1
|
High Frequency of Apodemus Mice Boosts Inverse Activity Pattern of Bank Voles, Clethrionomys glareolus, through Non-Aggressive Intraguild Competition. Animals (Basel) 2023; 13:ani13060981. [PMID: 36978522 PMCID: PMC10044290 DOI: 10.3390/ani13060981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Sympatric animals with similar requirements can separate their ecological niches along the microhabitat, food and time axes. There may be alternative reasons for an interspecific different activity pattern, such as intraspecific social constraints, predator avoidance or physical conditions such as temperature, precipitation and illumination. We investigated the importance of intraguild competition in a 2-year study in an inner-alpine mixed forest, using small forest rodents as our model species. Apodemus mice were the physically superior, and bank voles, Clethrionomys glareolus, the inferior competitor. We predicted that bank voles would exhibit increased diurnal activity when frequencies of the almost exclusively nocturnal Apodemus mice were high during a seed mast year. To investigate this, we recorded 19,138 1 min videos. Controlling for confounding variables, bank vole diurnal activity was significantly related to the frequency of Apodemus mice. We assume that at high densities of Apodemus mice, a purely nocturnal separation in the niche dimensions of time, habitat and microhabitat is no longer sufficient, and therefore an inverse activity pattern by the bank voles is reinforced. Our videos showed, however, that this does not require persistent aggressive meetings and we explain this by the long co-evolution of the taxa under study.
Collapse
|
2
|
Brandenburg PJ, Obiegala A, Schmuck HM, Dobler G, Chitimia-Dobler L, Pfeffer M. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany. Pathogens 2023; 12:pathogens12020185. [PMID: 36839457 PMCID: PMC9962257 DOI: 10.3390/pathogens12020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Tick-borne encephalitis (TBE) is Eurasia's most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections.
Collapse
Affiliation(s)
- Philipp Johannes Brandenburg
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-97-38150
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Hannah Maureen Schmuck
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Gerhard Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Lidia Chitimia-Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Cunze S, Glock G, Klimpel S. Spatial and temporal distribution patterns of tick-borne diseases (Tick-borne Encephalitis and Lyme Borreliosis) in Germany. PeerJ 2021; 9:e12422. [PMID: 34993011 PMCID: PMC8675256 DOI: 10.7717/peerj.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In the face of ongoing climate warming, vector-borne diseases are expected to increase in Europe, including tick-borne diseases (TBD). The most abundant tick-borne diseases in Germany are Tick-Borne Encephalitis (TBE) and Lyme Borreliosis (LB), with Ixodes ricinus as the main vector. METHODS In this study, we display and compare the spatial and temporal patterns of reported cases of human TBE and LB in relation to some associated factors. The comparison may help with the interpretation of observed spatial and temporal patterns. RESULTS The spatial patterns of reported TBE cases show a clear and consistent pattern over the years, with many cases in the south and only few and isolated cases in the north of Germany. The identification of spatial patterns of LB disease cases is more difficult due to the different reporting practices in the individual federal states. Temporal patterns strongly fluctuate between years, and are relatively synchronized between both diseases, suggesting common driving factors. Based on our results we found no evidence that weather conditions affect the prevalence of both diseases. Both diseases show a gender bias with LB bing more commonly diagnosed in females, contrary to TBE being more commonly diagnosed in males. CONCLUSION For a further investigation of of the underlying driving factors and their interrelations, longer time series as well as standardised reporting and surveillance system would be required.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| | - Gustav Glock
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hesse, Germany
- Biodiversity and Climate Research Centre, Senckenberg Nature Research Society, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
4
|
Hassett EM, Thangamani S. Ecology of Powassan Virus in the United States. Microorganisms 2021; 9:microorganisms9112317. [PMID: 34835443 PMCID: PMC8624383 DOI: 10.3390/microorganisms9112317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
Zoonotic viruses threaten the lives of millions of people annually, exacerbated by climate change, human encroachment into wildlife habitats, and habitat destruction. The Powassan virus (POWV) is a rare tick-borne virus that can cause severe neurological damage and death, and the incidence of the associated disease (Powassan virus disease) is increasing in the eastern United States. The mechanisms by which POWV is maintained in nature and transmitted to humans are complex and only partly understood. This review provides an overview of what is known about the vector species, vector-host transmission dynamics, and environmental and human-driven factors that may be aiding the spread of both the vector and virus.
