1
|
Sekulovski S, Trowitzsch S. What connects splicing of transfer RNA precursor molecules with pontocerebellar hypoplasia? Bioessays 2023; 45:e2200130. [PMID: 36517085 DOI: 10.1002/bies.202200130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
Transfer RNAs (tRNAs) represent the most abundant class of RNA molecules in the cell and are key players during protein synthesis and cellular homeostasis. Aberrations in the extensive tRNA biogenesis pathways lead to severe neurological disorders in humans. Mutations in the tRNA splicing endonuclease (TSEN) and its associated RNA kinase cleavage factor polyribonucleotide kinase subunit 1 (CLP1) cause pontocerebellar hypoplasia (PCH), a heterogeneous group of neurodegenerative disorders, that manifest as underdevelopment of specific brain regions typically accompanied by microcephaly, profound motor impairments, and child mortality. Recently, we demonstrated that mutations leading to specific PCH subtypes destabilize TSEN in vitro and cause imbalances of immature to mature tRNA ratios in patient-derived cells. However, how tRNA processing defects translate to disease on a systems level has not been understood. Recent findings suggested that other cellular processes may be affected by mutations in TSEN/CLP1 and obscure the molecular mechanisms of PCH emergence. Here, we review PCH disease models linked to the TSEN/CLP1 machinery and discuss future directions to study neuropathogenesis.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
2
|
Bradinova I, Andonova S, Savov A. Retrospective Diagnosis of Pontocerebellar Hypoplasia Type 1B in a Family with Two Deceased Newborn Children. J Pediatr Genet 2022; 11:253-256. [DOI: 10.1055/s-0040-1718536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
AbstractPontocerebellar hypoplasia type 1B is a severe autosomal recessive neurologic disorder characterized by a combination of cerebellar and spinal motor neuron degeneration beginning at birth. Pontocerebellar hypoplasia type 1B is caused by mutations in EXOSC3 gene. High prevalence of the p.Gly31Ala mutation was found recently, especially in the Roma ethnic minority. We present a young Bulgarian Roma family with two deceased newborn children manifesting severe neuromuscular disorder including severe muscle weakness, respiratory distress, and multiple joint contractures. Based on the clinical signs and family's population characteristics, DNA testing for the previously described EXOSC3 in Bulgarian Roma mutation c.92G > C; p.Gly31Ala was performed on blood samples of both parents and they were found to be heterozygous carriers. This finding indirectly confirmed the diagnosis of pontocerebellar hypoplasia type B in the deceased offspring. Knowledge of population-specific molecular bases of genetic conditions was the key to final diagnosis in the presented family. Designing of population-based clinical-genetic panels may be a powerful diagnostic tool for patients with such origin. Preconception carrier screening in high-risk population groups is a feasible option to discuss.
Collapse
Affiliation(s)
- Irena Bradinova
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology “Maichin dom,” Medical University Sofia, Bulgaria
| | - Silvia Andonova
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology “Maichin dom,” Medical University Sofia, Bulgaria
| | - Alexey Savov
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology “Maichin dom,” Medical University Sofia, Bulgaria
| |
Collapse
|
3
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Mu W, Heller T, Barañano KW. Two siblings with a novel variant of EXOSC3 extended phenotypic spectrum of pontocerebellar hypoplasia 1B to an exceptionally mild form. BMJ Case Rep 2021; 14:e236732. [PMID: 33462000 PMCID: PMC7813329 DOI: 10.1136/bcr-2020-236732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pontocerebellar hypoplasia type 1B (PCH1B) describes an autosomal recessive neurological condition that involves hypoplasia or atrophy of the cerebellum and pons, resulting in neurocognitive impairments. Although there is phenotypic variability, this is often an infantile lethal condition, and most cases have been described to be congenital and neurodegenerative. PCH1B is caused by mutations in the gene EXOSC3, which encodes exosome component 3, a subunit of the human RNA exosome complex. A range of pathogenic variants with some correlation to phenotype have been reported. The most commonly reported pathogenic variant in EXOSC3 is c.395A>C, p.(Asp132Ala); homozygosity for this variant has been proposed to lead to milder phenotypes than compound heterozygosity. In this case, we report two siblings with extraordinarily mild presentations of PCH1B who are compound heterozygous for variants in EXOSC3 c.155delC and c.80T>G. These patients drastically expand the phenotypic variability of PCH1B and raise questions about genotype-phenotype associations.
