1
|
Uehara S, Murayama N, Yamazaki H, Suemizu H. Regioselective hydroxylation of an antiarrhythmic drug, propafenone, mediated by rat liver cytochrome P450 2D2 differs from that catalyzed by human P450 2D6. Xenobiotica 2019; 49:1323-1331. [PMID: 30596462 DOI: 10.1080/00498254.2018.1564401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Propafenone, an antiarrhythmic drug, is a typical human cytochrome P450 (P450) 2D6 substrate used in preclinical studies. Here, propafenone oxidation by mammalian liver microsomes was investigated in vitro. 2. Liver microsomes from humans and marmosets preferentially mediated propafenone 5-hydroxylation, minipig, rat and mouse livers primarily mediated 4'-hydroxylation, but cynomolgus monkey and dog liver microsomes differently mediated N-despropylation. 3. Quinine, ketoconazole or anti-P450 2D antibodies suppressed propafenone 4'/5-hydroxylation in human and rat liver microsomes. Pretreatments with β-naphthoflavone or dexamethasone increased N-despropylation in rat livers. 4. Recombinant rat P450 2D2 efficiently catalysed propafenone 4'-hydroxylation in a substrate inhibition manner, comparable to rat liver microsomes, while human P450 2D6 displayed propafenone 5-hydroxylation. Human and rat P450 1A, 2C and 3A enzymes mediated propafenone N-despropylation with high capacities. 5. Carbon-4' of propafenone docked favourably into the active site of P450 2D2 based on an in silico model; in contrast, carbon-5 of propafenone docked into human P450 2D6. 6. These results suggest that the major roles of individual P450 2D enzymes in regioselective hydroxylations of propafenone differ between human and rat livers, while the minor roles of P450 1A, 2C and 3A enzymes for propafenone N-despropylation are similar in livers of both species.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Central Institute for Experimental Animals , Kawasaki , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Japan
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Japan
| | - Hiroshi Suemizu
- a Central Institute for Experimental Animals , Kawasaki , Japan
| |
Collapse
|
2
|
Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.469] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Lorenc-Koci E, Antkiewicz-Michaluk L, Wardas J, Zapała M, Wierońska J. Effect of 1,2,3,4,-tetrahydroisoquinoline administration under conditions of CYP2D inhibition on dopamine metabolism, level of tyrosine hydroxylase protein and the binding of [3H]GBR 12,935 to dopamine transporter in the rat nigrostriatal, dopaminergic system. Brain Res 2004; 1009:67-81. [PMID: 15120584 DOI: 10.1016/j.brainres.2004.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/27/2022]
Abstract
Current concepts of Parkinson's disease (PD) postulate that interaction between neurotoxins and specific genetic background may play an important role in pathogenesis of PD. Therefore, the effect of multiple administration of 1,2,3,4-tetrahydroisoquinoline (TIQ) under conditions of CYP2D blockade on the expression of key markers of PD was studied in the rat striatum (STR) and substantia nigra (SN). TIQ administered alone (50 mg/kg i.p. twice daily for 14 days) markedly decreased the level of tyrosine hydroxylase protein (TH) in the STR; however, this effect was not accompanied by reduction of dopamine (DA) concentration and [(3)H]GBR 12,935 binding to dopamine transporter (DAT). Administration of CYP2D inhibitor, quinine, jointly with TIQ lowered the levels of TH and DA in that structure, but slightly increased DAT binding. In the SN, treatment with TIQ alone did not change TH level although it enhanced DA content and decreased [(3)H]GBR 12,935 binding to DAT in the substantia nigra pars compacta (SNc). Neither the TH level nor DA concentration was affected by the combined treatment, although DAT binding was still reduced in the SN. TIQ did not change the total DA catabolism in the STR, but caused its inhibition in the SN. It strongly depressed the levels of intraneuronal DA metabolite DOPAC and enhanced that of extraneuronal 3-MT in either structure. TIQ more weakly affected the levels of both DA metabolites in the presence of quinine. Our results suggest that endogenous TIQ may act rather as neuromodulator but not as parkinsonism-inducing neurotoxin in the rat brain.
