1
|
Lu Y, Kenkel E, Zimmerman K, Weiss RM, Roghair RD, Haskell SE. Sertraline-induced 5-HT dysregulation in mouse cardiomyocytes and the impact on calcium handling. Am J Physiol Heart Circ Physiol 2024; 327:H1559-H1576. [PMID: 39423037 DOI: 10.1152/ajpheart.00692.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are prescribed in 15% of pregnancies in the United States for depression. Maternal use of SSRIs has been linked to an increased risk of congenital heart defects, but the exact mechanism of pathogenesis is unknown. SSRIs, including sertraline, are permeable to the placenta and can produce direct fetal exposure. Previously, we have shown decreased cardiomyocyte proliferation, left ventricle size, and cardiac expression of the serotonin receptor 5-HT2B in the offspring of mice exposed to the SSRI sertraline relative to the offspring of saline-exposed mice. Using a mouse model of in utero plus neonatal sertraline exposure, we observed lengthened peak-to-peak time of calcium oscillation (saline 784 ± 76 ms; sertraline 1,121 ± 130 ms, P < 0.001) and decreased expression of critical genes in calcium regulation. We also observed significant upregulation of specific microRNAs (miRNAs) that modulate serotonin signaling in neonatal cardiac tissues (Slc6a4: miR-223-5p, miR-92a-2-5p, miR-182-5p; Htr2a: miR-34b-5p, miR-182-5p; Htr2b: miR-223-5p, miR-92a-2-5p, miR-337-5p) (P < 0.05) with corresponding levels of the target mRNAs downregulated (Slc6a4 0.73 ± 0.05; Htr2a 0.67 ± 0.04; Htr2b 0.72 ± 0.03; all P < 0.01), resulting in decreased production of the cognate proteins. Adult mice at 10 wk showed altered cardiac parameters including decreased heart rates in males (saline 683 ± 8 vs. sertraline 666 ± 6 beats/min, P < 0.05) and ejection fraction in females (saline 83.9 ± 0.6% vs. sertraline 80.6 ± 1.1%, P < 0.05). These findings raise the question of whether sertraline exposure during development may increase the potential risk for cardiac disease when subjected to stress.NEW & NOTEWORTHY Sertraline exposure during development decreased the expression of critical genes in calcium regulation and lengthened periods in calcium oscillation in neonatal cardiomyocytes. Sertraline upregulated specific microRNAs that may modulate serotonin signaling in neonatal cardiac tissues, which corresponded with a decrease in the levels of the corresponding target mRNAs. Although the echocardiograms in our adult mice suggest a mild phenotype associated with sertraline exposure, these upregulated microRNAs (miRNAs) have been linked to adult cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Yongjun Lu
- Division of Pediatric Critical Care, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Elizabeth Kenkel
- Division of Neonatology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Bristol-Myers Squibb, Seattle, Washington, United States
| | - Kathy Zimmerman
- Division of Cardiology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Robert M Weiss
- Division of Cardiology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Cardiology Section, Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Robert D Roghair
- Division of Neonatology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Sarah E Haskell
- Division of Pediatric Critical Care, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
2
|
Fatehi R, Nouraei M, Panahiyan M, Rashedinia M, Firouzabadi N. Modulation of ACE2/Ang1-7/Mas and ACE/AngII/AT1 axes affects anticancer properties of sertraline in MCF-7 breast cancer cells. Biochem Biophys Rep 2024; 38:101738. [PMID: 38831897 PMCID: PMC11145238 DOI: 10.1016/j.bbrep.2024.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
The renin-angiotensin system (RAS) is best known for playing a major role in maintaining the physiology of the cardiovascular system. Dysregulation of the RAS pathway has been proposed as a link to some malignancies and contributes to cancer metastasis. Breast cancer is considered as one of the leading causes of cancer death in women and its prevention remains yet a challenge. Elements of RAS are expressed in both normal breast tissue and cancerous cells, signifying the essential role of RAS in breast cancer pathology. Sertraline, a widely used antidepressant, has shown anti-proliferative properties on a variety of malignancies. This study aimed to investigate the effect of sertraline and its combination with agonists and antagonists of RAS (A779, Ang 1-7 and losartan) on viability of MCF-7 cells along with their effect on apoptosis and distribution of cell cycle. Our results indicated that sertraline, losartan and Ang 1-7 significantly decreased cell viability, induced apoptosis and cell cycle arrest. A779 blunted the effect of sertraline on cell viability, ROS generation and cell cycle arrest. Combination treatment of sertraline with losartan as well as Ang 1-7 caused a remarkable decline in cell viability. In conclusion, results of the present study support the anti-cancer properties of sertraline, losartan and Ang 1-7 via induction of apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nouraei