Collapse
Affiliation(s)
- Weiyi Mu
- Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Teresa Heller
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
6
|
Variant c.2158-2A>G in MANBA is an important and frequent cause of hereditary hearing loss and beta-mannosidosis among the Czech and Slovak Roma population- evidence for a new ethnic-specific variant. Orphanet J Rare Dis 2020; 15:222. [PMID: 32847582 PMCID: PMC7448337 DOI: 10.1186/s13023-020-01508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
Background The Roma are a European ethnic minority threatened by several recessive diseases. Variants in MANBA cause a rare lysosomal storage disorder named beta-mannosidosis whose clinical manifestation includes deafness and mental retardation. Since 1986, only 23 patients with beta-mannosidosis and biallelic MANBA variants have been described worldwide. Results We now report on further 10 beta-mannosidosis patients of Roma origin from eight families in the Czech and Slovak Republics with hearing loss, mental retardation and homozygous pathogenic variants in MANBA. MANBA variant c.2158-2A>G screening among 345 anonymized normal hearing controls from Roma populations revealed a carrier/heterozygote frequency of 3.77%. This is about 925 times higher than the frequency of this variant in the gnomAD public database and classifies the c.2158-2A>G variant as a prevalent, ethnic-specific variant causing hearing loss and mental retardation in a homozygous state. The frequency of heterozygotes/carriers is similar to another pathogenic variant c.71G>A (p.W24*) in GJB2, regarded as the most frequent variant causing deafness in Roma populations. Conlcusion Beta-mannosidosis, due to a homozygous c.2158-2A>G MANBA variant, is an important and previously unknown cause of hearing loss and mental retardation among Central European Roma.
Collapse
|
7
|
Morton DJ, Jalloh B, Kim L, Kremsky I, Nair RJ, Nguyen KB, Rounds JC, Sterrett MC, Brown B, Le T, Karkare MC, McGaughey KD, Sheng S, Leung SW, Fasken MB, Moberg KH, Corbett AH. A Drosophila model of Pontocerebellar Hypoplasia reveals a critical role for the RNA exosome in neurons. PLoS Genet 2020; 16:e1008901. [PMID: 32645003 PMCID: PMC7373318 DOI: 10.1371/journal.pgen.1008901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/21/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.
Collapse
Affiliation(s)
- Derrick J. Morton
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Binta Jalloh
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lily Kim
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Isaac Kremsky
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Rishi J. Nair
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Khuong B. Nguyen
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - J. Christopher Rounds
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maria C. Sterrett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
| | - Brianna Brown
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thalia Le
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Maya C. Karkare
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kathryn D. McGaughey
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Shaoyi Sheng
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Sara W. Leung
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Milo B. Fasken
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anita H. Corbett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| |
Collapse
|
8
|
Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, Schneider C, Horvath R. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3:3/8/e202000678. [PMID: 32527837 PMCID: PMC7295610 DOI: 10.26508/lsa.202000678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The RNA exosome is a ubiquitously expressed complex of nine core proteins (EXOSC1-9) and associated nucleases responsible for RNA processing and degradation. Mutations in EXOSC3, EXOSC8, EXOSC9, and the exosome cofactor RBM7 cause pontocerebellar hypoplasia and motor neuronopathy. We investigated the consequences of exosome mutations on RNA metabolism and cellular survival in zebrafish and human cell models. We observed that levels of mRNAs encoding p53 and ribosome biogenesis factors are increased in zebrafish lines with homozygous mutations of exosc8 or exosc9, respectively. Consistent with higher p53 levels, mutant zebrafish have a reduced head size, smaller brain, and cerebellum caused by an increased number of apoptotic cells during development. Down-regulation of EXOSC8 and EXOSC9 in human cells leads to p53 protein stabilisation and G2/M cell cycle arrest. Increased p53 transcript levels were also observed in muscle samples from patients with EXOSC9 mutations. Our work provides explanation for the pathogenesis of exosome-related disorders and highlights the link between exosome function, ribosome biogenesis, and p53-dependent signalling. We suggest that exosome-related disorders could be classified as ribosomopathies.
Collapse
Affiliation(s)
- Juliane S Müller
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David T Burns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Graeme R Wells
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Romance A Zendah
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin Munro
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK .,Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
9
|
Meszarosova AU, Seeman P, Jencik J, Drabova J, Cibochova R, Stellmachova J, Safka Brozkova D. Two types of recessive hereditary spastic paraplegia in Roma patients in compound heterozygous state; no ethnically prevalent variant found. Neurosci Lett 2020; 721:134800. [PMID: 32007496 DOI: 10.1016/j.neulet.2020.134800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
Hereditary spastic paraplegia (HSP or SPG) is a group of rare upper motor neuron diseases. As some ethnically-specific, disease-causing homozygous variants were described in the Czech Roma population, we hypotesised that some prevalent HSP-causing variant could exist in this population. Eight Czech Roma patients were found in a large group of Czech patients with suspected HSP and were tested using gene panel massively parallel sequencing (MPS). Two of the eight were diagnosed with SPG11 and SPG77, respectively. The SPG77 patient manifests a pure HSP phenotype, which is unusual for this SPG type. Both patients are compound heterozygotes for two different variants in the SPG11 (c.1603-1G>A and del ex. 16-18) and FARS2 (c.1082C>T and del ex.1-2) genes respectively; the three variants are novel. In order to find a potential ethnically-specific, disease-causing variant for HSP, we tested the heterozygote frequency of these variants among 130 anonymised DNA samples of Czech Roma individuals without clinical signs of HSP (HPS-negative). A novel deletion of ex.16-18 in the SPG11 gene was found in a heterozygous state in one individual in the HSP-negative group. Haplotype analysis showed that this individual and the patient with SPG11 shared the same haplotype. This supports the assumption that the identified SPG11 deletion could be a founder mutation in the Czech Roma population. In some Roma patients the disease may also be caused by two different biallelic pathogenic mutations.
