1
|
Fu C, Yang D, Long WC, Xiao X, Wang H, Jiang N, Yang Y. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:453. [PMID: 38720243 PMCID: PMC11080265 DOI: 10.1186/s12864-024-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Insect Cytochrome P450 monooxygenase (CYPs or P450s) plays an important role in detoxifying insecticides, causing insect populations to develop resistance. However, the molecular functions of P450 gene family in Cyrtotrachelus buqueti genome are still lacking. RESULTS In this study, 71 CbuP450 genes have been identified. The amino acids length of CbuP450 proteins was between 183 aa ~ 1041 aa. They are proteins with transmembrane domains. The main component of their secondary structure is α-helix and random coils. Phylogenetic analysis showed that C. buqueti and Rhynchophorus ferrugineus were the most closely related. This gene family has 29 high-frequency codons, which tend to use A/T bases and A/T ending codons. Gene expression analysis showed that CbuP450_23 in the female adult may play an important role on high temperature resistance, and CbuP450_17 in the larval may play an important role on low temperature tolerance. CbuP450_10, CbuP450_17, CbuP450_23, CbuP450_10, CbuP450_16, CbuP450_20, CbuP450_23 and CbuP450_ 29 may be related to the regulation of bamboo fiber degradation genes in C. buqueti. Protein interaction analysis indicates that most CbuP450 proteins are mainly divided into three aspects: encoding the biosynthesis of ecdysteroids, participating in the decomposition of synthetic insecticides, metabolizing insect hormones, and participating in the detoxification of compounds. CONCLUSIONS We systematically analyzed the gene and protein characteristics, gene expression, and protein interactions of CbuP450 gene family, revealing the key genes involved in the stress response of CbuP450 gene family in the resistance of C. buqueti to high or low temperature stress, and identified the key CbuP450 proteins involved in important life activity metabolism. These results provided a reference for further research on the function of P450 gene family in C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| | - Ding Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Wen Cong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - XiMeng Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| |
Collapse
|
2
|
Pathak J, Ramasamy GG, Agrawal A, Srivastava S, Basavaarya BR, Muthugounder M, Muniyappa VK, Maria P, Rai A, Venkatesan T. Comparative Transcriptome Analysis to Reveal Differentially Expressed Cytochrome P450 in Response to Imidacloprid in the Aphid Lion, Chrysoperla zastrowi sillemi (Esben-Petersen). INSECTS 2022; 13:900. [PMID: 36292848 PMCID: PMC9604014 DOI: 10.3390/insects13100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The aphid lion, Chrysoperla zastrowi sillemi (Neuroptera: Chrysopidae) is a highly effective beneficial predator of many agricultural pests and has developed resistance to several insecticides. Understanding the molecular mechanism of insecticide resistance in the predators is crucial for its effective application in IPM programs. Therefore, transcriptomes of imidacloprid-resistant and susceptible strains have been assessed using RNA-seq. Cytochrome P450 is one of the important gene families involved in xenobiotic metabolism. Hence, our study focused on the CYP gene family where mining, nomenclature, and phylogenetic analysis revealed a total of 95 unique CYP genes with considerable expansion in CYP3 and CYP4 clans. Further, differential gene expression (DGE) analysis revealed ten CYP genes from CYP3 and CYP4 clans to be differentially expressed, out of which nine genes (CYP4419A1, CYP4XK1, CYP4416A10, CYP4416A-fragment8, CYP6YL1, CYP6YH6, CYP9GK-fragment16, CYP9GN2, CYP9GK6) were downregulated and one (CYP9GK3) was upregulated in the resistant strain as compared to the susceptible strain. Expression validation by quantitative real-time PCR (qRT-PCR) is consistent with the DGE results. The expansion and differential expression of CYP genes may be an indicator of the capacity of the predator to detoxify a particular group of insecticides.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Aditi Agrawal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Bhusangar Raghavendra Basavaarya
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Mohan Muthugounder
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Venugopal Kundalagurki Muniyappa
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Pratheepa Maria
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Thiruvengadam Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
3
|
Antony B, Johny J, Abdelazim MM, Jakše J, Al-Saleh MA, Pain A. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 2019; 20:440. [PMID: 31151384 PMCID: PMC6545022 DOI: 10.1186/s12864-019-5837-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
