1
|
Meyer MJ, Schreier PCF, Basaran M, Vlasova S, Seitz T, Brockmöller J, Zdrazil B, Tzvetkov MV. Amino acids in transmembrane helix 1 confer major functional differences between human and mouse orthologs of the polyspecific membrane transporter OCT1. J Biol Chem 2022; 298:101974. [PMID: 35469921 PMCID: PMC9130538 DOI: 10.1016/j.jbc.2022.101974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/04/2023] Open
Abstract
Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the β2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human–mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar β2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure–function data of OCT1 is not directly transferrable between substrates or species.
Collapse
Affiliation(s)
- Marleen J Meyer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Pascale C F Schreier
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mert Basaran
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Stefaniia Vlasova
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tina Seitz
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
2
|
Verreault J, Letcher RJ, Sonne C, Dietz R. In vitro metabolism of polychlorinated biphenyls and cytochrome P450 monooxygenase activities in dietary-exposed Greenland sledge dogs. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:91-100. [PMID: 19303460 DOI: 10.1016/j.cbpc.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 11/29/2022]
Abstract
The in vitro metabolism of a polychlorinated biphenyl (PCB) mixture was examined using hepatic microsomes of dietary-exposed Greenland sledge dogs (Canis familiaris) to an organohalogen-rich diet (Greenland minke whale blubber: EXP cohort) or a control diet (pork fat: CON cohort). The associations between in vitro PCB metabolism, activity of oxidative hepatic microsomal cytochrome P450 (CYP) isoenzymes and concentrations of PCBs and hydroxylated metabolites were investigated. The CON dogs exhibited a 2.3-fold higher depletion percentage for the PCB congeners having at least two pairs of vicinal meta-para Cl-unsubstituted carbons (PCB-18 and -33) relative to the EXP dogs. This depletion discrepancy suggests that there exist substrates in liver of the organohalogen-contaminated EXP dogs that can competitively bind and/or interfere with the active sites of CYP isoenzymes, leading to a lower metabolic efficiency for these PCBs. Testosterone (T) hydroxylase activity, determined via the formation of 6beta-OH-T, 16alpha-OH-T, 16beta-OH-T and androstenedione, was strongly correlated with the depletion percentages of PCB-18 and -33 in both cohorts. Based on documented hepatic microsomal CYP isoenzyme substrate specificities in canines, present associations suggest that primarily CYP2B/2C and CYP3A were inducible in sledge dogs and responsible for the in vitro metabolism of PCB-18 and -33.
Collapse
Affiliation(s)
- Jonathan Verreault
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
3
|
Prasad PV, Arumugam R, Willman M, Ge RS, Sitruk-Ware R, Kumar N. Distribution, metabolism and excretion of a synthetic androgen 7alpha-methyl-19-nortestosterone, a potential male-contraceptive. Steroids 2009; 74:121-31. [PMID: 18992267 DOI: 10.1016/j.steroids.2008.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 08/29/2008] [Accepted: 09/29/2008] [Indexed: 11/20/2022]
Abstract
A synthetic androgen 7alpha-Methyl-19-nortestosterone (MENT) has a potential for therapeutic use in 'androgen replacement therapy' for hypogonadal men or as a hormonal male-contraceptive in normal men. Its tissue distribution, excretion and metabolic enzyme(s) have not been reported. Therefore, the present study tested the distribution and excretion of MENT in Sprague-Dawley rats castrated 24h prior to the injection of tritium-labeled MENT ((3)H-MENT). Rats were euthanized at different time intervals after dosing, and the amount of radioactivity in various tissues/organs was measured following combustion in a Packard oxidizer. The radioactivity (% injected dose) was highest in the duodenal contents in the first 30min of injection. Specific uptake of the steroid was observed in target tissues such as ventral prostate and seminal vesicles at 6h, while in other tissues radioactivity equilibrated with blood. Liver and duodenum maintained high radioactivity throughout, as these organs were actively involved in the metabolism and excretion of most drugs. The excretion of (3)H-MENT was investigated after subcutaneous injection of (3)H-MENT into male rats housed in metabolic cages. Urine and feces were collected at different time intervals (up to 72h) following injection. Results showed that the radioactivity was excreted via feces and urine in equal amounts by 30h. Aiming to identify enzyme(s) involved in the MENT metabolism, we performed in vitro metabolism of (3)H-MENT using rat and human liver microsomes, cytosol and recombinant cytochrome P(450) (CYP) isozymes. The metabolites were separated by thin-layer chromatography (TLC). Three putative metabolites (in accordance with the report of Agarwal and Monder [Agarwal AK, Monder C. In vitro metabolism of 7alpha-methyl-19-nortestosterone by rat liver, prostate, and epididymis. Endocrinology 1988;123:2187-93]), [i] 3-hydroxylated MENT by both rat and human liver cytosol; [ii] 16alpha-hydroxylated MENT (a polar metabolite) by both rat and human hepatic microsomes; and [iii] 7alpha-methyl-19-norandrostenedione (a non-polar metabolite) by human hepatic microsomes, were obtained. By employing chemical inhibitors and specific anti-CYP antibodies, (3)H-MENT was found to be metabolized specifically by rat CYP 2C11 and 3-hydroxysteroid dehydrogenase (3-HSD) enzymes whereas in humans it was accomplished by CYP 3A4, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 3-HSD enzymes.