Collapse
Affiliation(s)
- Anna Uhrova Meszarosova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic.
| | - Pavel Seeman
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Jencik
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jana Drabova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Renata Cibochova
- Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Julia Stellmachova
- Department of Medical Genetics, Palacky University Hospital, Olomouc, Czech Republic
| | - Dana Safka Brozkova
- DNA Laboratory, Department of Paediatric Neurology, 2nd Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
10
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. Eur J Med Genet 2019; 63:103814. [PMID: 31770597 DOI: 10.1016/j.ejmg.2019.103814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
Rhombencephalosynapsis is a rare cerebellar malformation developing during embryogenesis defined by vermian agenesis or hypogenesis with fusion of the cerebellar hemispheres. It occurs either alone or in association with other cerebral and/or extracerebral anomalies. Its association with microlissencephaly is exceedingly rare and to date, only a heterozygous de novo missense variant in ADGRL2, a gene encoding Adhesion G-Protein-Coupled Receptor L2, has been identified. We report on two siblings of Roma origin presenting with severe growth retardation, fetal akinesia, microlissencephaly and small cerebellum with vermian agenesis. Neuropathological studies revealed extreme paucity in pontine transverse fibres, rudimentary olivary nuclei and rhombencephalosynapsis with vanishing spinal motoneurons in both fetuses. Comparative fetus-parent exome sequencing revealed in both fetuses a homozygous variant in exon 1 of the EXOSC3 gene encoding a core component of the RNA exosome, c.92G > C; p.(Gly31Ala). EXOSC3 accounts for 40%-75% of patients affected by ponto-cerebellar hypoplasia with spinal muscular atrophy (PCH1B). The c.92G > C variant is a founder mutation in the Roma population and has been reported in severe PCH1B. PCH1B is characterized by a broad phenotypic spectrum, ranging from mild phenotypes with spasticity, mild to moderate intellectual disability, pronounced distal muscular and cerebellar atrophy/hypoplasia, to severe phenotypes with profound global developmental delay, progressive microcephaly and atrophy of the cerebellar hemispheres. In PCH1B, the usual cerebellar lesions affect mainly the hemispheres with relative sparing of vermis that radically differs from rhombencephalosynapsis. This unusual foetal presentation expands the spectrum of PCH1B and highlights the diversity of rhombencephalosynapsis etiologies.
Collapse
|
12
|
Fu CZ, Guang XM, Wan QH, Fang SG. Genome Resequencing Reveals Congenital Causes of Embryo and Nestling Death in Crested Ibis (Nipponia nippon). Genome Biol Evol 2019; 11:2125-2135. [PMID: 31298688 PMCID: PMC6685491 DOI: 10.1093/gbe/evz149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
The crested ibis (Nipponia nippon) is endangered worldwide. Although a series of conservation measures have markedly increased the population size and distribution area of these birds, the high mortality of embryos and nestlings considerably decreases the survival potential of this bird species. High-throughput sequencing technology was utilized to compare whole genomes between ten samples from dead crested ibises (including six dead embryos and four dead nestlings aged 0-45 days) and 32 samples from living birds. The results indicated that the dead samples all shared the genetic background of a specific ancestral subpopulation. Furthermore, the dead individuals were less genetically diverse and suffered higher degrees of inbreeding compared with these measures in live birds. Several candidate genes (KLHL3, SETDB2, TNNT2, PKP1, AK1, and EXOSC3) associated with detrimental diseases were identified in the genomic regions that differed between the alive and dead samples, which are likely responsible for the death of embryos and nestlings. In addition, in these regions, we also found several genes involved in the protein catabolic process (UBE4A and LONP1), lipid metabolism (ACOT1), glycan biosynthesis and metabolism (HYAL1 and HYAL4), and the immune system (JAM2) that are likely to promote the normal development of embryos and nestlings. The aberrant conditions of these genes and biological processes may contribute to the death of embryos and nestlings. Our data identify congenital factors underlying the death of embryos and nestlings at the whole genome level, which may be useful toward informing more effective conservation efforts for this bird species.
