1
|
Glass HC, Wusthoff CJ, Comstock BA, Numis AL, Gonzalez FF, Maitre N, Massey SL, Mayock DE, Mietzsch U, Natarajan N, Sokol GM, Bonifacio SL, Van Meurs KP, Thomas C, Ahmad KA, Heagerty PJ, Juul SE, Wu YW. Risk of seizures in neonates with hypoxic-ischemic encephalopathy receiving hypothermia plus erythropoietin or placebo. Pediatr Res 2023; 94:252-259. [PMID: 36470964 PMCID: PMC10239788 DOI: 10.1038/s41390-022-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND An ancillary study of the High-Dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial for neonates with hypoxic-ischemic encephalopathy (HIE) and treated with therapeutic hypothermia examined the hypothesis that neonates randomized to receive erythropoietin (Epo) would have a lower seizure risk and burden compared with neonates who received placebo. METHODS Electroencephalograms (EEGs) from 7/17 HEAL trial centers were reviewed. Seizure presence was compared across treatment groups using a logistic regression model adjusting for treatment, HIE severity, center, and seizure burden prior to the first dose. Among neonates with seizures, differences across treatment groups in median maximal hourly seizure burden were assessed using adjusted quantile regression models. RESULTS Forty-six of 150 (31%) neonates had EEG seizures (31% in Epo vs 30% in placebo, p = 0.96). Maximal hourly seizure burden after the study drug was not significantly different between groups (median 11.4 for Epo, IQR: 5.6, 18.1 vs median 9.7, IQR: 4.9, 21.0 min/h for placebo). CONCLUSION In neonates with HIE treated with hypothermia who were randomized to Epo or placebo, we found no meaningful between-group difference in seizure risk or burden. These findings are consistent with overall trial results, which do not support Epo use for neonates with HIE undergoing therapeutic hypothermia. IMPACT In the HEAL trial of erythropoietin (Epo) vs placebo for neonates with encephalopathy presumed due to hypoxic-ischemic encephalopathy (HIE) who were also treated with therapeutic hypothermia, electrographic seizures were detected in 31%, which is lower than most prior studies. Epo did not reduce the proportion of neonates with acute provoked seizures (31% in Epo vs 30% in placebo) or maximal hourly seizure burden after the study drug (median 11.4, IQR 5.6, 18.1 for Epo vs median 9.7, IQR 4.9, 21.0 min/h for placebo). There was no anti- or pro-convulsant effect of Epo when combined with therapeutic hypothermia for HIE.
Collapse
Affiliation(s)
- Hannah C Glass
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| | - Courtney J Wusthoff
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University, Palo Alto, CA, USA
| | - Bryan A Comstock
- Department Biostatistics, University of Washington, Seattle, WA, USA
| | - Adam L Numis
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Nathalie Maitre
- Department of Pediatrics, and Emory + Children's Pediatric Institute, Emory University, Atlanta, GA, USA
| | - Shavonne L Massey
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E Mayock
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Ulrike Mietzsch
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Niranjana Natarajan
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gregory M Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Krisa P Van Meurs
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Cameron Thomas
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Yvonne W Wu
- Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
3
|
Taskiran AS, Tastemur Y. The role of nitric oxide in anticonvulsant effects of lycopene supplementation on pentylenetetrazole-induced epileptic seizures in rats. Exp Brain Res 2021; 239:591-599. [PMID: 33385251 DOI: 10.1007/s00221-020-06012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that natural antioxidant compounds have positive effects on the nervous system. Lycopene, the red pigment in tomatoes, is one of the potent natural antioxidants, and is used as supplementation because of its well-known health benefits. However, its effect on epileptic seizures and underlying mechanisms are still unclear. In this study, it was aimed to investigate the effect of lycopene on pentylenetetrazole-induced epileptic seizures in rats and to elucidate the nitric oxide pathway in this effect. In this study, thirty male Wistar albino rats were used. Animals were divided into five groups (n = 6 for each group) as control, saline (1 mL/kg/day serum physiologic), positive control (2 mg/kg/day diazepam), and lycopene (5 and 10 mg/kg/day) for ten days. Pentylenetetrazole (45 mg/kg) was given to induce a seizure in the tenth day except for the control. Passive avoidance test was carried out to evaluate memory function. Inducible nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), and nitric oxide (NO) levels were measured in the cortex and hippocampal brain regions using the ELISA kits. Lycopene supplementation prolonged epileptic seizure onset times and reduced seizure stages. Besides, lycopene supplementation improved memory impairment after seizures. Moreover, lycopene significantly reduced the level of iNOS, nNOS, and NO in the brain. Lycopene supplementation significantly alleviated seizures and memory impairment. Its anticonvulsive effect could be associated with the nitric oxide pathway. Lycopene supplementation could be useful as a supportive therapeutic agent in epileptic patients.