Collapse
Affiliation(s)
- Pramod Vishwanath Prasad
- Center for Biomedical Research, The Population Council, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2008; 256:53-64. [PMID: 19041682 DOI: 10.1016/j.tox.2008.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 02/03/2023]
Abstract
The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6alpha/15alpha-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P450s in a manner that varies depending on the ligand.
Collapse
|
5
|
Hernandez JP, Chapman LM, Kretschmer XC, Baldwin WS. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice. Toxicol Appl Pharmacol 2006; 216:186-96. [PMID: 16828826 PMCID: PMC1964506 DOI: 10.1016/j.taap.2006.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/21/2006] [Accepted: 05/23/2006] [Indexed: 11/15/2022]
Abstract
Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16alpha-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.
Collapse
Affiliation(s)
- Juan P Hernandez
- Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | | | | | | |
Collapse
|
6
|
Baldwin WS, Roling JA, Peterson S, Chapman LM. Effects of nonylphenol on hepatic testosterone metabolism and the expression of acute phase proteins in winter flounder (Pleuronectes americanus): comparison to the effects of Saint John's Wort. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:87-96. [PMID: 15792627 DOI: 10.1016/j.cca.2005.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/08/2005] [Accepted: 01/13/2005] [Indexed: 01/20/2023]
Abstract
4-Nonylphenol (4-NP), a major by-product of alkylphenol ethoxylates, is used in several industries and as a consequence is quite common in rivers, estuaries and other aquatic environments that receive sewage discharges or are near offshore oil platforms. 4-NP is an environmental estrogen that also binds human and rodent Pregnane X-receptor (PXR), the orphan nuclear receptor that controls the expression of several detoxication genes in mammals, including several CYP3A and CYP2B family members. These P450s preferentially hydroxylate testosterone in the 6beta- and 16beta-positions, respectively. In this study, the effects of 4-NP on testosterone metabolism and hepatic CYP3A induction were compared to the effects of St. John's Wort (SJW), a well established mammalian PXR agonist, in winter flounder. Male winter flounder (Pleuronectes americanus) were injected with 100 mg/kg/day 4-NP or 500 mg/kg/day SJW or both (S and N) every 24 h. Forty-eight hours after the initial injections, flounder were euthanized. Western blots and testosterone 6beta-hydroxylation indicated that CYP3A was increased 50% by 4-NP, but was not affected by SJW. Testosterone 16beta-hydroxylase activity was also significantly increased in flounder treated with 4-NP (2.8 x), but not with SJW. This is not consistent with our hypothesis that both SJW and 4-NP would induce CYP3A. Subtractive hybridization was performed between control and 4-NP treated hepatic mRNA samples to isolate differentially expressed genes. Subtractive hybridization indicated that several acute phase proteins were altered by 4-NP. Quantitative real-time PCR (Q-PCR) confirmed 4-NP altered the expression of complement components C8b, cathepsin L, C-type lectin domain, FK506 binding protein 2 precursor (FKBP2) and an EST (expressed sequence tag). SJW and 4-NP treated flounder demonstrated similar induction profiles for the EST, cathepsin L and FKBP2, suggesting that SJW was at a sufficient dose to alter gene expression but not induce P450s. In conclusion, testosterone hydroxylase activity and Western blots indicate that SJW did not activate detoxication pathways in a similar manner to 4-NP.