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Panahiyan
- Student Research Comittee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics (Basel) 2023; 12:antibiotics12010137. [PMID: 36671340 PMCID: PMC9855052 DOI: 10.3390/antibiotics12010137] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle in the therapy of infectious diseases and cancer. One of the major mechanisms of MDR is the overexpression of efflux pumps (EPs) that are responsible for extruding antimicrobial and anticancer agents. EPs have additional roles of detoxification that may aid the development of bacterial infection and the progression of cancer. Therefore, targeting EPs may be an attractive strategy to treat bacterial infections and cancer. The development and discovery of a new drug require a long timeline and may come with high development costs. A potential alternative to reduce the time and costs of drug development is to repurpose already existing drugs. Antidepressants and antipsychotic agents are widely used in clinical practice in the treatment of psychiatric disorders and some somatic diseases. Antidepressants and antipsychotics have demonstrated various beneficial activities that may be utilized in the treatment of infections and cancer. This review aims to provide a brief overview of antibacterial and anticancer effects of selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs) and phenothiazine antipsychotics, while focusing on EPs. However, it should be noted that the antimicrobial activity of a traditionally non-antibiotic drug may have clinical implications regarding dysbiosis and bacterial MDR.
Collapse
|
4
|
Fidan E, Gormus ZIS, Kilinc İ, İyisoy MS, Gormus N. Effects of Combined Sertraline and Magnesium in Rat Atrium. Biol Trace Elem Res 2022; 200:652-660. [PMID: 33774751 DOI: 10.1007/s12011-021-02669-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
The objective of this study is to determine the synergistic effects of an antioxidant ion Mg+2, combined with selective serotonin reuptake inhibitor sertraline, in treatment or prevention of major depression and regulation of inotropic effect in the early postoperative period. Adult male 40 Wistar albino rats were randomly divided into 6 groups. Three to 4-mm long atrium strips were placed in organ bath, tension was adjusted to 2 g. Isometric contractions were induced with 10-3 M adrenaline. Group 1 was the control group, cumulative sertraline was given to group 2, cumulative MgSO4 to group 3, combined cumulative sertraline and MgSO4 to group 4, intraperitoneal sertraline injection for 29 days to group 5, and intraperitoneal MgSO4 injection for 14 days to group 6. Changes in weight, tensions, bleeding/clotting time, and biochemical findings were evaluated statistically. Isometric tension relationship between groups 1 and 3 was statistically significant after 4 mmol/L MgSO4 (p < 0.05). A rapid inhibition of contraction was observed in group 4. Inhibition of spontaneous contractions of groups 5 and 6 was found to be statistically significant at close values, p < 0.05. When blood clotting times were compared, a statistically marked decrease was found in group 6, p < 0.05. Compared to control group, there was a significant decrease in blood lipids in group 4. While LDH and CK-MB increased from plasma enzymes in groups 5 and 6, no significant change was observed in NT-proBNP. Combined treatment of high dose MgSO4 with antidepressants for pre or post-operative depression may cause fatal risks. Shortening clotting time may increase the risk of embolism and stroke. In order to reduce the risk of post-operative depression preoperatively, care should be taken when using magnesium combined with antidepressants and more studies are needed to be considered.
Collapse
Affiliation(s)
- Esra Fidan
- Department of Physiology, Necmettin Erbakan University Meram Medical School, Konya, Turkey
| | - Z Isik Solak Gormus
- Department of Physiology, Necmettin Erbakan University Meram Medical School, Konya, Turkey.