Collapse
Affiliation(s)
- Ahmet Sevki Taskiran
- Department of Physiology, School of Medicine, Sivas Cumhuriyet University, TR-58140, Sivas, Turkey.
| | - Yasar Tastemur
- Department of Anatomy, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
4
|
Auzmendi J, Puchulu MB, Rodríguez JCG, Balaszczuk AM, Lazarowski A, Merelli A. EPO and EPO-Receptor System as Potential Actionable Mechanism for the Protection of Brain and Heart in Refractory Epilepsy and SUDEP. Curr Pharm Des 2020; 26:1356-1364. [PMID: 32072891 DOI: 10.2174/1381612826666200219095548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
The most important activity of erythropoietin (EPO) is the regulation of erythrocyte production by activation of the erythropoietin receptor (EPO-R), which triggers the activation of anti-apoptotic and proliferative responses of erythroid progenitor cells. Additionally, to erythropoietic EPO activity, an antiapoptotic effect has been described in a wide spectrum of tissues. EPO low levels are found in the central nervous system (CNS), while EPO-R is expressed in most CNS cell types. In spite of EPO-R high levels expressed during the hypoxicischemic brain, insufficient production of endogenous cerebral EPO could be the cause of determined circuit alterations that lead to the loss of specific neuronal populations. In the heart, high EPO-R expression in cardiac progenitor cells appears to contribute to myocardial regeneration under EPO stimulation. Several lines of evidence have linked EPO to an antiapoptotic role in CNS and in heart tissue. In this review, an antiapoptotic role of EPO/EPO-R system in both brain and heart under hypoxic conditions, such as epilepsy and sudden death (SUDEP) has been resumed. Additionally, their protective effects could be a new field of research and a novel therapeutic strategy for the early treatment of these conditions and avoid SUDEP.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - María B Puchulu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio C G Rodríguez
- CENPALAB, Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Ana M Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Amalia Merelli
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
5
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
6
|
Wang Y, Wang G, Tao J, Li X, Hu L, Li Q, Lu J, Li Y, Li Z. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Res 2020; 1745:146923. [PMID: 32504548 DOI: 10.1016/j.brainres.2020.146923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drugs. Patients who are non-responsive to VPA often present to the clinic; however, the mechanism of resistance is unclear. In this study, we found that responder and non-responder pentylenetetrazole-induced chronic epileptic rats had no significant differences in VPA concentrations in their plasma and brain tissues. Furthermore, through an RNA-sequence method, we identified 334 differentially expressed genes between VPA-responsive and non-responsive rats, while 21 pathways were enriched. Interestingly, 16 pathways, including the phagosome pathway, were commonly enriched compared to those in patients. We used transmission electron microscopy and immunofluorescence microscopy to further assess the level of autophagy in responder and non-responder rats. Non-responders had more autophagic vacuoles and an increased level of LC3B expression. Furthermore, epileptic rats that were previously administered 3-methyadenine (an inhibitor of autophagy) exhibited a slight increase in VPA efficacy. In conclusion, autophagy was associated with the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China; Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Guangfei Wang
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jie Tao
- Central Laboratory, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China
| | - Qin Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jinmiao Lu
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China.