Collapse
Affiliation(s)
- William S Baldwin
- Department of Biological Sciences, University of Texas at El Paso, 79968, USA.
| | | | | | | |
Collapse
|
7
|
Acevedo R, Parnell PG, Villanueva H, Chapman LM, Gimenez T, Gray SL, Baldwin WS. The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latency. J Appl Toxicol 2005; 25:339-53. [PMID: 16013040 DOI: 10.1002/jat.1078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two major pathways for the metabolism of estradiol-17beta (E2) are the 2- and 16-hydroxylase pathways. Research has suggested that the increased production of the estrogenically active 16-hydroxy products such as estriol (E3) may be involved in increased susceptibility to breast cancer. 4-Nonylphenol (4-NP) is an environmental estrogen that also can activate the pregnane-X receptor (PXR) and induce P-450 enzymes responsible for the production of E3. It is hypothesized that 4-NP may act in part as an environmental estrogen by increasing E3 production. Based on its affinity for the estrogen receptor (ER) alone, 4-NP may be more potent than predicted at increasing mammary cancer incidence in the MMTVneu mouse. Female mice were treated per os for 7 days at 0, 25, 50 or 75 mg kg(-1) day(-1) 4-NP to investigate the effects of 4-NP on hepatic estrogen metabolism after an acute treatment. 4-Nonylphenol increased the hepatic formation of E3 in a dose-dependent manner. However, serum E3 concentrations were only increased at 25 mg kg(-1) day(-1) presumably due to direct inhibition of E3 formation by 4-NP. MMTVneu mice were then treated for 32 weeks at 0, 30 or 45 mg kg(-1) day(-1) 4-NP to determine its effects on mammary cancer formation and estrogen metabolism. 4-Nonylphenol increased mammary cancer formation in the MMTVneu mice at 45 mg kg(-1) day(-1) but not at 30 mg kg(-1) day(-1). Mice treated with an equipotent dose of E2, 10 microg kg(-1) day(-1), based on the relative binding affinities of nonylphenol and estradiol for ER alpha, did not develop mammary cancer. This suggests that nonylphenol is more potent than predicted based on its affinity for the estrogen receptor. However, no changes in serum E3 concentrations or hepatic E3 production were measured after the chronic treatment. Changes in E3 formation were correlated with increased CYP2B levels after the 7 day 4-NP treatment, and repression of CYP2B and CYP3A after 32 weeks of 4-NP treatment. Microarray analysis and Q-PCR of liver mRNA from the mice treated for 32 weeks demonstrated a decrease in RXR alpha, the heterodimeric partner of the PXR, which may in part explain the repressed transcription of the P450s measured. In conclusion, 4-NP treatment for 32 weeks increased mammary cancer formation at a dose of 45 mg kg(-1) day(-1). However, chronic treatment with 4-NP did not increase hepatic E3 formation or serum E3 concentrations. The transient induction by 4-NP of hepatic E3 formation and serum concentrations is most likely not involved in the increased incidence of mammary cancer in MMTVneu mice since E3 serum concentrations were only increased at 25 mg kg(-1) day(-1), a dose that was not sufficient to induce mammary tumor formation. Nevertheless, the induced hepatic E3 production in the acute exposures to 4-NP was indicative of an increase in mammary cancer incidence after the chronic exposure.
Collapse
Affiliation(s)
- Ricardo Acevedo
- University of Texas at El Paso, Biological Sciences, El Paso, TX 79968, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Tibbitts J. Issues related to the use of canines in toxicologic pathology--issues with pharmacokinetics and metabolism. Toxicol Pathol 2003; 31 Suppl:17-24. [PMID: 12597427 DOI: 10.1080/01926230390174896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The dog is a commonly used animal model by virtue of its size, well-characterized physiology, and ease of handling. For these reasons and others, dogs are also useful in pharmacokinetic and metabolism studies during the development of both human and veterinary pharmaceutical products. In comparison with humans, or with other animals, dogs have some unique physiologic attributes that can affect the disposition of drugs. Species differences in gastrointestinal physiology, metabolism, renal function, and protein binding can affect the correlation of the pharmacokinetics and toxicology of dogs with those of other species. With the use of relevant examples, this article will provide an introduction to characteristics of dog physiology and their impact on pharmacokinetics, metabolism, drug disposition, toxicity, and dose selection.