Collapse
Affiliation(s)
- Elzbieta Lorenc-Koci
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Science, 12, Smetna St., PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
4
|
Srinivas NR. Simultaneous chiral analyses of multiple analytes: case studies, implications and method development considerations. Biomed Chromatogr 2004; 18:759-84. [PMID: 15584016 DOI: 10.1002/bmc.447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The field of chiral separations had a modest beginning some two decades ago. However, due to rapid technological advancement coupled with simultaneous availability of innovative chiral stationary phases and novel chiral derivatization agents, the field of chiral separations has now totally outpaced many other separation fields. Keeping pace with rapid changes in the field of chiral separations, investigators continue to add stereoselective pharmacokinetic, pharmacodynamic, pharmacologic and toxicological data of new and/or marketed racemic compounds to the literature. Examination of the evolution of chiral separations suggests that in the beginning many investigators attempted to separate and quantify a single pair of enantiomers, adopting either direct (separation made on a chiral stationary phase) or indirect (separation made following precolumn conversion of enantiomers to corresponding diastereomers) approaches. However, more recent trends in chiral separations suggest that investigators are attempting to separate and quantify multiple pairs of enantiomers with available technologies. Added to this, some interesting trends have been observed in many of the recently reported chiral applications, including preferences regarding internal standard selection, mobile phase contents and composition, sorting out issues with mass spectrometric detection, determination of elution order, analytical manipulations of metabolite(s) without reference standards and addressing some specificity-related issues. This review mainly focuses on chiral separations involving multiple chiral analytes and attempts to justify the need for such chiral separations involving multiple analytes. In this context, several cases studies are described on the utility and applicability of such chiral separations under discrete headings to provide an account to the readership on the implications of such tasks. The topics of case studies covered in this review include: (a) therapy markers--differentiation from drug abuse and/or applicability in forensics; (b) role in pharmacogenetic/polymorphic evaluation; (c) monitoring and understanding the role of parent and active metabolite(s) in clinical and preclinical investigations; (d) exploration on the pharmacokinetic utility of an active chiral metabolite vis-a-vis the racemic parent moiety; (e) understanding the chirality play in delineating peculiar toxic effects; (f) exploration of chiral inversion phenomenon, and understanding the role of stereoselective metabolism. For the further benefit of readership, some select examples (n = 19) of the separation of multiple chiral analytes with appropriate information on chromatography, detection system, validation parameters and applicable conclusion are also provided. Finally, the review covers some useful considerations for method development involving multiple chiral analytes.
Collapse
Affiliation(s)
- Nuggehally R Srinivas
- Drug Development, Discovery Research, Dr Reddy's Laboratories, Bollaram Road, Miyapur, Hyderabad 500 049, India.
| |
Collapse
|
5
|
Lorenc-Koci E, Wójcikowski J, Kot M, Haduch A, Boksa J, Daniel WA. Disposition of 1,2,3,4,-tetrahydroisoquinoline in the brain of male Wistar and Dark Agouti rats. Brain Res 2004; 996:168-79. [PMID: 14697494 DOI: 10.1016/j.brainres.2003.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Direct evidence for accumulation of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance suspected of producing Parkinsonism in humans, has not yet been shown. This study aimed to examine TIQ disposition in the whole rat brain and in the striatum and substantia nigra (SN). TIQ was administered to male Wistar and Dark Agouti rats (20, 40 and 100 mg/kg i.p.) alone or jointly with specific CYP2D inhibitor quinine (20, 40, 80 mg/kg i.p.), acutely or chronically. TIQ concentration in brain of both strains was several-fold higher than in plasma. The level of its metabolite, 4-OH-TIQ, was very low in the brain and plasma of TIQ-treated Wistar while in those receiving additionally quinine or in Dark Agouti rats, 4-OH-TIQ was absent or negligible. Inhibition of CYP2D catalyzing TIQ 4-hydroxylation in the liver had no influence on TIQ accumulation in the brain. Exogenous TIQ was actively transported from periphery into the brain by the organic cation transporter system, mainly OCT3, and quickly eliminated from it by P-glycoprotein. TIQ accumulation after chronic injection to Wistar rats was short-lasting and limited to SN. High concentration of TIQ in SN induces while in the liver inhibits the nigral and hepatic activity CYP2D, respectively.
Collapse
Affiliation(s)
- Elzbieta Lorenc-Koci
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Science, 12 Smetna St., PL-31-343 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
6
|
Donovan JL, DeVane CL, Boulton D, Dodd S, Markowitz JS. Dietary levels of quinine in tonic water do not inhibit CYP2D6 in vivo. Food Chem Toxicol 2003; 41:1199-201. [PMID: 12842189 DOI: 10.1016/s0278-6915(03)00112-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Quinine is a bitter alkaloid that is used as a flavoring agent in tonic water. Studies suggest that quinine can inhibit cytochrome P450 2D6 (CYP2D6) which could have implications for the metabolism of co-ingested drugs. We conducted a study with 11 healthy volunteers (7 men, 4 women; aged 26-54). After urinary void, each subject consumed either 1000 ml of carbonated water or 1000 ml of tonic water containing 80 mg quinine in a crossover design. Following each beverage subjects ingested an oral dose of 30 mg dextromethorphan (DM). Urine was collected for 8 h and analyzed for DM and dextrophran, its CYP2D6 mediated metabolite. The ratio of DM and its metabolite is an established measure of CYP2D6 activity. All subjects metabolized the vast majority of DM to its metabolite after both the carbonated water and the tonic water. The ratio (mean+/-S.D.) of DM to its metabolite was 0.013+/-0.028 after the carbonated water and 0.032+/-0.067 after the quinine containing water. No significant difference in the ratios was observed between the two beverages (P>0.05). We conclude that quinine as consumed in tonic water does not inhibit CYP2D6 activity in vivo. Thus, quinine should not alter the metabolism of CYP2D6 substrates taken concomitantly with tonic water.