| | - İbrahim Kilinc
- Department of Biochemistry, Necmettin Erbakan Üniversity Meram Medical School, Konya, Turkey
| | - Mehmet Sinan İyisoy
- Department of Medical Education and Informatics, Necmettin Erbakan University Meram Medical School, Konya, Turkey
| | - Niyazi Gormus
- Department of Cardiovascular Surgery, Necmettin Erbakan Üniversity Meram Medical School, Konya, Turkey
| |
Collapse
|
5
|
Baú-Carneiro JL, Akemi Guirao Sumida I, Gallon M, Zaleski T, Boia-Ferreira M, Bridi Cavassin F. Sertraline repositioning: an overview of its potential use as a chemotherapeutic agent after four decades of tumor reversal studies. Transl Oncol 2021; 16:101303. [PMID: 34911014 PMCID: PMC8681026 DOI: 10.1016/j.tranon.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Thirteen different neoplasms were shown to be susceptible to the antidepressant drug sertraline. The mechanisms of action through which sertraline can kill tumor cells are apoptosis, autophagy, and drug synergism. Sertraline inhibits TCTP, a tumor protein involved in cell survival pathways, responsible for reducing p53 levels. The testing of sertraline in vitro and in vivo resulted in reduced cell counting, shrinking of tumoral masses and increased survival rates. Dose extrapolation from animals to humans has shown a therapeutic index of sertraline that could support future clinical trials.
Sertraline hydrochloride is a first-line antidepressant with potential antineoplastic properties because of its structural similarity with other drugs capable to inhibit the translation-controlled tumor protein (TCTP), a biomolecule involved in cell proliferation. Recent studies suggest it could be repositioned for cancer treatment. In this review, we systematically map the findings that repurpose sertraline as an antitumoral agent, including the mechanisms of action that support this hypotesis. From experimental in vivo and in vitro tumor models of thirteen different types of neoplasms, three mechanisms of action are proposed: apoptosis, autophagy, and drug synergism. The antidepressant is able to inhibit TCTP, modulate chemotherapeutical resistance and exhibit proper cytotoxicity, resulting in reduced cell counting (in vitro) and shrunken tumor masses (in vivo). A mathematical equation determined possible doses to be used in human beings, supporting that sertraline could be explored in clinical trials as a TCTP-inhibitor.
Collapse
Affiliation(s)
- João Luiz Baú-Carneiro
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | | | - Malu Gallon
- Medical School Undergraduate Program, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil
| | - Tânia Zaleski
- Faculty of Medical Sciences, Faculdades Pequeno Príncipe (FPP), Curitiba, Brazil; Faculty of Biological Sciences, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil; Post Graduate Program of National Network's in Education, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Marianna Boia-Ferreira
- Postdoctoral Program of Cellular and Molecular Biology, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | | |
Collapse
|
6
|
Lima ML, Amaral M, Borborema SET, Tempone AG. Evaluation of antileishmanial potential of the antidepressant escitalopram in Leishmania infantum. J Pharm Biomed Anal 2021; 209:114469. [PMID: 34838348 DOI: 10.1016/j.jpba.2021.114469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Neglected tropical diseases (NTDs) such as visceral leishmaniasis (VL) present a limited and toxic therapeutic arsenal, and drug repositioning represents a safe and cost-effective approach. In this work, we investigated the antileishmanial potential and the mechanism of lethal action of the antidepressant escitalopram. The efficacy of escitalopram was determined ex-vivo using the intracellular Leishmania (L.) infantum amastigote model and the mammalian cytotoxicity was determined by the colorimetric MTT assay. The cellular and molecular alterations induced by the drug were investigated using spectrofluorimetry, a luminescence assay and flow cytometry. Our data revealed that escitalopram was active and selective against L. infantum parasites, with an IC50 value of 25 µM and a 50% cytotoxic concentration (CC50) of 184 µM. By using the fluorescent probes SYTOX® Green and DiSBAC2(3), the drug showed no alterations in the plasma membrane permeability nor in the electric potential of the membrane (∆ψp); however, after a short-time incubation, the drug caused a dose-dependent up-regulation of the calcium levels, leading to the depolarization of the mitochondrial membrane potential (∆ψm) and a reduction of the ATP levels. No up-regulation of reactive oxygen (ROS) was observed. In the cell cycle analysis, escitalopram induced a dose-dependent increase of the parasites at the sub G0/G1 stage, representing fragmented DNA. Escitalopram presented a selective antileishmanial activity, with disruption of single mitochondrion and interference in the cell cycle. Approved drugs such as escitalopram may represent a promising approach for NTDs and can be considered in future animal efficacy studies.