Collapse
Affiliation(s)
- Chun-Zheng Fu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xuan-Min Guang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
13
|
Le Duc D, Horn S, Jamra RA, Schaper J, Wieczorek D, Redler S. Novel EXOSC3 pathogenic variant results in a mild course of neurologic disease with cerebellum involvement. Eur J Med Genet 2019; 63:103649. [PMID: 30986545 DOI: 10.1016/j.ejmg.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
EXOSC3-related autosomal recessive neurodevelopmental disorders are rare entities with variable clinical course and prognosis. They are characterized by hypoplasia of cerebellar structures and pons, degeneration of the anterior horn cells and motor as well as neurocognitive impairment. Phenotypic expression is variable with an overall poor outcome. Current research suggests clear genotype-phenotype correlations among EXOSC3-pathogenic-variants carriers. Homozygosity for the EXOSC3 variant c.395A > C, p.(Asp132Ala) is proposed to lead to a rather mild phenotype compared to compound-heterozygous EXOSC3-pathogenic-variants carriers with lethal neurological disease in very early childhood. In this study, we report two siblings (21- and 8-year-old) affected by PCH1B with an unusual presentation. We identified compound heterozygosity for the well-established EXOSC3 variant c.395A > C, p.(Asp132Ala) and the novel variant c.572G > A, p.(Gly191Asp), expanding the genetic spectrum. Phenotypic presentation of the siblings was strikingly different from that of literature reports with a surprisingly mild disease manifestation and an unexpected intrafamilial variability. This study demonstrates the extensive clinical heterogeneity and the broad phenotypic spectrum associated with EXOSC3-associated disorders. Enlargement of sample sizes and reports of novel cases will be essential for the delineation of associated phenotypes.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Susanne Horn
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Jörg Schaper
- Heinrich-Heine-University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - Silke Redler
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany; Heinrich-Heine-University, Medical Faculty, Center of Rare Disorders, Düsseldorf, Germany.
| |
Collapse
|
14
|
Pinto MM, Monges S, Malfatti E, Lubieniecki F, Lornage X, Alias L, Labasse C, Madelaine A, Fardeau M, Laporte J, Tizzano EF, Romero NB. Sarcomeric disorganization and nemaline bodies in muscle biopsies of patients with EXOSC3-related type 1 pontocerebellar hypoplasia. Muscle Nerve 2018; 59:137-141. [PMID: 30025162 DOI: 10.1002/mus.26305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Mutations in the EXOSC3 gene are responsible for type 1 pontocerebellar hypoplasia, an autosomal recessive congenital disorder characterized by cerebellar atrophy, developmental delay, and anterior horn motor neuron degeneration. Muscle biopsies of these patients often show characteristics resembling classic spinal muscle atrophy, but to date, no distinct features have been identified. METHODS Clinical data and muscle biopsy findings of 3 unrelated patients with EXOSC3 mutations are described. RESULTS All patients presented as a severe congenital cognitive and neuromuscular phenotype with short survival, harboring the same point mutation (c.92G>C; p.Gly31Ala). Muscle biopsies consistently showed variable degrees of sarcomeric disorganization with myofibrillar remnants, Z-line thickening, and small nemaline bodies. CONCLUSIONS In this uniform genetic cohort of patients with EXOSC3 mutations, sarcomeric disruption and rod structures were prominent features of muscle biopsies. In the context of neonatal hypotonia, ultrastructural studies might provide early clues for the diagnosis of EXOSC3-related pontocerebellar hypoplasia. Muscle Nerve 59:137-141, 2019.
Collapse
Affiliation(s)
- Miguel M Pinto
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Soledad Monges
- Neuropediatric and Neuropathology Departments, National Pediatric Hospital J-P-Garrahan, Buenos Aires, Argentina
| | - Edoardo Malfatti
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Fabiana Lubieniecki
- Neuropediatric and Neuropathology Departments, National Pediatric Hospital J-P-Garrahan, Buenos Aires, Argentina
| | - Xavière Lornage
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Laura Alias
- Department of Genetics, Hospital Sant Pau and CIBERER, Barcelona, Spain
| | - Clémence Labasse
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Angéline Madelaine
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Michel Fardeau
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Diseases Division, Hospital Vall d'Hebron and CIBERER, Barcelona, Spain
| | - Norma B Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
15
|
François-Moutal L, Jahanbakhsh S, Nelson ADL, Ray D, Scott DD, Hennefarth MR, Moutal A, Perez-Miller S, Ambrose AJ, Al-Shamari A, Coursodon P, Meechoovet B, Reiman R, Lyons E, Beilstein M, Chapman E, Morris QD, Van Keuren-Jensen K, Hughes TR, Khanna R, Koehler C, Jen J, Gokhale V, Khanna M. A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chem Biol 2018; 13:3000-3010. [PMID: 30141626 DOI: 10.1021/acschembio.8b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Shahriyar Jahanbakhsh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Andrew D. L. Nelson
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