Collapse
|
9
|
Graham RA, Downey A, Mudra D, Krueger L, Carroll K, Chengelis C, Madan A, Parkinson A. In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. Drug Metab Dispos 2002; 30:1206-13. [PMID: 12386126 DOI: 10.1124/dmd.30.11.1206] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the in vitro and in vivo effects of several prototypical inducers, namely beta-naphthoflavone, 3-methylcholanthrene, phenobarbital, isoniazid, rifampin, and clofibric acid, on the expression of cytochrome P450 (P450) enzymes in beagle dogs. For the in vitro induction study, primary cultures of dog hepatocytes were treated with enzyme inducers for 3 days, after which microsomes were prepared and analyzed for P450 activities. For the in vivo induction study, male and female beagle dogs were treated with enzyme inducers for 4 days (with the exception of phenobarbital, which was given for 14 days), after which the livers were removed and microsomal P450 activities were determined ex vivo. Treatment of male beagle dog hepatocyte cultures (n = 3) with beta-naphthoflavone or 3-methlychloranthrene resulted in up to a 75-fold increase in microsomal 7-ethoxyresorufin O-dealkylase (CYP1A1/2) activity, whereas in vivo treatment of male and female beagle dogs with beta-naphthoflavone followed by ex vivo analysis resulted in up to a 24-fold increase. Phenobarbital caused a 13-fold increase in 7-benzyloxyresorufin O-dealkylase (CYP2B11) activity in vitro and up to a 9.9-fold increase in vivo. Isoniazid had little or no effect on 4-nitrophenol hydroxylase activity in vitro. Rifampin caused a 13-fold induction of testosterone 6beta-hydroxylase (CYP3A12) activity in vitro and up to a 4.5-fold increase in vivo. Treatment of dogs in vivo or dog hepatocytes in vitro with clofibric acid appeared to have no effect on CYP4A activity as determined by the 12-hydroxylation of lauric acid. In general, the absolute rates (picomoles per minute per milligram of microsomal protein) of P450 reactions catalyzed by microsomes from cultured hepatocytes (i.e., in vitro rates) were considerably lower than those catalyzed by microsomes from dog liver (i.e., ex vivo rates). These results suggest that beagle dogs have CYP1A, CYP2B, CYP2E, and CYP3A enzymes and that the induction profile resembles the profile observed in humans more than in rats.
Collapse
|
10
|
Kurachi M, Hashimoto SI, Obata A, Nagai S, Nagahata T, Inadera H, Sone H, Tohyama C, Kaneko S, Kobayashi KI, Matsushima K. Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive genes in mouse liver by serial analysis of gene expression. Biochem Biophys Res Commun 2002; 292:368-77. [PMID: 11906171 DOI: 10.1006/bbrc.2002.6669] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most toxic environmental pollutants that causes various biological effects on mammals. To identify the genes involved in hepatotoxicity and hepatocarcinogenesis induced by TCDD, we have conducted here serial analysis of gene expression of mouse liver 7 days after treatment with a single oral dose of 20 microg TCDD/kg body weight. We have sequenced total of 113,067 tags, including 56,420 tags and 56,647 tags from normal liver and TCDD-treated liver library, respectively. Statistical analysis showed that TCDD significantly altered 346 transcripts (p < 0.05) including 94 ESTs. The genes regulated by TCDD were not only the genes encoding drug metabolizing enzymes and stress response genes but also a wide variety of genes encoding cytoskeleton related proteins, signal transduction, and plasma proteins. This comprehensive gene expression analysis would provide novel genes that may help to clarify the mechanism of TCDD effects on mammalian liver, and also give a new approach for prevention and treatment.
Collapse
Affiliation(s)
- Makoto Kurachi
- Department of Molecular Preventive Medicine & CREST, School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Amacher DE, Schomaker SJ, Burkhardt JE. The relationship among microsomal enzyme induction, liver weight and histological change in beagle dog toxicology studies. Food Chem Toxicol 2001; 39:817-25. [PMID: 11434989 DOI: 10.1016/s0278-6915(01)00030-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study represents a retrospective analysis of hepatic microsomal enzyme induction data collected over a period of years for the beagle dog. Comparisons were completed for up to six enzyme activities and P450 content versus histopathological examination of the liver for hepatic changes and serum chemistry data analysis for markers indicative of hepatic injury. In addition, qualitative comparisons were made for these compounds to data reported in the rat by the same authors. In this analysis of canine study data for nine different compounds comprising five different pharmacological classes, significant elevations in several microsomal enzyme activities were observed under study conditions that did not result in liver weight increases, histological changes or serum chemistry changes that would be indicative of hepatocellular or hepatobiliary damage. Despite some species differences in cytochrome P450 homologues, for this compound set, there was clearly a general association between the response in dog liver and that of the rat liver. Compounds that elicited significant increases in more than one canine P450 endpoints were also likely to produce an inductive response in rat liver; however, the magnitude of the response and the P450 endpoint involved were not always identical. We conclude that hepatic drug-metabolizing enzyme induction in the beagle dog liver is typically a benign adaptive response, which parallels that reported previously in the rat.