Collapse
Affiliation(s)
- Marta Lopes Lima
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Maiara Amaral
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil
| | | | - Andre Gustavo Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil.
| |
Collapse
|
7
|
Selective serotonin reuptake inhibitors use and hepatocellular carcinoma in patients with alcohol use disorder. Drug Alcohol Depend 2021; 219:108495. [PMID: 33429293 DOI: 10.1016/j.drugalcdep.2020.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Research has proposed that selective serotonin reuptake inhibitors (SSRIs) were associated with a reduction of the risk of hepatocellular carcinoma (HCC). The objective of this study is to investigate whether SSRIs use is associated with decreased risk of HCC in patients with alcohol use disorder (AUD). PATIENTS AND METHODS We conducted a retrospective population-based cohort study using Taiwan's National Health Insurance Research Database (NHIRD) from 1997 to 2013 and enrolled patients with newly diagnosed AUD. After propensity scores matching at a ratio 1:4, total of 4945 SSRI users and 19,785 non-SSRI users were included in the matched cohort. Patients were followed up from the 365th day after the date of first exposure to SSRIs to occurrence of HCC, the date of death, or the end of 2013. Cox proportional hazard regressions were performed to evaluate hazard ratio (HRs) for HCC in SSRI-exposed patients compared with unexposed patients. RESULTS In the main study cohort, SSRI use was associated with significant lower risk of HCC compared to the non-SSRI users after adjusting for age, sex, income, urbanization, alcoholic fatty liver, alcoholic hepatitis and diabetes (adjusted hazard ratio [aHR] = 0.31, 95 % CI = 0.24-0.39). The negative association of SSRI use and HCC was replicated in the matched cohort (aHR = 0.58, 95 % CI = 0.44-0.77). The effect of SSRI use on HCC was dose-related in both cohorts (p for trend < 0.0001). CONCLUSIONS This study showed that SSRIs use was associated with a reduction risk of HCC among AUD patients in a cumulative dose effect manner.
Collapse
|
8
|
Ștefan MG, Kiss B, Gutleb AC, Loghin F. Redox metabolism modulation as a mechanism in SSRI toxicity and pharmacological effects. Arch Toxicol 2020; 94:1417-1441. [PMID: 32246176 DOI: 10.1007/s00204-020-02721-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Depressive disorders are amongst the greatest mental health challenges, with an increasing number of patients being diagnosed each year. Though it has not yet been fully elucidated, redox metabolism imbalances and oxidative stress seem to play a major role in the pathogenesis of depressive disorders. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressants, considered to have a better tolerability. However, several adverse effects have been reported and the mechanisms involved in their pharmacological activity are not entirely understood. SSRIs have been shown to influence the redox metabolism, which could be involved in their toxicity and pharmacological effects. A comparative analysis of published in vivo and in vitro data regarding the activity of SSRIs on the redox metabolism pathways has been performed in this paper, with an emphasis on mechanistical aspects. Furthermore, a comparison between oxidative stress biomarker levels reported by different studies was attempted. The reviewed data point towards both pro- and antioxidant effects of SSRIs, dependent on tissue/cell type and dose/concentration, suggest a redox modulating potential of these compounds. In hepatic and testicular tissue, the majority of reviewed studies reported pro-oxidant effects, with possible implications towards the hepatotoxicity and sexual dysfunction that were reported following SSRI treatment; while in brain, the most common findings were antioxidant effects that could partially explain their antidepressant activity. However, given the heterogeneity of the reviewed data, further research is needed to fully understand the impact of SSRIs on redox metabolism and its implications.