| | - David D. Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Matthew R. Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Andrew J. Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Ahmed Al-Shamari
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Philippe Coursodon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | | | - Rebecca Reiman
- Neurogenomics Division, TGen, Phoenix, Arizona 85004, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
- Department of Computer Science, University of Toronto, Toronto, Canada M5S 2E4
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada M5S3G4
| | | | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Carla Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Joanna Jen
- Mount Sinai, New York, New York 10029, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Ivanov I, Atkinson D, Litvinenko I, Angelova L, Andonova S, Mumdjiev H, Pacheva I, Panova M, Yordanova R, Belovejdov V, Petrova A, Bosheva M, Shmilev T, Savov A, Jordanova A. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur J Paediatr Neurol 2018; 22:674-681. [PMID: 29656927 DOI: 10.1016/j.ejpn.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Pontocerebellar hypoplasia type 1 (PCH1) is a major cause of non-5q spinal muscular atrophy (SMA). We screened 128 SMN1-negative SMA patients from Bulgaria for a frequent mutation -p.G31A in EXOSC3, and performed a literature review of all genetically verified PCH1 cases. Homozygous p.G31A/EXOSC3 mutation was identified in 14 Roma patients, representing three fourths of all our SMN1-negative Roma SMA cases. The phenotype of the p.G31A/EXOSC3 homozygotes was compared to the clinical presentation of all reported to date genetically verified PCH1 cases. Signs of antenatal onset of disease present at birth were common in all PCH1 sub-types except in the homozygous p.D132A/EXOSC3 patients. The PCH1sub-types with early death (between ages 1 day and 17 months), seen in patients with p.G31A/EXOSC3 or SLC25A46 mutations have a SMA type 1-like clinical presentation but with global developmental delay, visual and hearing impairment, with or without microcephaly, nystagmus and optic atrophy. Mutations with milder presentation (homozygous p.D132A/EXOSC3 or VRK1) may display additionally signs of upper motor neuron impairment, dystonia or ataxia and die at age between 5 and 18 years. Other EXOSC3 mutations and EXOSC8 cases are intermediate - SMA type 1-like presentation, spasticity (mostly in EXOSC8) and death between 3 months and 5 years. There is no correlation between neurological onset and duration of life. We add marble-like skin and congenital laryngeal stridor as features of PCH1. We show that imaging signs of cerebellar and pontine hypoplasia may be missing early in infancy. EMG signs of anterior horn neuronopathy may be missing in PCH1 patients with SLC25A46 mutations. Thus, there is considerable phenotypic variability in PCH1, with some cases being more SMA-like, than PCH-like. Detailed clinical evaluation and ethnicity background may guide genetic testing and subsequent genetic counseling.
Collapse
Affiliation(s)
- I Ivanov
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - D Atkinson
- VIB Center for Molecular Neurology, University of Antwerp, Belgium.
| | - I Litvinenko
- Department of Pediatrics, SBALDB "Prof. D-r Ivan Mitev", Medical University-Sofia, Sofia, Bulgaria.
| | - L Angelova
- Department of Medical Genetics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria.
| | - S Andonova
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - H Mumdjiev
- Department of Neonatology, Prof. Stoyan Kirkovich University Hospital, Medical Faculty of Tracian University, Stara Zagora, Bulgaria.
| | - I Pacheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Panova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - R Yordanova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - V Belovejdov
- Department of Pathology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Petrova
- Department of Radiology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Bosheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - T Shmilev
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - A Jordanova
- VIB Center for Molecular Neurology, University of Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
17
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
18
|
Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, Bönnemann CG. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. Am J Hum Genet 2018; 102:858-873. [PMID: 29727687 PMCID: PMC5986733 DOI: 10.1016/j.ajhg.2018.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161∗). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies.
Collapse
|
19
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
20
|
Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, Tysoe C, Jones G, Gunning AC, Lango Allen H, Bradley L, Brady AF, Carley H, Carmichael J, Castle B, Cilliers D, Cox H, Deshpande C, Dixit A, Eason J, Elmslie F, Fry AE, Fryer A, Holder M, Homfray T, Kivuva E, McKay V, Newbury‐Ecob R, Parker M, Savarirayan R, Searle C, Shannon N, Shears D, Smithson S, Thomas E, Turnpenny PD, Varghese V, Vasudevan P, Wakeling E, Baple EL, Ellard S. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. Prenat Diagn 2018; 38:33-43. [PMID: 29096039 PMCID: PMC5836855 DOI: 10.1002/pd.5175] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.