Collapse
Affiliation(s)
- D E Amacher
- Drug Safety Evaluation, Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA.
| | | | | |
Collapse
|
12
|
Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, Walther B. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica 2000; 30:1131-52. [PMID: 11307970 DOI: 10.1080/00498250010021684] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. In the present study, nine cytochrome P450 enzyme activities in seven species were characterized to allow a practical means of comparing this important metabolic step between various test animals and man. 2. Enzyme activities and kinetic parameters were first determined towards marker substrates for human cytochrome P450 enzymes. Inhibition profiles were then determined with both antibodies directed against various cytochrome P450 enzymes and with chemical inhibitors. 3. Both the enzyme kinetic parameters/enzyme activities, and the inhibition profiles obtained for the animal species were compared with those obtained for human liver microsomes in order to postulate the animal species most similar to man with regard to each individual cytochrome P450 enzyme activity. 4. It was found that, as expected, none of the tested species was similar to man for all the measured P450 enzyme activities, but that in each species only some of the P450 enzyme activities could be considered as similar to man. 5. When it is known which human cytochrome P450 enzymes are involved in the metabolism of a compound, the comparative data presented here can be used for selecting the most suitable species for in vitro and in it no experiments.
Collapse
Affiliation(s)
- J J Bogaards
- Department of Kinetics and Metabolism, AJ Zeist, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Williams TM, Kind AJ, Hill DW. Drug metabolism: in vitro biotransformation of anabolic steroids in canines. J Vet Pharmacol Ther 2000; 23:57-66. [PMID: 10849249 DOI: 10.1046/j.1365-2885.2000.00251.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Forensic drug testing of anabolic steroids in racing animals is required because of the potential for steroid abuse. Often when the metabolic products of an administered compound have not been identified, the analysis and verification of the administered compound is difficult. The objective of this study was to qualitatively identify the in vitro phase I biotransformation products of anabolic steroids that have a high potential for abuse in canines. The investigated steroids included testosterone, methyltestosterone, mibolerone and boldenone. Steroid biotransformation products were generated using beagle liver microsomes and analysed by high performance liquid chromatography (HPLC)/mass spectrometry (MS) with an electrospray ionization source. Characterization of steroid metabolites was based on HPLC retention, UV and mass spectra. The major testosterone metabolites were identified as androstenedione and 6beta- and 16alpha-hydroxytestosterone. 6beta-Hydroxymethyltestosterone was identified as a major metabolite in the methyltestosterone microsomal incubations. Several mibolerone metabolites were identified as monohydroxylated mibolerones as well as an oxidized mibolerone metabolite. Boldenone metabolites were identified as monohydroxylated boldenones, oxidized boldenone, and testosterone. This information should assist in the determination of anabolic steroid use in canines through the correlation of the urinary metabolites to the administered drug.