Collapse
Affiliation(s)
- Maria-Georgia Ștefan
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Béla Kiss
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Arno C Gutleb
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Environmental Health Group, Esch-sur-Alzette, Luxembourg
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Qi L, Song W, Li L, Cao L, Yu Y, Song C, Wang Y, Zhang F, Li Y, Zhang B, Cao W. FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma. Oncotarget 2018; 7:74015-74030. [PMID: 27677589 PMCID: PMC5342032 DOI: 10.18632/oncotarget.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Several fibroblast growth factor (FGF) isoforms act to stimulate epithelial-mesenchymal transition (EMT) during cancer progression. FGF4 and FGF7 are two ligands of FGF receptor 2 (FGFR2). Using two lung adenocarcinoma (ADC) cell lines, A549 and H1299, we showed that FGF4, but not FGF7, altered cell morphology, promoted EMT-associated protein expression, and enhanced cell proliferation, migration/invasion and colony initiation. In addition, FGF4 increased store-operated calcium entry (SOCE) and expression of the calcium signal-associated protein Orai1. The SOCE inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or Orai1 knockdown reversed all of the EMT-promoting effects of FGF4. BHQ also inhibited FGF4-induced EMT in a mouse xenograft model. Finally, 60 human lung ADC samples and 21 sets of matched specimens (primary and metastatic foci in lymph nodes from one patient) were used to confirm the clinicopathologic significance of FGF4 and its correlation with E-cadherin, Vimentin and Orai1 expression. Our study thus shows that FGF4 induces EMT by elevating SOCE in lung ADC.
Collapse
Affiliation(s)
- Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wangzhao Song
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lingmei Li
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Yu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chunmin Song
- Department of Family Planning, Maternity & Child Care Center of Luoyang, Luoyang 471000, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Zhang
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China.,Research Center of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Medical University, Tianjin 300070, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bin Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin 300060, China.,National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Then CK, Liu KH, Liao MH, Chung KH, Wang JY, Shen SC. Antidepressants, sertraline and paroxetine, increase calcium influx and induce mitochondrial damage-mediated apoptosis of astrocytes. Oncotarget 2017; 8:115490-115502. [PMID: 29383176 PMCID: PMC5777788 DOI: 10.18632/oncotarget.23302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of antidepressants on the pathogenesis of dementia remain unclear despite depression and dementia are closely related. Antidepressants have been reported may impair serotonin-regulated adaptive processes, increase neurological side-effects and cytotoxicity. An ‘astroglio-centric’ perspective of neurodegenerative diseases proposes astrocyte dysfunction is involved in the impairment of proper central nervous system functioning. Thus, defining whether antidepressants are harmful to astrocytes is an intriguing issue. We used an astrocyte cell line, primary cultured astrocytes and neuron cells, to identify the effects of 11 antidepressants which included selective serotonin reuptake inhibitors, a serotonin-norepinephrine reuptake inhibitor, tricyclic antidepressants, a tetracyclic antidepressant, a monoamine oxide inhibitor, and a serotonin antagonist and reuptake inhibitor. We found that treatment with 10 μM sertraline and 20 μM paroxetine significantly reduced cell viability. We further explored the underlying mechanisms and found induction of the [Ca2+]i level in astrocytes. We also revealed that sertraline and paroxetine induced mitochondrial damage, ROS generation, and astrocyte apoptosis with elevation of cleaved-caspase 3 and cleaved-PARP levels. Ultimately, we validated these mechanisms in primary cultured astrocytes and neuron cells and obtained consistent results. These results suggest that sertraline and paroxetine cause astrocyte dysfunction, and this impairment may be involved in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chee-Kin Then
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kao-Hui Liu
- Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsuan Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsuan Chung
- Department of Psychiatry and Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Lu T, Chou CT, Liang WZ, Kuo CC, Chen IL, Wang JL, Jan CR. Amitriptyline modulated Ca2+ signaling and induced Ca2+-independent cell viability in human osteosarcoma cells. Hum Exp Toxicol 2017; 37:125-134. [DOI: 10.1177/0960327117693070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin–norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca2+ homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca2+ concentrations ([Ca2+]i) rises concentration dependently. Amitriptyline-evoked Ca2+ entry was confirmed by Mn2+-induced quench of fura-2 fluorescence. This entry was inhibited by Ca2+ entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca2+]i rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca2+]i rises by 70%. Amitriptyline killed cells at 200–500 μM in a concentration-dependent fashion. Chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-regulated store-operated Ca2+ entry. Amitriptyline also induced Ca2+-disassociated cell death.