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
7
|
Zhang J, Luo X, Huang C, Pei Z, Xiao H, Luo X, Huang S, Chang Y. Erythropoietin prevents LPS-induced preterm birth and increases offspring survival. Am J Reprod Immunol 2020; 84:e13283. [PMID: 32506750 PMCID: PMC7507205 DOI: 10.1111/aji.13283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Preterm delivery is the leading cause of neonatal mortality and contributes to delayed physical and cognitive development in children. At present, there is no efficient therapy to prevent preterm labor. A large body of evidence suggests that infections might play a significant and potentially preventable cause of premature birth. This work assessed the effects of erythropoietin (EPO) in a murine model of inflammation-associated preterm delivery, which mimics central features of preterm infections in humans. METHOD OF STUDY BALB/c mice were injected i.p. with 20 000 IU/kg EPO or normal saline twice on gestational day (GD) 15, with a 3 hours time interval between injections. An hour after the first EPO or normal saline injection, all mice received two injections of 50 μg/kg LPS, also given 3 hours apart. RESULTS EPO significantly prevented preterm labor and increased offspring survival in an LPS induced preterm delivery model. EPO prevented LPS-induced leukocyte infiltration into the placenta. Moreover, EPO inhibited the expression of pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α) in maternal serum and amniotic fluid. EPO also prevented LPS-induced increase in placental prostaglandin (PG)E2 and uterine inducible nitric oxide synthase (iNOS) production, while decreasing nuclear factor kappa-B (NF-κβ) activity in the myometrium. EPO also increased the gene expression of placental programmed cell death ligand 1 (PD-L1) in LPS-treated mice. CONCLUSIONS Our results suggest that EPO could be a potential novel therapeutic strategy to tackle infection-related preterm labor.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Xianqiong Luo
- Department of PediatricsGuangdong Women and Children HospitalGuangzhouChina
| | - Caicai Huang
- Department of ObstetricsGuangdong Women and Children HospitalGuangzhouChina
| | - Zheng Pei
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Huimei Xiao
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Xingang Luo
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Shuangmiao Huang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| | - Yanqun Chang
- Department of RehabilitationGuangdong Women and Children HospitalGuangzhouChina
| |
Collapse
|
8
|
Kapucu A. Crocin ameliorates oxidative stress and suppresses renal damage in streptozotocin induced diabetic male rats. Biotech Histochem 2020; 96:153-160. [PMID: 32835521 DOI: 10.1080/10520295.2020.1808702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is a prevalent metabolic disorder with complications including nephropathy, neuropathy, retinopathy and peripheral vascular disease. Crocin is a water soluble carotenoid that exhibits strong antioxidant activity. I investigated the potential hypoglycemic and reno-protective effects of crocin for type 1 diabetic male rats using periodic acid-Schiff and hematoxylin staining; metalloproteinase-7 (MMP-7), phosphatase and tensin homolog (PTEN) and phospho-Akt (p-Akt) immunohistochemistry; measurement of blood glucose, malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant and total oxidant status; and oxidative stress index. I used four groups of rats: control (saline treated), diabetic (single dose of 65 mg/kg streptozotocin), crocin (treated with 50 mg/kg) and diabetic + crocin. Crocin decreased levels of MDA, SOD, oxidative stress index and glucose significantly in diabetic animals. Renal damage from DM also was decreased by crocin treatment. MMP-7 and p-Akt immunoreactivity were stronger in the diabetic group compared to other groups, but PTEN immunoreactivity was weaker. Crocin treatment returned MMP-7 and PTEN expression to near normal. The ameliorative effect of crocin is attributed to its stimulation of the antioxidant defense system and its ability to regulate the MMP-7/PTEN/Akt signaling cascade.
Collapse
Affiliation(s)
- Ayşegül Kapucu
- Department of Biology, Faculty of Science, Istanbul University , Istanbul, Turkey
| |
Collapse
|
9
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
10
|
Kapucu A, Üzüm G, Kaptan Z, Akgün-Dar K. Effects of erythropoietin pretreatment on single dose pentylentetrazole-induced seizures in rats. Biotech Histochem 2020; 95:418-427. [DOI: 10.1080/10520295.2020.1713398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ayşegul Kapucu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Gülay Üzüm
- Department of Physiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zülal Kaptan
- Department of Physiology, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Kadriye Akgün-Dar
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Dmytriyeva O, Belmeguenai A, Bezin L, Soud K, Drucker Woldbye DP, Gøtzsche CR, Pankratova S. Short erythropoietin-derived peptide enhances memory, improves long-term potentiation, and counteracts amyloid beta–induced pathology. Neurobiol Aging 2019; 81:88-101. [DOI: 10.1016/j.neurobiolaging.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/27/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
|
12
|
Ali SO, Shahin NN, Safar MM, Rizk SM. Therapeutic potential of endothelial progenitor cells in a rat model of epilepsy: Role of autophagy. J Adv Res 2019; 18:101-112. [PMID: 30847250 PMCID: PMC6389652 DOI: 10.1016/j.jare.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
This is the first report showing EPCs therapeutic effects in PTZ-induced epilepsy. Intravenously administered EPCs homed into the epileptic rat hippocampus. EPCs amend the memory and locomotor activity deficits related to epilepsy. EPCs ameliorate epilepsy-associated alterations in neurotransmitters and autophagy. EPCs mitigate concomitant histological and vascular anomalies.
