The results indicated that SE compromises the function of the ER and that the hippocampus is more vulnerable than the cortex and the striatum.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, No. 72, Guangzhou Road, Gu Lou District, Nanjing 210008, People's Republic of China
| | | | | | | |
Collapse
|