Collapse
|
21
|
Schottmann G, Picker-Minh S, Schwarz JM, Gill E, Rodenburg RJT, Stenzel W, Kaindl AM, Schuelke M. Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion 2017; 37:46-54. [PMID: 28687512 DOI: 10.1016/j.mito.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022]
Abstract
Recessive mutations in EXOSC3, encoding a subunit of the human RNA exosome complex, cause pontocerebellar hypoplasia type 1b (PCH1B). We report a boy with severe muscular hypotonia, psychomotor retardation, progressive microcephaly, and cerebellar atrophy. Biochemical abnormalities comprised mitochondrial complex I and pyruvate dehydrogenase complex (PDHc) deficiency. Whole exome sequencing uncovered a known EXOSC3 mutation p.(D132A) as the underlying cause. In patient fibroblasts, a large portion of the EXOSC3 protein was trapped in the cytosol. MtDNA copy numbers in muscle were reduced to 35%, but mutations in the mtDNA and in nuclear mitochondrial genes were ruled out. RNA-Seq of patient muscle showed highly increased mRNA copy numbers, especially for genes encoding structural subunits of OXPHOS complexes I, III, and IV, possibly due to reduced degradation by a dysfunctional exosome complex. This is the first case of mitochondrial dysfunction associated with an EXOSC3 mutation, which expands the phenotypic spectrum of PCH1B. We discuss the links between exosome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gudrun Schottmann
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Sylvie Picker-Minh
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Marie Schwarz
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Esther Gill
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Richard J T Rodenburg
- Radboud Center for Mitochondrial Disorders, Department of Pediatrics, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Werner Stenzel
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Angela M Kaindl
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Markus Schuelke
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| |
Collapse
|
22
|
Di Giovambattista AP, Jácome Querejeta I, Ventura Faci P, Rodríguez Martínez G, Ramos Fuentes F. Familial EXOSC3-related pontocerebellar hypoplasia. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.anpede.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Gillespie A, Gabunilas J, Jen JC, Chanfreau GF. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae. RNA (NEW YORK, N.Y.) 2017; 23:466-472. [PMID: 28053271 PMCID: PMC5340910 DOI: 10.1261/rna.060004.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/22/2016] [Indexed: 05/29/2023]
Abstract
The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes.
Collapse
Affiliation(s)
- Abby Gillespie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | - Joanna C Jen
- Department of Neurology, University of California, Los Angeles, California 90095-1763, USA
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| |
Collapse
|
24
|
Di Giovambattista AP, Jácome Querejeta I, Ventura Faci P, Rodríguez Martínez G, Ramos Fuentes F. [Familial EXOSC3-related pontocerebellar hypoplasia]. An Pediatr (Barc) 2016; 86:284-286. [PMID: 27876572 DOI: 10.1016/j.anpedi.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023] Open
|
25
|
Insight into the RNA Exosome Complex Through Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast. Genetics 2016; 205:221-237. [PMID: 27777260 DOI: 10.1534/genetics.116.195917] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Pontocerebellar hypoplasia type 1b (PCH1b) is an autosomal recessive disorder that causes cerebellar hypoplasia and spinal motor neuron degeneration, leading to mortality in early childhood. PCH1b is caused by mutations in the RNA exosome subunit gene, EXOSC3 The RNA exosome is an evolutionarily conserved complex, consisting of nine different core subunits, and one or two 3'-5' exoribonuclease subunits, that mediates several RNA degradation and processing steps. The goal of this study is to assess the functional consequences of the amino acid substitutions that have been identified in EXOSC3 in PCH1b patients. To analyze these EXOSC3 substitutions, we generated the corresponding amino acid substitutions in the Saccharomyces cerevisiae ortholog of EXOSC3, Rrp40 We find that the rrp40 variants corresponding to EXOSC3-G31A and -D132A do not affect yeast function when expressed as the sole copy of the essential Rrp40 protein. In contrast, the rrp40-W195R variant, corresponding to EXOSC3-W238R in PCH1b patients, impacts cell growth and RNA exosome function when expressed as the sole copy of Rrp40 The rrp40-W195R protein is unstable, and does not associate efficiently with the RNA exosome in cells that also express wild-type Rrp40 Consistent with these findings in yeast, the levels of mouse EXOSC3 variants are reduced compared to wild-type EXOSC3 in a neuronal cell line. These data suggest that cells possess a mechanism for optimal assembly of functional RNA exosome complex that can discriminate between wild-type and variant exosome subunits. Budding yeast can therefore serve as a useful tool to understand the molecular defects in the RNA exosome caused by PCH1b-associated amino acid substitutions in EXOSC3, and potentially extending to disease-associated substitutions in other exosome subunits.
Collapse
|
26
|
Crone M, Thomas MA. 9p13.1p13.3 interstitial deletion: A case report and further delineation of a rare condition. Am J Med Genet A 2016; 170A:1095-8. [DOI: 10.1002/ajmg.a.37534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Megan Crone
- Section of Pediatrics; Department of Neurology; Cumming School of Medicine; Alberta Children's Hospital; University of Calgary; Calgary Alberta Canada
| | - Mary Ann Thomas
- Department of Medical Genetics; Cumming School of Medicine; Alberta Children's Hospital; University of Calgary; Calgary Alberta Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
27
|
Müller JS, Giunta M, Horvath R. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. J Neuromuscul Dis 2015; 2:S31-S37. [PMID: 27127732 PMCID: PMC4845884 DOI: 10.3233/jnd-150086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms.