Epilepsy is one of the most well-known neurological conditions worldwide. One-third of adult epileptic patients do not respond to antiepileptic drugs or surgical treatment and therefore suffer from the resistant type of epilepsy. Stem cells have been given substantial consideration in the field of epilepsy therapeutics. The implication of pathologic vascular response in sustained seizures and the eminent role of endothelial progenitor cells (EPCs) in maintaining vascular integrity tempted us to investigate the potential therapeutic effects of EPCs in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. Modulation of autophagy, a process that enables neurons to maintain an equilibrium of synthesis, degradation and subsequent reprocessing of cellular components, has been targeted. Intravenously administered EPCs homed into the hippocampus and amended the deficits in memory and locomotor activity. The cells mitigated neurological damage and the associated histopathological alterations and boosted the expression of brain-derived neurotrophic factor. EPCs corrected the perturbations in neurotransmitter activity and enhanced the expression of the downregulated autophagy proteins light chain protein-3 (LC-3), beclin-1, and autophagy-related gene-7 (ATG-7). Generally, these effects were comparable to those achieved by the reference antiepileptic drug, valproic acid. In conclusion, EPCs may confer therapeutic effects against epilepsy and its associated behavioural and biochemical abnormalities at least in part via the upregulation of autophagy. The study warrants further research in experimental and clinical settings to verify the prospect of using EPCs as a valid therapeutic strategy in patients with epilepsy.
Collapse
Affiliation(s)
- Shimaa O Ali
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Marwa M Safar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.,Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Sherine M Rizk
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| |
Collapse
|
13
|
Vizuete AFK, Hansen F, Da Ré C, Leal MB, Galland F, Concli Leite M, Gonçalves CA. GABAA Modulation of S100B Secretion in Acute Hippocampal Slices and Astrocyte Cultures. Neurochem Res 2018; 44:301-311. [DOI: 10.1007/s11064-018-2675-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
|
14
|
Mansoor SR, Hashemian M, Khalili-Fomeshi M, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Upregulation of klotho and erythropoietin contributes to the neuroprotection induced by curcumin-loaded nanoparticles in experimental model of chronic epilepsy. Brain Res Bull 2018; 142:281-288. [PMID: 30130550 DOI: 10.1016/j.brainresbull.2018.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/26/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
Klotho, which is a life extension factor, and erythropoietin (EPO) have been introduced as effective neuroprotective factors in several neurological disorders. The present study is an attempt to examine the potential role of klotho and EPO in therapeutic effect of curcumin-loaded nanoparticles (NPs) in pentylenetetrazol (PTZ)-induced kindling model. In order to induce the kindling model, PTZ was administrated intraperitoneally (i.p.) at dose of 36.5 mg/kg every other day for 20 days. Male NMRI mice received pre-treatment of free curcumin or curcumin-loaded NPs (12.5 mg/kg, i.p.) 10 days before PTZ injection and this was continued until 1 h before each PTZ injection. Immunostaining against NeuN, as a marker of neuronal maturation, and EPO was performed on hippocampal brain sections. Quantitative real time polymerase chain reaction (qRT-PCR) was conducted to assess the expression levels of tumor necrosis factor-α (TNF-α), klotho and EPO in the hippocampus. Immunostaining data indicated that treatment with curcumin-loaded NPs significantly alleviates the neuronal cell death in PTZ receiving animals. Curcumin-loaded NPs effectively upregulated the levels of EPO and klotho in PTZ receiving animals. Furthermore, mRNA level of TNF-α was considerably reduced in animals undergone curcumin-loaded NPs treatment. Overall, the results of this study suggest that downregulation of TNF-α and consequent upregulation of klotho and EPO might contribute to the neuroprotective effect of curcumin-loaded NPs in experimental model of epilepsy.