Collapse
Affiliation(s)
- T M Williams
- Department of Pharmaceutical Sciences, Laboratory, University of Connecticut, Storrs, Connecticut, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- S Ekins
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | |
Collapse
|
15
|
Kern A, Bader A, Pichlmayr R, Sewing KF. Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochem Pharmacol 1997; 54:761-72. [PMID: 9353130 DOI: 10.1016/s0006-2952(97)00204-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult hepatocytes from rat and man were maintained for 2 weeks between two gel layers in a sandwich configuration to study the influence of this culture technique on the preservation of basal activities of xenobiotic-metabolizing phase I and phase II enzymes. The response of these enzyme activities to an enzyme inducer was investigated using rifampicin (RIF). Basal levels of cytochrome P-450 (CYP) isozymes were characterized by measuring ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), and the specific oxidation of testosterone (T). In hepatocytes from untreated rats, CYP isozyme levels, including the major form CYP 2C11, increased during the first 3 days in culture. After this period of recovery, the levels of CYP 2C11, CYP 2A1, and CYP 2B1 decreased, whereas CYP 3A1 increased. In contrast to these dynamic changes, CYP activities such as CYP 1A2 and the major isozyme CYP 3A4 were largely preserved until day 9 in cultures of human hepatocytes. In measuring phase II activities, a distinct increase in glucuronosyltransferase (UDP-GT) activity toward p-nitrophenol (PNP) was found for rat and human hepatocytes over 2 weeks in culture. Sulfotransferase (ST) activity toward PNP showed an initial increase, with a maximum at day 7 and day 9 in culture, respectively, and then decreased until day 14. Glutathione S-transferase (GST) activity decreased constantly during the time of culture. Effects of the enzyme-inducing drug rifampicin on phase I and phase II enzymes were investigated using cultured human hepatocytes. Rifampicin treatment (50 micromol/L) for 7 days resulted in a 3.7-fold induction of CYP 3A4 at day 9 in culture. ECOD activity was increased sixfold and phase II ST activity increased twofold compared to the initial value at day 3. No effect of rifampicin on CYP 3A was found in cultures of rat hepatocytes. These results demonstrate that rat and human hepatocytes preserve the major forms of CYP isozymes and phase II activities and respond to inducing drugs such as rifampicin. The novel hepatocyte sandwich culture is suitable for investigating drug metabolism, drug-drug interactions and enzyme induction.
Collapse
Affiliation(s)
- A Kern
- Drug Metabolism, Bayer AG, Wuppertal, Germany
| | | | | | | |
Collapse
|
16
|
Honkakoski P, Moore R, Gynther J, Negishi M. Characterization of phenobarbital-inducible mouse Cyp2b10 gene transcription in primary hepatocytes. J Biol Chem 1996; 271:9746-53. [PMID: 8621653 DOI: 10.1074/jbc.271.16.9746] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mouse phenobarbital (PB)-inducible Cyp2b10 gene promoter has been isolated and sequenced, and control of its expression has been characterized. The 1405-base pair (bp) Cyp2bl0 promoter sequence is 83% identical to the corresponding region from the rat CYP2B2 gene. In addition to the lack of CA repeats, differences include insertion of 42 base pairs (-123/-82 bp) into the middle of a consensus sequence to the so-called "Barbie box." In this report, we have developed a primary mouse hepatocyte culture system in which endogenous 2B10 mRNA as well as Cyp2b10-driven CAT activity were induced by PB and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), but not by the 3-chloro derivative of TCPOBOP. Deletion analysis of the Cyp2b10 promoter identified a basal transcription element at -64/-34 bp and a negative element at -971/-775 bp. Sequences contained within the -1404/-971 bp region are responsible for the induced CAT activity. DNase I protection and gel shift assays detected five major protein binding sites within the -1404/-971 bp fragment, one of which shared high sequence identity with a portion of a regulatory element in CYP2B2 gene (Trottier, E., Belzil, A., Stoltz, C., and Anderson, A. (1995) Gene 158, 263-268). Our results indicate that sequences important for PB-induced transcription of Cyp2b10 gene are located in the distal promoter.
Collapse
Affiliation(s)
- P Honkakoski
- Pharmacogenectics Section, Laboratory of Reproductive and Development Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
17
|
Stapleton G, Steel M, Richardson M, Mason JO, Rose KA, Morris RG, Lathe R. A novel cytochrome P450 expressed primarily in brain. J Biol Chem 1995; 270:29739-45. [PMID: 8530364 DOI: 10.1074/jbc.270.50.29739] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
hct-1 (hippocampal transcript) was detected in a differential screen of a rat hippocampal cDNA library. Expression of hct-1 was enriched in the formation but was also detected in rat liver and kidney, though at much lower levels; expression was barely detectable in testis, ovary, and adrenal. In liver, unlike brain, expression was sexually dimorphic; hepatic expression was greatly reduced in female rats. In mouse, brain expression was widespread, with the highest levels being detected in corpus callosum; only low levels were detected in liver. Sequence analysis of rat and mouse hct-1 cDNAs revealed extensive homologies with cytochrome P450s (CYPs), a diverse family of heme-binding monooxygenases that metabolize a range of substrates including steroids, fatty acids, and xenobiotics. Among the CYPs, hct-1 is most similar (39% at the amino acid sequence) to cholesterol 7 alpha-hydroxylase (CYP7) and contains a postulated steroidogenic domain present in other steroid-metabolizing CYPs but clearly represents a type of CYP not previously reported. Genomic Southern analysis suggests that a single gene corresponding to hct-1 is present in mouse, rat, and human. hct-1 is unusual in that, unlike all other CYPs described, the primary site of expression is in the brain. Similarity to CYP7 and other steroid-metabolizing CYPs may argue that hct-1 (CYP7B) plays a role in steroid metabolism in brain, notable because of the documented ability of brain-derived steroids (neurosteroids) to modulate cognitive function in vivo.