Collapse
|
5
|
Michelitsch A, Fast C, Sick F, Tews BA, Stiasny K, Bestehorn-Willmann M, Dobler G, Beer M, Wernike K. Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes glareolus). Ticks Tick Borne Dis 2021; 12:101693. [PMID: 33690089 DOI: 10.1016/j.ttbdis.2021.101693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a vector-borne pathogen that can cause serious neurological symptoms in humans. Across large parts of Eurasia TBEV is found in three traditional subtypes: the European, the Siberian and the Far-eastern subtype. Small mammalian animals play an important role in the transmission cycle as they enable the spread of TBEV among the vector tick population. To assess the impact of TBEV infection on its natural hosts, outbred bank voles (Myodes glareolus) were inoculated with one out of four European TBEV strains. Three of these TBEV strains were recently isolated in Germany. The forth one was the TBEV reference strain Neudörfl. Sampling points at 7, 14, 28, and 56 days post inoculation allowed the characterization of the course of infection. At each time point, six animals per strain were euthanized and eleven organ samples (brain, spine, lung, heart, small and large intestine, liver, spleen, kidney, bladder, sexual organ) as well as whole blood and serum samples were collected. The majority of bank voles (92/96) remained clinically unaffected after the inoculation with TBEV, but still developed a systemic infection during the first week, which transitioned to a viraemia and an infestation of the brain in some animals for the remainder of the first month. Viral RNA was found in whole blood samples of several animals (50/96), but only in a small fraction of the corresponding serum samples (4/50). From the whole blood, virus was successfully reisolated in cell culture until 14 days after inoculation. Less than five percent of all inoculated bank voles (4/96) displayed signs of distress in combination with a rapid weight loss and had to be euthanized prematurely. Overall, the recently isolated TBEV strains showed marked differences, such as a more frequent development of long-term viraemia and a higher detection rate of viral RNA in various organs, in comparison to the reference strain Neudörfl. Overall, our data suggest that the bank vole is a potential amplifying host in the TBEV transmission cycle and appears to be highly adapted to circulating TBEV strains.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10,17493, Greifswald, Insel Riems, Germany.
| | - Franziska Sick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Birke Andrea Tews
- Institute of Infectology, Friedrich-Loeffler-Institut Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | | | - Gerhard Dobler
- Dept. of Parasitology, University of Hohenheim, Emil-Wolff-Str. 34, 70599, Stuttgart, Germany; Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) Partner Site Munich, Neuherbergstraße 11, 80937, München, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
6
|
Seroprevalence of Tick-Borne Encephalitis Virus in Three Species of Voles ( Microtus spp.) in Poland. J Wildl Dis 2019; 56:492-494. [PMID: 31880991 DOI: 10.7589/2019-02-048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rodents play a role as reservoir hosts for tick-borne encephalitis virus (TBEV). We trapped 77 voles of the genus Microtus and tested their blood using an enzyme-linked immunosorbent assay for the presence of antibodies against TBEV. We detected TBEV antibodies in three adult individuals (4%). Voles might play a role in the circulation of TBEV.