Collapse
Affiliation(s)
| | - Mona Hashemian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
15
|
Yu J, Shi Z, Su X, Zhou Y, Li B, Wang S, Jia L, Zhao B, Zhu M, Feng X, Yin K, Wang W. Expression of Bcl-2 and Bad in hippocampus of status epileptic rats and molecular mechanism of intervened recombinant human erythropoietin. Exp Ther Med 2018; 16:847-855. [PMID: 30116338 PMCID: PMC6090305 DOI: 10.3892/etm.2018.6250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022] Open
Abstract
Injury of hippocampal neurons in status epilepticus (SE) SD rats kindled by pentylenetetrazol (PTZ) were studied, and the changes of apoptosis neurons, protein expression of Bad and Bcl-2 alone and combined application of phosphatidyl inositol 3-kinase (PI3K) inhibitor LY294002 and recombinant human erythropoietin (rHuEpo) were evaluated for the possible mechanisms of rHuEpo. The SE rats kindled by the PTZ were randomly divided into normal control group [normal saline (NS)], model group (PTZ + NS), rHuEpo treated group (PTZ + rHuEpo), LY294002 treated group (PTZ + LY294002 + rHuEpo) and LY294002 control group (rHuEpo + PTZ + DMSO). Apoptosis of hippocampal neurons was detected by TUNEL method; expression of phosphorylation protein kinase B (p-PKB/p-Akt), Bcl-2 and Bad were detected by immunohistochemistry; the expression of Bcl-2 mRNA, Bad mRNA in hippocampal neurons of rats were detected through reverse transcription polymerase chain reaction (RT-PCR); the expression of Akt, p-Akt and Bcl-2, Bad protein in hippocampal neurons of rats were detected by western blotting. The amount of apoptotic neurons was less in the rHuEpo treated group and the LY294002 control group than in the LY294002 treated group (P<0.05). The expression of p-Akt protein and Bcl-2 protein increased while the Bad protein decreased significantly in the rHuEpo treated group and the LY294002 control group compared with the LY294002 treated group (P<0.05). The expression of Bad protein and Bad mRNA in hippocampus increased while the p-Akt, Bcl-2, Bcl-2 mRNA decreased significantly in the LY294002 treated group compared with the rHuEpo treated group (P<0.05). The PI3K/Akt signaling pathway is one of the pathways of rHuEpo neuroprotective effects and was confirmed from both the of positive and negative aspects. rHuEpo regulates the expression of mitochondrial apoptotic pathway related factors Bad and Bcl-2 to inhibit apoptosis and promotes neuronal survival.
Collapse
Affiliation(s)
- Jianghua Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhiqin Shi
- Department of Experimental Diagnostics, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xudong Su
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yi Zhou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lijing Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Bo Zhao
- Department of Experimental Diagnostics, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Mengchu Zhu
- Department of Experimental Diagnostics, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaohong Feng
- Department of Experimental Diagnostics, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kuochang Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
16
|
Li Q, Han Y, Du J, Jin H, Zhang J, Niu M, Qin J. Recombinant human erythropoietin protects against brain injury through blunting the mTORC1 pathway in the developing brains of rats with seizures. Life Sci 2018; 194:15-25. [DOI: 10.1016/j.lfs.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 02/01/2023]
|
17
|
Wu SH, Lu IC, Lee SS, Kwan AL, Chai CY, Huang SH. Erythropoietin attenuates motor neuron programmed cell death in a burn animal model. PLoS One 2018; 13:e0190039. [PMID: 29385149 PMCID: PMC5791978 DOI: 10.1371/journal.pone.0190039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