Collapse
Affiliation(s)
- Juliane S. Müller
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michele Giunta
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Mašindová I, Šoltýsová A, Varga L, Mátyás P, Ficek A, Hučková M, Sůrová M, Šafka-Brožková D, Anwar S, Bene J, Straka S, Janicsek I, Ahmed ZM, Seeman P, Melegh B, Profant M, Klimeš I, Riazuddin S, Kádasi Ľ, Gašperíková D. MARVELD2 (DFNB49) mutations in the hearing impaired Central European Roma population--prevalence, clinical impact and the common origin. PLoS One 2015; 10:e0124232. [PMID: 25885414 PMCID: PMC4401708 DOI: 10.1371/journal.pone.0124232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/27/2015] [Indexed: 01/26/2023] Open
Abstract
Background In the present study we aimed: 1) To establish the prevalence and clinical impact of DFNB49 mutations in deaf Roma from 2 Central European countries (Slovakia and Hungary), and 2) to analyze a possible common origin of the c.1331+2T>C mutation among Roma and Pakistani mutation carriers identified in the present and previous studies. Methods We sequenced 6 exons of the MARVELD2 gene in a group of 143 unrelated hearing impaired Slovak Roma patients. Simultaneously, we used RFLP to detect the c.1331+2T>C mutation in 85 Hungarian deaf Roma patients, control groups of 702 normal hearing Romanies from both countries and 375 hearing impaired Slovak Caucasians. We analyzed the haplotype using 21 SNPs spanning a 5.34Mb around the mutation c.1331+2T>C. Results One pathogenic mutation (c.1331+2T>C) was identified in 12 homozygous hearing impaired Roma patients. Allele frequency of this mutation was higher in Hungarian (10%) than in Slovak (3.85%) Roma patients. The identified common haplotype in Roma patients was defined by 18 SNP markers (3.89 Mb). Fourteen common SNPs were also shared among Pakistani and Roma homozygotes. Biallelic mutation carriers suffered from prelingual bilateral moderate to profound sensorineural hearing loss. Conclusions We demonstrate different frequencies of the c.1331+2T>C mutation in hearing impaired Romanies from 3 Central European countries. In addition, our results provide support for the hypothesis of a possible common ancestor of the Slovak, Hungarian and Czech Roma as well as Pakistani deaf patients. Testing for the c.1331+2T>C mutation may be recommended in GJB2 negative Roma cases with early-onset sensorineural hearing loss.
Collapse
Affiliation(s)
- Ivica Mašindová
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Šoltýsová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lukáš Varga
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Otorhinolaryngology—Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia
| | - Petra Mátyás
- Department of Medical Genetics, University of Pécs, Clinical Centre, Pécs, Hungary
| | - Andrej Ficek
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Miloslava Hučková
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Sůrová
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Šafka-Brožková
- DNA Laboratory, Department of Paediatric Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Saima Anwar
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Judit Bene
- Department of Medical Genetics, University of Pécs, Clinical Centre, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Slavomír Straka
- Department of Otorhinolaryngology—Head and Neck Surgery, Faculty Hospital of J. A. Reiman, Prešov, Slovakia
| | - Ingrid Janicsek
- Department of Medical Genetics, University of Pécs, Clinical Centre, Pécs, Hungary
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Pavel Seeman
- DNA Laboratory, Department of Paediatric Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Béla Melegh
- Department of Medical Genetics, University of Pécs, Clinical Centre, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Milan Profant
- Department of Otorhinolaryngology—Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia
| | - Iwar Klimeš
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Ľudevít Kádasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Daniela Gašperíková
- Laboratory of Diabetes and Metabolic Disorders & DIABGENE, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
29
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
30
|
Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5:4287. [PMID: 24989451 PMCID: PMC4102769 DOI: 10.1038/ncomms5287] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. The exosome is responsible for mRNA degradation, which is an important step in the regulation of gene expression. Here the authors report that homozygous missense mutations in the exosome subunit, EXOSC8, may cause neurodegenerative disease in infants through the dysregulation of myelin expression.
Collapse
Affiliation(s)
- Veronika Boczonadi
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Juliane S Müller
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Angela Pyle
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Jennifer Munkley
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Talya Dor
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jade Quartararo
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Michele Giunta
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Tuomo Polvikoski
- Department of Pathology, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Birchall
- Neuroradiology Department, Regional Neurosciences Centre, Queen Victoria Road, Newcastle upon Tyne NE1 4PL, UK
| | - Agota Princzinger
- Department of Paediatrics, Josa Andras Hospital, Szent Istvan utca 6, Nyiregyhaza 4400, Hungary
| | - Yuval Cinnamon
- 1] The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel [2] Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O.Box 6, Bet Dagan 50250, Israel
| | - Susanne Lützkendorf
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Henriett Piko
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Mojgan Reza
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Laura Florez
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Shimon Edvardson
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
31
|
Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:173-83. [PMID: 24924738 DOI: 10.1002/ajmg.c.31403] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pontocerebellar hypoplasia (PCH) is a clinically and genetically heterogeneous group of autosomal recessively inherited neurodevelopmental disorders. Following the rapidly increasing number of genes identified in different subtypes, the clinical spectrum has been broadened to completely different neurological phenotypes. In this review we will address the clinical picture, neuroradiological, pathoanatomic, and genetic findings in the currently known PCH subtypes.