Collapse
Affiliation(s)
- Jennifer L Donovan
- Laboratory of Drug Disposition and Pharmacogenetics, Medical University of South Carolina, 67 President St. suite 246 N, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
7
|
Vorhees CV, Reed TM, Schilling MA, Fisher JE, Moran MS, Cappon GD, Nebert DW. CYP2D1 polymorphism in methamphetamine-treated rats: genetic differences in neonatal mortality and effects on spatial learning and acoustic startle. Neurotoxicol Teratol 1998; 20:265-73. [PMID: 9638684 DOI: 10.1016/s0892-0362(97)00129-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
d-Methamphetamine (MA) is one of more than two dozen drugs included in the cytochrome P450-mediated "debrisoquine oxidation polymorphism" panel. The human gene (CYP2D6) is responsible for the "poor metabolizer" (PM) and "extensive metabolizer" (EM) phenotypes for drugs such as MA; a similar polymorphism (the CYP2D1 gene) exists in rats. Female Black or Dark Agouti rats exhibit the PM phenotype, whereas Sprague-Dawley (SD) rats show the EM trait. We sought to test the possibility that these strains of rats might exhibit altered MA-induced developmental neurotoxicity. Neonatal exposure to MA on days 11-20 has previously been shown to induce spatial learning deficits in Sprague-Dawley rats when tested as adults. Therefore, in the present experiment, on postpartum days 11 through 20, ACI (Black Agouti) and SD progeny were administered 30 mg/kg MA twice daily. MA treatment caused larger increases in mortality in ACI than in SD rats, suggesting that decreased MA metabolism leads to enhanced toxicity and lethality. Female offspring were assessed behaviorally as adults. No differences were observed in acoustic startle or straight swimming channel performance. In the Morris maze, both MA-treated rat strains showed longer latencies to find the hidden platform during acquisition, reinstatement, and shift trials, and spent less time in the target quadrant on probe trials; no strain differences in learning were found. Although these data do not support our hypothesis that MA-induced developmental neurotoxicity might be enhanced in the ACI rat, this interpretation is tempered by the high mortality rate (65%) of MA-treated ACI neonates, suggesting a possible "survivor effect" in this strain.
Collapse
Affiliation(s)
- C V Vorhees
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Colado MI, Williams JL, Green AR. The hyperthermic and neurotoxic effects of 'Ecstasy' (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol 1995; 115:1281-9. [PMID: 7582557 PMCID: PMC1908797 DOI: 10.1111/j.1476-5381.1995.tb15037.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The effect of administration of 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy') and its N-demethylated product, 3,4-methylenedioxyamphetamine (MDA) on both rectal temperature and long term neurotoxic loss of cerebral 5-hydroxytryptamine (5-HT) has been studied in male and female Dark Agouti (DA) rats. The female metabolizes debrisoquine more slowly than the male and its use has been suggested as a model of the human debrisoquine 4-hydroxylase poor metabolizer phenotype. 2. A novel h.p.l.c. method was developed and used to measure plasma MDMA and MDA concentrations in the DA rats. 3. The hyperthermic response following MDMA was enhanced in female rats. Plasma MDMA concentrations were also 57% higher than in males 45 min post-injection, while plasma concentrations of MDA were 48% lower. 4. Plasma concentrations of MDMA and MDA in male rats were unaffected by pretreatment with proadifen (15 mg kg-1) or quinidine (60 mg kg-1), but the hyperthermic response to MDMA (10 mg kg-1, i.p.) was enhanced by quinidine pretreatment. 5. The hyperthermic response following MDA was greater in male DA rats, despite plasma drug concentrations being 40% higher in females 60 min after injection. 6. Seven days after a single dose of MDMA (10 mg kg-1, i.p.) there was a substantial loss in the concentration of 5-HT and 5-hydroxyindoleacetic acid (5-HIA) in cortex and hippocampus. [3H]-paroxetine binding was also decreased by 27% in the cortex, indicating that the amine loss reflected a neurodegenerative change. MDMA (5 mg kg-1, i.p.) was without effect on brain 5-HT content. content.7. A single dose of MDA (5 mg kg-1, i.p.) produced a major (approximately 40%) loss of 5-HT content of cortex and hippocampus 7 days later. The loss was similar in males and females.8 These data demonstrate that female DA rats are more susceptible to the acute hyperthermic effects ofMDMA, probably because of impaired N-demethylation and indicate that in human subjects acuteMDMA-induced toxicity may be exacerbated in poor metabolizer phenotypes. Low debrisoquine hydroxylase activity did not appear to impair the formation of a MDMA or MDA neurotoxic metabolite. Both severe acute hyperthermia and delayed neurotoxicity occurred following plasma levels of MDMA comparable to those reported in persons misusing the drug.
Collapse
Affiliation(s)
- M I Colado
- Astra Neuroscience Research Unit, London
| | | | | |
Collapse
|