Burn-induced neuromuscular dysfunction may contribute to long-term morbidity; therefore, it is imperative to develop novel treatments. The present study investigated whether erythropoietin (EPO) administration attenuates burn-induced motor neuron apoptosis and neuroinflammatory response. To validate our hypothesis, a third-degree hind paw burn rat model was developed by bringing the paw into contact with a metal surface at 75°C for 10 s. A total of 24 male Sprague–Dawley rats were randomly assigned to four groups: Group A, sham-control; Group B, burn-induced; Group C, burn + single EPO dose (5000 IU/kg i.p. at D0); and Group D, burn + daily EPO dosage (3000 IU/kg/day i.p. at D0–D6). Two treatment regimens were used to evaluate single versus multiple doses treatment effects. Before sacrifice, blood samples were collected for hematological parameter examination. The histological analyses of microglia activation, iNOS, and COX-2 in the spinal cord ventral horn were performed at week 1 post-burn. In addition, we examined autophagy changes by biomarkers of LC3B and ATG5. The expression of BCL-2, BAX, cleaved caspase-3, phospho-AKT, and mTOR was assessed simultaneously through Western blotting. EPO administration after burn injury attenuated neuroinflammation through various mechanisms, including the reduction of microglia activity as well as iNOS and COX-2 expression in the spinal cord ventral horn. In addition, the expression of phospho-AKT, mTOR and apoptotic indicators, such as BAX, BCL-2, and cleaved caspase-3, was modulated. Furthermore, the activity of burn-induced autophagy in the spinal cord ventral horn characterized by the expression of autophagic biomarkers, LC3B and ATG5, was reduced after EPO administration. The present results indicate that EPO inhibits the AKT-mTOR pathway to attenuate burn-induced motor neuron programmed cell death and microglia activation. EPO can modulate neuroinflammation and programmed cell death and may be a therapeutic candidate for neuroprotection.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Su-Shin Lee
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Aminirad A, Mousavi SE, Fakhraei N, Mousavi SM, Rezayat SM. The role of nitric oxide in anticonvulsant effect of nanocurcumine on pentylenetetrazole-induced seizure in mice. Neurosci Lett 2017; 651:226-231. [PMID: 28501696 DOI: 10.1016/j.neulet.2017.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/16/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023]
Abstract
A plant alkaloid obtained from Curcuma longa, curcumin possesses anti-oxidant and anti-inflammatory effects. Nanoformulations have been developed for preclinical studies which demonstrate enhanced therapeutic efficacy. Effect of acute intraperitoneal (i.p.) administration of curcumin C3 complex nanoparticles [1,5, 10, 20, 40, 80mg/kg, (i.p.)] 75min prior to PTZ, on clonic seizure thresholds induced by intravenous infusion of pentylenetetrazole (PTZ) 0.5% was investigated in comparison with curcumin (40 and 80mg/kg, i.p.) in male mice. Moreover, to clarify the probable role of NO in the anticonvulsant property of nanocurcumin, non-effective doses of l-arginine (l-Arg), a NO donor; 7-nitroindazole, 7-NI, a preferential neuronal NO synthase inhibitor; L-NAME, a non-selective NO synthase inhibitor and aminoguanidine (AG), a selective inducible NO synthase inhibitor (iNOS), in combination with nanocurcumin (80mg/kg, i.p.), 15-30min before it were employed. RESULTS While curcumin did not show any anticonvulsant effect, nanocurcumin revealed dose-dependent anticonvulsant property at the doses 20, 40 and 80mg/kg, P<0.01, P<0.01 and P<0.001, respectively. l-Arg (30 and 60mg/kg) dose-dependently reversed the anticonvulsant effect of the most effective nanocurcumin dose (80mg/kg), P<0.01 and P<0.001, respectively. On the other hand, L-NAME (3 and 10mg/kg, i.p.) markedly potentiated the sub effective dose of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. Similarly, AG (50 and 100mg/kg, i.p.) profoundly augmented the seizure thresholds of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. In addition, 7-NI (10, 30 and 60mg/kg, i.p.) failed to influence the responses. CONCLUSION These data may support excess of NO production following PTZ infusion probably resulting from iNOS source. Consequently, nanocurcumin probably down regulated NO. To conclude, nanocurcumin showed anticonvulsant effect. Furthermore, this effect was reversed following l-arginine as an external NO precursor. However, both the non-selective NOS inhibitor and selective iNOS inhibitor increased the thresholds. It is evident that nanocurcumin may influence the seizure thresholds at least in part through a decrease in NO.