Collapse
|
32
|
Eggens VR, Barth PG, Niermeijer JMF, Berg JN, Darin N, Dixit A, Fluss J, Foulds N, Fowler D, Hortobágyi T, Jacques T, King MD, Makrythanasis P, Máté A, Nicoll JAR, O'Rourke D, Price S, Williams AN, Wilson L, Suri M, Sztriha L, Dijns-de Wissel MB, van Meegen MT, van Ruissen F, Aronica E, Troost D, Majoie CB, Marquering HA, Poll-Thé BT, Baas F. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis 2014; 9:23. [PMID: 24524299 PMCID: PMC3928094 DOI: 10.1186/1750-1172-9-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 11/24/2022] Open
Abstract
Background Pontocerebellar hypoplasia (PCH) represents a group of neurodegenerative disorders with prenatal onset. Eight subtypes have been described thus far (PCH1-8) based on clinical and genetic features. Common characteristics include hypoplasia and atrophy of the cerebellum, variable pontine atrophy, and severe mental and motor impairments. PCH1 is distinctly characterized by the combination with degeneration of spinal motor neurons. Recently, mutations in the exosome component 3 gene (EXOSC3) have been identified in approximately half of the patients with PCH subtype 1. Methods We selected a cohort of 99 PCH patients (90 families) tested negative for mutations in the TSEN genes, RARS2, VRK1 and CASK. Patients in this cohort were referred with a tentative diagnose PCH type 1, 2, 4, 7 or unclassified PCH. Genetic analysis of the EXOSC3 gene was performed using Sanger sequencing. Clinical data, MR images and autopsy reports of patients positive for EXOSC3 mutations were analyzed. Results EXOSC3 mutations were found in twelve families with PCH subtype 1, and were not found in patients with other PCH subtypes. Identified mutations included a large deletion, nonsense and missense mutations. Examination of clinical data reveals a prolonged disease course in patients with a homozygous p.D132A mutation. MRI shows variable pontine hypoplasia in EXOSC3 mediated PCH, where the pons is largely preserved in patients with a homozygous p.D132A mutation, but attenuated in patients with other mutations. Additionally, bilateral cerebellar cysts were found in patients compound heterozygous for a p.D132A mutation and a nonsense allele. Conclusions EXOSC3 mediated PCH shows clear genotype-phenotype correlations. A homozygous p.D132A mutation leads to PCH with possible survival into early puberty, and preservation of the pons. Compound heterozygosity for a p.D132A mutation and a nonsense or p.Y109N allele, a homozygous p.G31A mutation or a p.G135E mutation causes a more rapidly progressive course leading to death in infancy and attenuation of the ventral pons. Our findings imply a clear correlation between genetic mutation and clinical outcome in EXOSC3 mediated PCH, including variable involvement of the pons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frank Baas
- Department of Genome Analysis, Academic Medical Centre, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Fabre A, Badens C. Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors. Intractable Rare Dis Res 2014; 3:8-11. [PMID: 25343120 PMCID: PMC4204543 DOI: 10.5582/irdr.3.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/03/2023] Open
Abstract
The RNA exosome has a key role in RNA decays and RNA quality control. In 2012, two human Mendelian diseases: syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) and Ponto-cerebellar hypoplasia type 1(PCH1) were linked to the RNA exosome or its cofactor's defect. SD/THE's main features are an intractable diarrhea of infancy associated with hair abnormalities, facial dysmorphism, intra uterine growth restriction and immune deficiency. SD/THE is caused by a defect of the SKI complex (TTC37 and SKIV2L), the cytoplasmic co-factor of the RNA exosome for mRNA degradation. PCH1's main features are atrophy of the pons and of the cerebellum, a progressive microcephaly with developmental delay and muscle atrophy secondary to spinal anterior horn cell loss. In 30-40% of patients, PCH1 is caused by a defect in EXOSC3 which encodes RRP40, a protein of the cap of the RNA exosome. Thanks to knowledge about other forms of PCH it could be assumed that the altered substrates are probably transfer RNA However, as there exists no patient with two null mutations, residual RNA exosome functionality is probably required to preserve viability. Thus, to date two very different human Mendelian diseases have been related to the dysfunctioning of the RNA exosome. It illustrates the versatility of the RNA exosome function and substrate.
Collapse
Affiliation(s)
- Alexandre Fabre
- Service de pédiatrie Multidisciplinaire, Hôpital des Enfants de la Timone, APHM, Marseille, France
- UMR_S 910, Aix-Marseille Université, Marseille, France
- Address correspondence to: Dr. Alexandre Fabre, Service de pédiatrie Multidisciplinaire, Hôpital des Enfants de la Timone, APHM, Marseille, France. E-mail:
| | - Catherine Badens
- UMR_S 910, Aix-Marseille Université, Marseille, France
- Service de Génétique Moléculaire, Hôpital des Enfants de la Timone, APHM, Marseille, France
| |
Collapse
|