Background Cytochrome P450-dependent monooxygenases (P450s), constituting one of the largest and oldest gene superfamilies found in many organisms from bacteria to humans, play a vital role in the detoxification and inactivation of endogenous toxic compounds. The use of various insecticides has increased over the last two decades, and insects have developed resistance to most of these compounds through the detoxifying function of P450s. In this study, we focused on the red palm weevil (RPW), Rhynchophorus ferrugineus, the most devastating pest of palm trees worldwide, and demonstrated through functional analysis that upregulation of P450 gene expression has evolved as an adaptation to insecticide stress arising from exposure to the neonicotinoid-class systematic insecticide imidacloprid. Results Based on the RPW global transcriptome analysis, we identified 101 putative P450 genes, including 77 likely encoding protein coding genes with ubiquitous expression. A phylogenetic analysis revealed extensive functional and species-specific diversification of RPW P450s, indicating that multiple CYPs actively participated in the detoxification process. We identified highly conserved paralogs of insect P450s that likely play a role in the development of resistance to imidacloprid: Drosophila Cyp6g1 (CYP6345J1) and Bemisia tabaci CYP4C64 (CYP4LE1). We performed a toxicity bioassay and evaluated the induction of P450s, followed by the identification of overexpressed P450s, including CYP9Z82, CYP6fra5, CYP6NR1, CYP6345J1 and CYP4BD4, which confer cross-resistance to imidacloprid. In addition, under imidacloprid insecticide stress in a date palm field, we observed increased expression of various P450 genes, with CYP9Z82, CYP4BD4, CYP6NR1 and CYP6345J1 being the most upregulated detoxification genes in RPWs. Expression profiling and cluster analysis revealed P450 genes with multiple patterns of induction and differential expression. Furthermore, we used RNA interference to knock down the overexpressed P450s, after which a toxicity bioassay and quantitative expression analysis revealed likely candidates involved in metabolic resistance against imidacloprid in RPW. Ingestion of double-stranded RNA (dsRNA) successfully knocked down the expression of CYP9Z82, CYP6NR1 and CYP345J1 and demonstrated that silencing of CYP345J1 and CYP6NR1 significantly decreased the survival rate of adult RPWs treated with imidacloprid, indicating that overexpression of these two P450s may play an important role in developing tolerance to imidacloprid in a date palm field. Conclusion Our study provides useful background information on imidacloprid-specific induction and overexpression of P450s, which may enable the development of diagnostic tools/markers for monitoring the spread of insecticide resistant RPWs. The observed trend of increasing tolerance to imidacloprid in the date palm field therefore indicated that strategies for resistance management are urgently needed. Electronic supplementary material The online version of this article (10.1186/s12864-019-5837-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia.
| | - Jibin Johny
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Mahmoud M Abdelazim
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Jernej Jakše
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Mohammed Ali Al-Saleh
- Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Chair of Date Palm Research, Riyadh, 11451, Saudi Arabia
| | - Arnab Pain
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Olsen LR, Hansen SH, Janfelt C. Distribution of terfenadine and its metabolites in locusts studied by desorption electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 2014; 407:2149-58. [DOI: 10.1007/s00216-014-8292-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023]
|
5
|
Ozdemir A, Duran M, Sen A. Potential use of the oligochaete Limnodrilus profundicola V., as a bioindicator of contaminant exposure. ENVIRONMENTAL TOXICOLOGY 2011; 26:37-44. [PMID: 20653049 DOI: 10.1002/tox.20527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Adile Ozdemir
- Faculty of Arts and Sciences, Department of Biology, Pamukkale University, 20070 Denizli, Turkey
| | | | | |
Collapse
|
6
|
Sturm A, Hansen P. Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 1999; 42:9-15. [PMID: 9931232 DOI: 10.1006/eesa.1998.1721] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biochemical indices were investigated for their potential use as variables of sublethal toxicity in Daphnia (cholinesterase) and Chironomus (cholinesterase and biotransformation enzymes). Parathion, dichlorvos, and aldicarb caused dose-related inhibition of cholinesterase (ChE) in 24-h bioassays with both species. Ratios of Daphnia and Chironomus ChE IC50 values to corresponding immotility EC50 values derived from the same experiment covered the range 0.26 to 1.2. Estimates of the ChE inhibition caused by the immotility EC50 were in the range 53-99% below control activity. ChE IC50 values of dichlorvos, parathion, and aldicarb were 0.17, 0.61, and 95 microg/liter in Daphnia and 6.2, 2.9, and 27 microg/liter in Chironomus, respectively. Cytochrome P450-dependent monooxygenase activities (ethoxyresorufin-O-deethylase, methoxyresorufin-O-deethylase, and ethoxycoumarin-O-deethylase) were detectable in Chironomus but not in Daphnia. Chironomus monooxygenase activities were significantly inhibited to about 30% of control values after 4 days of exposure to 50 microg/liter 3, 4-dichloroaniline but remained unchanged by 0.5 microg/liter parathion. An approximately 1.3-fold induction of monooxygenase activities was caused by the model inducer naphthalene (0.1mg/liter). These results suggest that cytochrome P450-dependent monooxygenase activities may be useful variables in toxicity tests with aquatic insects.