Collapse
Affiliation(s)
- Alireza Aminirad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | | | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Eslami SM, Moradi MM, Ghasemi M, Dehpour AR. Anticonvulsive Effects of Licofelone on Status Epilepticus Induced by Lithium-pilocarpine in Wistar Rats: a Role for Inducible Nitric Oxide Synthase. J Epilepsy Res 2016; 6:51-58. [PMID: 28101475 PMCID: PMC5206100 DOI: 10.14581/jer.16011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Status epilepticus (SE) is a neurological disorder with high prevalence and mortality rates, requiring immediate intervention. Licofelone is a cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibitor, which its effectiveness to treat osteoarthritis has been approved. Increasing evidence suggests an involvement of COX and LOX enzymes in epileptic disorders. Thus, in the present study we investigate possible effects of licofelone on prevention and termination of SE. We also evaluated whether the nitrergic system could participate in this effect of licofelone. Methods We have utilized lithium-pilocarpine model of SE in adult Wistar rats to assess the potential effect of licofelone on seizure susceptibility. Licofelone was administered 1 h before pilocarpine. To evaluate probable role of nitric oxide (NO) system, L-arginine (60 mg/kg, i.p.), as a NO precursor; L-NAME (15 mg/kg, i.p.), as a non-selective nitric oxide synthase (NOS) inhibitor; aminoguanidine (100 mg/kg, i.p.), as an inducible NOS (iNOS) inhibitor and 7-nitroindazole (60 mg/kg, i.p.), as a neuronal NOS inhibitor were injected 15 min before licofelone. Also, licofelone and diazepam 10 mg/kg were administered 30 minutes after onset of SE. Results Pre-treatment with licofelone at the dosage of 10 mg/kg, significantly prevented the onset of SE in all subjects (p < 0.001). L-arginine significantly inverted this anticonvulsant effect (p < 0.05). However, L-NAME and aminoguanidine, potentiated the anticonvulsant effect of licofelone (p < 0.05, p < 0.01). Licofelone could not terminate seizures after onset which was terminated by diazepam. Conclusions Our findings showed that anticonvulsive effects of licofelone on SE could be mediated by iNOS. Also, we suggest that COX/5-LOX activation is possibly required in the initial stage of onset but SE recruits extra excitatory pathways with prolongation.
Collapse
Affiliation(s)
- Seyyed Majid Eslami
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
A COX/5-LOX Inhibitor Licofelone Revealed Anticonvulsant Properties Through iNOS Diminution in Mice. Neurochem Res 2015. [DOI: 10.1007/s11064-015-1669-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res 2015; 1618:194-204. [PMID: 26072462 DOI: 10.1016/j.brainres.2015.05.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
Calorie restriction (CR) is argued to positively affect general health, longevity and normally occurring age-related reduction of cognition. Obesity during adolescence may adversely affect cognition in adulthood but, to date effects of CR have not been investigated. We hypothesized that feeding with as low as 15% low-calorie diet (LCD) during adolescence would increase hippocampal and prefrontal BDNF (Brain-derived neurotrophic factor) levels, proliferative cells and neuron numbers in dentate gyrus (DG), thus positively affecting spatial memory in adulthood. Spatial learning-memory function was improved in adult female Sprague-Dawley rats fed with LCD during adolescence. PCNA (Proliferating cell nuclear antigen-cell proliferation marker) expressing cells and NeuN (Neuronal nuclear antigen-neuron marker) expressing cells in hippocampus DG which are critically involved in memory were increased. Hippocampus and prefrontal cortex BDNF levels were increased while serum glucose levels and level of lipid peroxidation indicator malondialdehyde in serum and hippocampus were reduced. Our unique results suggest that improved cognition in adult rats with LCD feeding during adolescence may result from the increase of neurogenesis and BDNF. These findings reveal the importance of nutrition in adolescence for cognitive function in adulthood. Our results may be useful for further studies aiming to treat age-related cognitive impairments.
Collapse
|
22
|
Johnson MR, Behmoaras J, Bottolo L, Krishnan ML, Pernhorst K, Santoscoy PLM, Rossetti T, Speed D, Srivastava PK, Chadeau-Hyam M, Hajji N, Dabrowska A, Rotival M, Razzaghi B, Kovac S, Wanisch K, Grillo FW, Slaviero A, Langley SR, Shkura K, Roncon P, De T, Mattheisen M, Niehusmann P, O'Brien TJ, Petrovski S, von Lehe M, Hoffmann P, Eriksson J, Coffey AJ, Cichon S, Walker M, Simonato M, Danis B, Mazzuferi M, Foerch P, Schoch S, De Paola V, Kaminski RM, Cunliffe VT, Becker AJ, Petretto E. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun 2015; 6:6031. [PMID: 25615886 DOI: 10.1038/ncomms7031] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/04/2014] [Indexed: 01/20/2023] Open
Abstract
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.