Collapse
Affiliation(s)
- G Stapleton
- Centre for Genome Research, University of Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Chung WG, Miranda CL, Buhler DR. A cytochrome P4502B form is the major bioactivation enzyme for the pyrrolizidine alkaloid senecionine in guinea pig. Xenobiotica 1995; 25:929-39. [PMID: 8553686 DOI: 10.3109/00498259509046664] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. We have purified three P450s from the liver of the phenobarbital (PB)-treated guinea pig in order to evaluate the role of these enzymes in pyrrolizidine alkaloid (PA) metabolism. 2. PB treatment of guinea pig increased the hepatic microsomal conversion of the PA senecionine (SN) to the pyrrolic metabolite (+/-)6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), an activation product, and SN N-oxide, a detoxification product by 224 and 70% respectively. 3. Reconstitution of a PB-inducible guinea pig P4502B isoform (M(r) = 57,512 by MALDI-TOF mass spectrometry) in a reconstituted system metabolized SN to DHP and SN N-oxide at rates of 1.98 and 1.45 min-1 respectively. A second purified guinea pig P450, a 2C-type isoform (M(r) = 56,496 by MALDI-TOF mass spectrometry), produced SN N-oxide from SN at the rate of 13.3 min-1 but catalyzed little DHP formation. The third guinea pig P450, an apparent 3A type (M(r) = 54-56,000 by SDS-PAGE), lost its catalytic activity towards SN during the final purification process. 4. Immunoinhibition of microsomal SN metabolism by rabbit antibodies raised against the guinea pig P4502B, 2C and 3A isoforms indicated that the 2B played the most important role (> 70% of the total metabolism) in bioactivation of SN in both the untreated or PB-treated guinea pig, whereas 2C and 3A seemed to exhibit little (around 13%) PA metabolism. P4502B, along with flavin-containing monooxygenase, also contributed to the detoxification of SN in both the untreated (34%) and PB-treated (40%) guinea pig. 5. This study suggests that the putative P4502B form plays the most important role in SN bioactivation in guinea pig.
Collapse
Affiliation(s)
- W G Chung
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|
19
|
Biro-Sauveur B, Eeckhoutte C, Sutra JF, Calléja C, Alvinerie M, Galtier P. Consequences of challenge infections with Fasciola hepatica on rat liver P450-dependent metabolism of sex hormones. J Steroid Biochem Mol Biol 1994; 51:209-17. [PMID: 7981130 DOI: 10.1016/0960-0760(94)90095-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of single or repetitive fluke-infections on rat liver steroid hormone metabolism was studied. Fascioliasis was induced by oral administration of 20 metacercariae of Fasciola hepatica to rats, by week-6 (mono-infected) or 12 and 6 (bi-infected), or 12, 9 and 6 (tri-infected) before killing. Total microsomal cytochrome P450 and P450 isoenzymes were measured spectrophotometrically and by Western-blot analysis, respectively. Progesterone and testosterone metabolism were quantified by normal phase high performance liquid chromatography. In control rats, progesterone and testosterone were mainly converted to 2 alpha- and 16 alpha-hydroxymetabolites. In the liver of mono-infected rats, hepatic cytochrome P450 was significantly decreased by 36-64% whereas the expression of all investigated isoenzymes was decreased by 36-82% with the exception of the unchanged P4502E1. 16 alpha- and 2 alpha-hydroxylations of progesterone and testosterone were significantly decreased by 50-90%, these decreases were correlated with those of P4502B1/2 and P4502C11 isoenzymes, respectively. In bi- and tri-infected rats, steroid hormones were metabolized similarly to control rats. The return of steroid drug metabolizing enzyme activities to control level could be related to the immune response associated to the development of the animal resistance to the parasitic infection.
Collapse
Affiliation(s)
- B Biro-Sauveur
- Laboratoire de Pharmacologie-Toxicologie, INRA, Toulouse, France
| | | | | | | | | | | |
Collapse
|