Collapse
Affiliation(s)
- T Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-T Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - W-Z Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-C Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - I-L Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - J-L Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - C-R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Su CK, Chou CT, Lin KL, Liang WZ, Cheng JS, Chang HT, Chen IS, Lu T, Kuo CC, Yu CC, Shieh P, Kuo DH, Chen FA, Jan CR. Effect of protriptyline on [Ca2+]i and viability in MG63 human osteosarcoma cells. Toxicol Mech Methods 2016; 26:580-587. [DOI: 10.1080/15376516.2016.1216208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Rodrigues DO, Bristot IJ, Klamt F, Frizzo ME. Sertraline reduces glutamate uptake in human platelets. Neurotoxicology 2015; 51:192-7. [PMID: 26529290 DOI: 10.1016/j.neuro.2015.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
Mitochondrial damage and declines in ATP levels have been recently attributed to sertraline. The effects of sertraline on different parameters were investigated in washed platelets from 18 healthy male volunteers, after 24h of drug exposure. Sertraline toxicity was observed only at the highest concentrations, 30 and 100 μM, which significantly reduced platelet viability to 76 ± 3% and 20 ± 2%, respectively. The same concentrations significantly decreased total ATP to 73 ± 3% and 13 ± 2%, respectively. Basal values of glycogen were not significantly affected by sertraline treatment. Glutamate uptake was significantly reduced after treatment with 3, 30 and 100 μM, by 28 ± 6%, 32 ± 5% and 54 ± 4%, respectively. Our data showed that sertraline at therapeutic concentrations does not compromise platelet viability and ATP levels, but they suggest that in a situation where extracellular glutamate levels are potentially increased, sertraline might aggravate an excitotoxic condition.
Collapse
Affiliation(s)
- Débora Olmedo Rodrigues
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcos Emílio Frizzo
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Gobin V, De Bock M, Broeckx B, Kiselinova M, De Spiegelaere W, Vandekerckhove L, Van Steendam K, Leybaert L, Deforce D. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores. Cell Calcium 2015; 58:254-63. [DOI: 10.1016/j.ceca.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/01/2015] [Accepted: 06/06/2015] [Indexed: 01/18/2023]
|
15
|
Zeniou M, Fève M, Mameri S, Dong J, Salomé C, Chen W, El-Habr EA, Bousson F, Sy M, Obszynski J, Boh A, Villa P, Assad Kahn S, Didier B, Bagnard D, Junier MP, Chneiweiss H, Haiech J, Hibert M, Kilhoffer MC. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS One 2015; 10:e0134793. [PMID: 26270679 PMCID: PMC4536076 DOI: 10.1371/journal.pone.0134793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/14/2015] [Indexed: 01/11/2023] Open
Abstract
Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.
Collapse
Affiliation(s)
- Maria Zeniou
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- * E-mail:
| | - Marie Fève
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Samir Mameri
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Jihu Dong
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Christophe Salomé
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Wanyin Chen
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Elias A. El-Habr
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Fanny Bousson
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Mohamadou Sy
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Julie Obszynski
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Alexandre Boh
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Suzana Assad Kahn
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Bruno Didier
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Dominique Bagnard
- U682, Inserm, Université de Strasbourg, 3, Avenue Molière, 67200 Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Jacques Haiech
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marcel Hibert
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
16
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
17
|
Cho WH, Lee HJ, Choi YJ, Oh JH, Kim HS, Cho HS. Capsaicin induces apoptosis in MG63 human osteosarcoma cells via the caspase cascade and the antioxidant enzyme system. Mol Med Rep 2013; 8:1655-62. [PMID: 24142063 PMCID: PMC3829765 DOI: 10.3892/mmr.2013.1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/02/2013] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in children and adolescents. This aggressive cancer mostly occurs in the long bones. Therefore, novel therapeutic approaches, such as biological therapies and gene therapy, are required to efficiently treat osteosarcoma. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) has been demonstrated to inhibit the growth of several types of cancer cells and a number of studies have shown that osteosarcoma may be vulnerable to biological therapies. However, little is known regarding the therapeutic effects of capsaicin on osteosarcoma. This study investigated the effects of capsaicin on MG63 human osteosarcoma cells, in addition to elucidating the regulatory signaling pathways underlying the effects of capsaicin, the caspase cascade and the antioxidant enzyme system. The MG63 cell line was treated with various concentrations of capsaicin. Cells were analyzed using MTT and flow cytometry, and the presence of DNA fragmentation was evaluated using TUNEL assay. Results showed capsaicin induced apoptosis in MG63 cells. Thus, capsaicin exhibited an anticancer effect in osteosarcoma cells.
Collapse
Affiliation(s)
- Won Ho Cho
- Department of Neurosurgery and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 602739, Republic of Korea
| | | | | | | | | | | |
Collapse
|