Collapse
|
7
|
Michelitsch A, Wernike K, Klaus C, Dobler G, Beer M. Exploring the Reservoir Hosts of Tick-Borne Encephalitis Virus. Viruses 2019; 11:E669. [PMID: 31336624 PMCID: PMC6669706 DOI: 10.3390/v11070669] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important arbovirus, which is found across large parts of Eurasia and is considered to be a major health risk for humans. Like any other arbovirus, TBEV relies on complex interactions between vectors, reservoir hosts, and the environment for successful virus circulation. Hard ticks are the vectors for TBEV, transmitting the virus to a variety of animals. The importance of these animals in the lifecycle of TBEV is still up for debate. Large woodland animals seem to have a positive influence on virus circulation by providing a food source for adult ticks; birds are suspected to play a role in virus distribution. Bank voles and yellow-necked mice are often referred to as classical virus reservoirs, but this statement lacks strong evidence supporting their highlighted role. Other small mammals (e.g., insectivores) may also play a crucial role in virus transmission, not to mention the absence of any suspected reservoir host for non-European endemic regions. Theories highlighting the importance of the co-feeding transmission route go as far as naming ticks themselves as the true reservoir for TBEV, and mammalian hosts as a mere bridge for transmission. A deeper insight into the virus reservoir could lead to a better understanding of the development of endemic regions. The spatial distribution of TBEV is constricted to certain areas, forming natural foci that can be restricted to sizes of merely 500 square meters. The limiting factors for their occurrence are largely unknown, but a possible influence of reservoir hosts on the distribution pattern of TBE is discussed. This review aims to give an overview of the multiple factors influencing the TBEV transmission cycle, focusing on the role of virus reservoirs, and highlights the questions that are waiting to be further explored.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Klaus
- Institute for Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) partner site Munich, Neuherbergstraße 11, 80937 München, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
8
|
Nah K, Magpantay FMG, Bede-Fazekas Á, Röst G, Trájer AJ, Wu X, Zhang X, Wu J. Assessing systemic and non-systemic transmission risk of tick-borne encephalitis virus in Hungary. PLoS One 2019; 14:e0217206. [PMID: 31163042 PMCID: PMC6548428 DOI: 10.1371/journal.pone.0217206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/28/2023] Open
Abstract
Estimating the tick-borne encephalitis (TBE) infection risk under substantial uncertainties of the vector abundance, environmental condition and human-tick interaction is important for evidence-informed public health intervention strategies. Estimating this risk is computationally challenging since the data we observe, i.e., the human incidence of TBE, is only the final outcome of the tick-host transmission and tick-human contact processes. The challenge also increases since the complex TBE virus (TBEV) transmission cycle involves the non-systemic route of transmission between co-feeding ticks. Here, we describe the hidden Markov transition process, using a novel TBEV transmission-human case reporting cascade model that couples the susceptible-infected compartmental model describing the TBEV transmission dynamics among ticks, animal hosts and humans, with the stochastic observation process of human TBE reporting given infection. By fitting human incidence data in Hungary to the transmission model, we estimate key parameters relevant to the tick-host interaction and tick-human transmission. We then use the parametrized cascade model to assess the transmission potential of TBEV in the enzootic cycle with respect to the climate change, and to evaluate the contribution of non-systemic transmission. We show that the TBEV transmission potential in the enzootic cycle has been increasing along with the increased temperature though the TBE human incidence has dropped since 1990s, emphasizing the importance of persistent public health interventions. By demonstrating that non-systemic transmission pathway is a significant factor in the transmission of TBEV in Hungary, we conclude that the risk of TBE infection will be highly underestimated if the non-systemic transmission route is neglected in the risk assessment.
Collapse
Affiliation(s)
- Kyeongah Nah
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | | | - Ákos Bede-Fazekas
- Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary
- GINOP Sustainable Ecosystems Group, MTA Centre for Ecological Research, Tihany, Hungary
| | - Gergely Röst
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, United Kingdom
- Bolyai Institute, University of Szeged, Szeged, Hungary
| | - Attila János Trájer
- Department of Limnology, University of Pannonia, Veszprém, Hungary
- Institute of Environmental Engineering, University of Pannonia, Veszprém, Hungary
| | - Xiaotian Wu
- College of Arts and Sciences, Shanghai Maritime University, Shanghai, China
| | - Xue Zhang
- Department of Mathematics, Northeastern University, Shenyang, China
| | - Jianhong Wu
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Frimmel S, Löbermann M, Feldhusen F, Seelmann M, Stiasny K, Süss J, Reisinger EC. Detection of tick-borne encephalitis virus antibodies in sera of sheep and goats in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks Tick Borne Dis 2019; 10:901-904. [PMID: 31003897 DOI: 10.1016/j.ttbdis.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Silvius Frimmel
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany.