Collapse
Affiliation(s)
- Michael R Johnson
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Leonardo Bottolo
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
| | - Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, St Thomas' Hospital, King's College London, London SE1 7EH, UK
| | - Katharina Pernhorst
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Paola L Meza Santoscoy
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Tiziana Rossetti
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Doug Speed
- UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, MRC/PHE Centre for Environment and Health, Imperial College London, St Mary's Hospital, Norfolk Place, W21PG London, UK
| | - Nabil Hajji
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Aleksandra Dabrowska
- Department of Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maxime Rotival
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Banafsheh Razzaghi
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Stjepana Kovac
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Klaus Wanisch
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federico W Grillo
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Anna Slaviero
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Sarah R Langley
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK.,Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Paolo Roncon
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy
| | - Tisham De
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Manuel Mattheisen
- Department of Genomics, Life and Brain Center, University of Bonn, D-53127 Bonn, Germany.,Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany.,Institute for Genomic Mathematics, University of Bonn, D-53127 Bonn, Germany
| | - Pitt Niehusmann
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Terence J O'Brien
- Department of Medicine, RMH, University of Melbourne, Royal Melbourne Hospital, Royal Parade, Parkville, Victoria 3050, Australia
| | - Slave Petrovski
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Parkville, Victoria 3050, Australia
| | - Marec von Lehe
- Department of Neurosurgery, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Johan Eriksson
- Folkhälsan Research Centre, Topeliusgatan 20, 00250 Helsinki, Finland.,Helsinki University Central Hospital, Unit of General Practice, Haartmaninkatu 4, Helsinki 00290, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, 407, PO Box 20, Tukholmankatu 8 B, Helsinki 00014, Finland
| | - Alison J Coffey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Matthew Walker
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology and Neuroscience Center, University of Ferrara, 44121 Ferrara, Italy.,National Institute of Neuroscience, 44121 Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bénédicte Danis
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Manuela Mazzuferi
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Patrik Foerch
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Susanne Schoch
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany.,Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud-Strasse 25, Bonn D-53127, Germany
| | - Vincenzo De Paola
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Rafal M Kaminski
- Neuroscience TA, UCB Biopharma SPRL, Avenue de l'industrie, R9, B-1420 Braine l'Alleud, Belgium
| | - Vincent T Cunliffe
- Department of Biomedical Science, Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Albert J Becker
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Sigmund Freud Street 25, Bonn D-53127, Germany
| | - Enrico Petretto
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.,Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
23
|
Moreira L, Beirão JM, Beirão I, Pinho e Costa P. Oligomeric TTR V30M aggregates compromise cell viability, erythropoietin gene expression and promoter activity in the human hepatoma cell line Hep3B. Amyloid 2015; 22:93-9. [PMID: 26088020 DOI: 10.3109/13506129.2015.1007497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Familial amyloidotic polyneuropathy, ATTRV30M (p. TTRV50M) amyloidosis, is a neurodegenerative disease characterized by systemic extracellular amyloid deposition of a mutant transthyretin, TTR V30M. Anemia, with low erythropoietin (EPO) levels and spared kidney function, affects about 25% of symptomatic patients, suggesting a blockage of EPO-producing cells. Early non-fibrillar TTR aggregates are highly cytotoxic, inducing oxidative stress, the expression of apoptosis-related molecules and secretion of pro-inflammatory cytokines, factors capable of inhibiting EPO production. Low EPO levels in these patients are not related to renal amyloid deposition or the presence of circulating TTR V30M. However, the role of early non-fibrillar TTR aggregates remains unexplored. We used the EPO producing Hep3B human hepatoma cell line to study the effect of TTR oligomeric aggregates on EPO expression. Hep3B cells were incubated with soluble and oligomeric TTR V30M, and cell proliferation as well as caspase 3/7 activation was evaluated. Relative quantification of EPO mRNA transcripts was performed by real-time PCR. Significant reductions in cell viability (13 ± 7.3%) and activation of caspases 3/7 were seen after 24 h in the presence of oligomeric TTR V30M. Also, EPO expression was significantly reduced (50 ± 2.8%), in normoxic conditions. A reporter assay was constructed with a PCR fragment of the EPO promoter linked to the luciferase gene to evaluate the role of transcription factors targeting the promoter. A significant reduction of EPO promoter activity (53 ± 6.5%) was observed in transfected cells exposed to TTR oligomers. Our results show that oligomeric TTR V30M reduces EPO expression, at least in part through inhibition of promoter activity.
Collapse
Affiliation(s)
- Luciana Moreira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge , INSA I.P., Porto , Portugal
| | | | | | | |
Collapse
|
24
|
Üzüm G, Akgün-Dar K, Kandil A, Bahçekapılı N, Albeniz I. Similarity of inflammatory response in epileptic seizures and sepsis: does the sensitivity to sepsis in epileptic patients increase? Crit Care 2014. [PMCID: PMC4273887 DOI: 10.1186/cc14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|