Collapse
Affiliation(s)
- A Sturm
- Department of Chemical Ecotoxicology, UFZ Centre for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | | |
Collapse
|
7
|
|
8
|
Feng R, Houseman JG, Downe AER, Arnason JT. Effects of ?-Terthienyl on the midgut detoxification enzymes of the European corn borer,Ostrinia nubilalis. J Chem Ecol 1993; 19:2047-54. [DOI: 10.1007/bf00983807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1992] [Accepted: 04/26/1993] [Indexed: 10/26/2022]
|
9
|
Spiegelman VS, Belitsky GA. The effect of the cytochrome P-450 system inducers on the development of Drosophila melanogaster. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1993; 8:83-8. [PMID: 8355263 DOI: 10.1002/jbt.2570080205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
D. melanogaster development was markedly retarded and its survival decreased by larvae treatment with compounds being strong inducers of the cytochrome P-450 2B in mammals--phenobarbital (PB*), perfluorodecaline (PFD), transtilbene oxide (TSO), and triphenyldioxane (TPD). At the same time, the weak inducer hexobarbital or the selective cytochrome P-450 inducer in mice but not in rats 1,4-bis[2-(dichloropyridyl-oxy)]-benzene (DPB) did not affect the larvae development. The cytochrome P-450 1A1 inducers benzo(a)anthracene (BA) and beta-naphtoflavone (BNF) were also not effective. The toxicity of phenobarbital was shown to be decreased by the cytochrome P-450 inhibitor piperonyl butoxide by adding 20-hydroxyecdysone or by treatment with aminophylline--the indirect enhancer of ecdysone production in the larval prothoracic gland. The hypothesis of the moulting hormone degradation as the cause of elevated larvae mortality resulting from the induced high mixed function oxidase activity has been discussed.
Collapse
|
10
|
Waters LC, Zelhof AC, Shaw BJ, Ch'ang LY. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc Natl Acad Sci U S A 1992; 89:4855-9. [PMID: 1317576 PMCID: PMC49186 DOI: 10.1073/pnas.89.11.4855] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of a pair of susceptible, 91-C, and resistant, 91-R, Drosophila strains were made. There was 20-30 times more P450-B1 mRNA in 91-R than in 91-C, and the small amount of P450-B1 mRNA in 91-C was significantly larger in size than that in 91-R. The P450-B1 gene in 91-R was structurally different from that in 91-C but was not amplified. The P450-B1 gene in 91-C contained a solitary long terminal repeat of transposable element 17.6 in its 3' untranslated region. It was absent in the P450-B1 gene of 91-R. On the basis of features of the long terminal repeat and its location in the gene of the susceptible fly, we propose that a posttranscriptional mechanism involving mRNA stability could be involved in regulating P450-B1 gene expression.
Collapse
Affiliation(s)
- L C Waters
- Biology Division, Oak Ridge National Laboratory, TN 37831-8077
| | | | | | | |
Collapse
|
11
|
Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48462-1] [Citation(s) in RCA: 894] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|