| | - Micha Löbermann
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany
| | - Frerk Feldhusen
- State Institute for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, D-18059 Rostock, Germany
| | - Matthias Seelmann
- State Institute for Agriculture, Food Safety and Fisheries Mecklenburg-Western Pomerania, D-18059 Rostock, Germany
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Jochen Süss
- Brehm Memorial Center Renthendorf, 07646 Renthendorf, Germany
| | - Emil Christian Reisinger
- Department of Tropical Medicine, Infectious Diseases and Nephrology, University of Rostock Medical School, 18055 Rostock, Germany
| |
Collapse
|
10
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
11
|
Grzybek M, Alsarraf M, Tołkacz K, Behnke-Borowczyk J, Biernat B, Stańczak J, Strachecka A, Guz L, Szczepaniak K, Paleolog J, Behnke JM, Bajer A. Seroprevalence of TBEV in bank voles from Poland-a long-term approach. Emerg Microbes Infect 2018; 7:145. [PMID: 30108201 PMCID: PMC6092418 DOI: 10.1038/s41426-018-0149-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
Rodents are known to play a significant role as reservoir hosts for TBEV. During three sequential expeditions at 4-year intervals to three ecologically similar study sites in NE Poland, we trapped bank voles (Myodes glareolus) and then tested their blood for the presence of specific antiviral antibodies to TBEV. The strongest effects on seroprevalence were the extrinsic factors, site of capture of voles and year of sampling. Seroprevalence increased markedly with increasing host age, and our analysis revealed significant interactions among these three factors. Seroprevalence did not differ between the sexes. Therefore, based on the seroprevalence results, the dynamics of TBEV infection differ significantly in time, between local sub-populations of bank voles and with increasing host age. To fully understand the circulation of the virus among these reservoir hosts and in the environment, long-term monitoring is required and should employ a multi-site approach, such as the one adopted in the current study.
Collapse
Affiliation(s)
- Maciej Grzybek
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland.
| | | | | | | | - Beata Biernat
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Stańczak
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aneta Strachecka
- Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin, Poland
| | - Leszek Guz
- Department of Biology and Fish Disease, University of Life Sciences in Lublin, Lublin, Poland
| | - Klaudiusz Szczepaniak
- Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy Paleolog
- Department of Zoology, Animal Ecology & Wildlife Management, University of Life Sciences in Lublin, Lublin, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anna Bajer
- Department of Parasitology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Izuogu AO, McNally KL, Harris SE, Youseff BH, Presloid JB, Burlak C, Munshi-South J, Best SM, Taylor RT. Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS One 2017; 12:e0179781. [PMID: 28650973 PMCID: PMC5484488 DOI: 10.1371/journal.pone.0179781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1-30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Host Specificity/genetics
- Host Specificity/immunology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Type I/antagonists & inhibitors
- Interferon Type I/immunology
- Mice
- Peromyscus/genetics
- Peromyscus/immunology
- Peromyscus/virology
- RNA, Small Interfering/genetics
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Nonstructural Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Adaeze O. Izuogu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Kristin L. McNally
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - Stephen E. Harris
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Brian H. Youseff
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - John B. Presloid
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Christopher Burlak
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - R. Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| |
Collapse
|
13
|
Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME. Modeling Powassan virus infection in Peromyscus leucopus, a natural host. PLoS Negl Trop Dis 2017; 11:e0005346. [PMID: 28141800 PMCID: PMC5302833 DOI: 10.1371/journal.pntd.0005346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/10/2017] [Accepted: 01/22/2017] [Indexed: 02/07/2023] Open
Abstract
The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.
Collapse
Affiliation(s)
- Luwanika Mlera
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Marshall E. Bloom
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|